Organisasi Sistem Komputer 1 Organisasi Sistem Komputer Application (Netscape) Software Hardware Operating Compiler System Assembler (Windows 98) Processor Memory I/O system 10230 Instruction Set Architecture Datapath & Control Digital Design Circuit Design transistors ° Koordinasi dari berbagai tingkat “abstraksi” 2 Abstraksi Sistem Komputer 3 Konsep Abstraksi ° Memudahkan bermacam “pengguna” memahami sistem komputer sesuai tingkat kebutuhannya (yang berbeda-beda): • end-user: - menggunakan aplikasi untuk menyelesaikan tugasnya - butuh aplikasi yang merepresentasikan alat bantu penyelesaian tugasnya • pemrogram aplikasi: - menggunakan development tools untuk membuat program aplikasi - butuh model sistem komputer tanpa bergantung pada jenis komputer secara spesifik • pemrogram sistem: - membuat program sistem - butuh model sistem komputer tanpa bergantung pada implementasi komponen-komponen perangkat keras 4 Tingkat-tingkat Abstraksi Sistem Komputer ° Application S/W • MS Word computer as electronic type-writer • MS Excel computer as electronic calculator ° System S/W • Compilers computer as translator (source to executable program) • Operating Systems computer as machine that executes programs, stores files, prints content of files to printers, communicate with other computers ° Instruction Set • What basic operations can be carried out • What, where, and how data can be stored & retrieved in/from memory • How can data be exchanged to the outside “world” ° Computer H/W • The 5 components: Datapath, Control, Memory, Input, Output 5 Bahasa Pemrograman 6 Tingkat-tingkat Bahasa Pemrograman A = 25; B = 8; High Level Language Program (e.g., C) Compiler 10230 Assembly Language Program Assembler Machine Language Program (80x86) Machine Interpretation 0000 1010 1100 0101 1001 1111 0110 1000 C = A * B; A B C mov mov add mov 1100 0101 1010 0000 dw 25 dw 8 resw 1 eax, [A] ebx, [B] eax, ebx [C], eax 0110 1000 1111 1001 1010 0000 0101 1100 1111 1001 1000 0110 0101 1100 0000 1010 1000 0110 1001 1111 Control Signal Specification ° ° 7 Java: Interpreted Programming Language Java Language Program Java Compiler Byte Code Interpreter (Java Virtual Machine) + Just In Time (JIT) Compiler Machine Language Program (80x86) Machine Interpretation Control Signal Specification ° ° 8 Java (.java) Byte Code (.class) (http://www.javacoffeebreak.com) Deskripsi Byte Code: • getstatic get static field from class • ldc push item from runtime constant pool • invokevirtual invoke instance method • return return control to the caller 9 Sejarah Komputer 10 Generasi Komputer ° I: ’46 – ’57: UNIVAC 1103 • Bahasa Rakitan • Vacuum Tube • 40.000 instruksi/detik ° II: ’58 – ’64: IBM 7094 • • • • Bahasa Tingkat Tinggi (Fortran, Cobol), Kompilator Transistor I/O & Processor Parallelism 200.000 instruksi/detik ° III: ’65 – ’71: IBM System/360, DEC PDP-8 • • • • Sistem Operasi Small- & Medium-scale Integrated Circuit (IC) Cache & Virtual Memory, Microprogramming, Pipelining, Parallelism 1.000.000 instruksi/detik ° IV: ’72 – ’77: Apple IIe, IBM PC • Large Scale Integrated Circuit (LSI) • Microprocessor, PC • 10.000.000 instruksi/detik ° IV: ’78 – …: 80286 – Pentium IV, MIPS, Sparc, PowerPC • Very Large Scale Integrated Circuit (VLSI) • 100.000.000 instruksi/detik 11 