Dr. novrina [email protected] Sistem Bilangan Konversi Sistem Bilangan Operasi Aritmatik pada Sistem Bilangan Bilangan Biner Bertanda Pengkodean Biner ( 0 dan 1) Desimal ( 0 – 9) Oktal ( 0 – 7) Heksadesimal ( 0 – 9, A - F) 1. Basis X ke DESIMAL Bilangan bulat : bilangan tersebut dikalikan dengan Xm (m : sesuai dengan nilai tempat/bobot). Contoh : 1458 = ……..10 1458 = 1x82 + 4x81 + 5x80 = 64 + 32 + 5 = 10110 Bilangan pecahan : bilangan tersebut dikalikan dengan X-m (m: sesuai dengan nilai tempat/bobot). Contoh : 0, 128 = ……..10 0,128 = 1 x 8-1 + 2 x 8-2 = 1/8 + 2/64 = 1/8 + 1/32 = 5/32 2. DESIMAL ke Basis X Bilangan bulat : bilangan tersebut dibagi berulang dengan basis X Bilangan pecahan : bilangan tersebut dikalikan dengan basisnya, dan berulang untuk hasil kali pecahannya. Contoh: 0,4375(10) = ……….. (2) 0,4375 x 2 = 0 sisa 0,8750 0,8750 x 2 = 1 sisa 0,7500 0,7500 x 2 = 1 sisa 0,5000 0,5000 x 2 = 1 sisa 0 Jadi 0,4375(10) = 0,0111 (2) 3. BASIS X ke BASIS Y Bilangan tersebut diubah ke desimal (lihat no. 1) kemudian ubah desimal tersebut ke basis Y (lihat no. 2). ARITMATIKA FIXED POINT Penjumlahan dan pengurangan Desimal 5,67 43,09 -------- + 48,76 137,12 10,09 -------- 127,03 Penjumlahan dan pengurangan Basis X 67(8) 35(8) -------- + 124(8) 1101(2) 1001(2) -------- + 10110(2) A19(16) 53(16) -------- 9C6(16) ARITMATIKA FLOATING POINT Penjumlahan