Arsitektur Komputer 12 Komponen-komponen Komputer MONITOR: to output data SPEAKER: to output data KEYBOARD: to input command/data “CPU”: to process command & data DISK: to input/output data MOUSE: to input command/data 13 5 Komponen Utama Komputer Devices Keyboard, Mouse Input Disk Computer Processor (active) Control (“brain”) Datapath (“brawn”) Memory (passive) (where programs, data live when running) Output (where programs, data live when not running) Display, Printer “CPU” 14 Processor ° Responsible of executing program stored in memory • read instructions & input data • execute • store results (output data) ° Control Unit (“otak”): • interprete instruction • control data transfer between registers • define processsor’s ‘language’ complexity (e.g., RISC vs. CISC) ° Datapath (“otot”): • ALU: Aritmetic & Logical Unit • Exposed register - Size of register determines processor smallest data unit (i.e., 8-bit, 16-bit, 32-bit, 64-bit computers) • Hidden register 15 Memory ° Responsible of storing instructions/data ° Each unit of instruction/data is stored in a memory cell, whose address is known to the processor ° Any memory cell can be accessed by a processor randomly (RAM: random access memory) ° The amount of instruction/data accessed by a processor may vary (1, 2, ..., n memory cells at a time) ° To achieve trade-off between speed and cost, memory is structured hierarchically memory hierarchy 16 Input/Output (Device) ° Responsible of communicating with the outside (of computer) world ° A device may serve as Input-only, Output-only, or both (Input-Output) device • Input-only: keyboard • Output-only: monitor display • Input-Output: floppy disk, hard disk ° Data translation may be needed when processor exchanges data with an I/O device so humans can understand them 17 Interkoneksi Antar-komponen Komputer (1/2) Gbr. 5. (a) Tampak belakang komputer. (b) Bagian dalam komputer (tampak samping). *Diambil dari http://www.ui.ac.id/pdpt/ppkk/PengenalanKomputer.html 18 Interkoneksi Antar-komponen Komputer (2/2) Proc Caches Processor-Memory Bus adapters I/O Bus Memory Controllers I/O Devices: Disks Displays Keyboards Networks Interconnected by a BUS 19 Tren Teknologi 20 Tren Teknologi: Kapasitas Mikroprosesor Pentium 4: 42 million Pentium III: 9.5 million 100000000 Alpha 21264: 15 million Pentium Pro: 5.5 million PowerPC 620: 6.9 million Alpha 21164: 9.3 million Sparc Ultra: 5.2 million 10000000 Moore’s Law Pentium i80486 Transistors 1000000 i80386 i80286 100000 2X transistors/Chip Every 1.5 years i8086 10000 i8080 i4004 1000 1970 1975 1980 1985 Year 1990 1995 2000 Called “Moore’s Law” 21 Tren Teknologi: Kinerja Prosesor 900 800 700 600 500 400 300 200 100 0 DEC Alpha 21264/600 1.54X/yr DEC Alpha 5/500 DEC HP Sun MIPSMIPSIBM AXP/ 9000/ -4/ M M/ RS/ 500 750 260 2000 120 6000 DEC Alpha 5/300 DEC Alpha 4/266 IBM POWER 100 87 88 89 90 91 92 93 94 95 96 97 Processor performance increase/year, mistakenly referred to as Moore’s Law (transistors/chip) 22 Tren Teknologi: Kapasitas Memori (1 Chip DRAM) year 1980 1983 1986 1989 1992 1996 2000 size 1000000000 100000000 Bits 10000000 1000000 size(Megabit) 0.0625 0.25 1 4 16 64 256 100000 10000 1000 1970 1975 1980 1985 Year 1990 1995 2000 Now 1.4X/yr, or doubling every 2 years 4000X since 1980 23 Tren Teknologi: Kapasitas Disk Year Areal Density 1.7 1979 7.7 1989 63 1997 3090 2000 17100 100000 10000 1000 Areal Density 1973 100 10 1 1970 1980 1990 2000 Year • Areal Density = BPI x TPI - BPI: Bit Per Inch - TPI: Tracks Per Inch • Change slope 30%/yr to 60%/yr about 1991 24 Teknologi Komputer Perubahan Dramatis ° Prosessor • 2X lebih cepat setiap 1,5 tahun • 100X lebih cepat dalam dekade terakhir ° Memori • Kapasitas DRAM: 2x / 2 years • Kecepatan Memori: meningkat 10% per tahun • Biaya per bit: membaik 25% per tahun • Kapasitas meningkat 64X dalam dekade terakhir ° Disk • Kapasitas disk: > 2X setiap 1,0 tahun • Biaya per bit: membaik 100% per tahun • Kapasitas meningkat 120X dalam dekade terakhir 25 Komputer Berkinerja Tinggi (High Performance Computers) 26 Intel Pentium Pro Quad CPU P-Pr o module 256-KB Interrupt L2 $ controller Bus interface P-Pr o module P-Pr o module PCI bridge PCI bus PCI I/O cards PCI bridge PCI bus P-Pr o bus (64-bit data, 36-bit address, 66 MHz) Memory controller MIU 1-, 2-, or 4-w ay interleaved DRAM • All coherence and multiprocessing glue in processor module • Highly integrated, targeted at high volume • Low latency and bandwidth 27 SUN Enterprise P $ P $ $2 $2 CPU/mem cards Mem ctrl Bus interf ace/sw itch Gigaplane bus (256 data, 41 address, 83 MHz) I/O cards 2 FiberChannel SBUS SBUS SBUS ° Proc + mem card - I/O card 100bT, SCSI Bus interf ace • 16 cards of either type • All memory accessed over bus, so symmetric • Higher bandwidth, higher latency bus 28 Cray T3E External I/O P $ Mem Mem ctrl and NI XY Sw itch Z • Scale up to 1024 processors, 480MB/s links • Memory controller generates request message for non-local references • No hardware mechanism for coherence - SGI Origin etc. provide this 29 Intel Paragon i860 i860 L1 $ L1 $ Intel Paragon node Memory bus (64-bit, 50 MHz) Mem ctrl DMA Driver Sandia’ s Intel Paragon XP/S-based Super computer 2D grid netw ork w ith processing node attached to every sw itch NI 4-w ay interleaved DRAM 8 bits, 175 MHz, bidirectional 30 IBM SP-2 ° Made out of essentially complete RS6000 workstations ° Network interface integrated in I/O bus (bw limited by I/O bus) Pow er 2 CPU IBM SP-2 node L2 $ Memory bus 4-w ay interleaved DRAM Memory controller MicroChannel bus NIC I/O DMA i860 NI DRAM General interconnection netw ork f ormed fom r 8-port sw itches 31 Berkeley NOW ° 100 Sun Ultra2 workstations ° Inteligent network interface • proc + mem ° Myrinet Network • 160 MB/s per link • 300 ns per hop 32 Intel 80x86 Architecture 33 Intel History: ISA evolved since 1978 ° 8086: 16-bit, all internal registers 16 bits wide; no general purpose registers; ‘78 ° 8087: + 60 Fl. Pt. instructions, (Prof. Kahan) adds 80-bit-wide stack, but no registers; ‘80 ° 80286: adds elaborate protection model; ‘82 ° 80386: 32-bit; converts 8 16-bit registers into 8 32-bit general purpose registers; new addressing modes; adds paging; ‘85 ° 80486, Pentium, Pentium II: + 4 instructions ° MMX: + 57 instructions for multimedia; ‘97 ° Pentium III: +70 instructions for multimedia; ‘99 ° Pentium 4: +144 instructions for multimedia; '00 34 Arsitektur Intel P6 (Pentium Pro) Control Unit Data Path 35 Contoh: Komputer Berbasis Pentium Processor Processor/Memory Bus Memory PCI Bus I/O I/O Busses 36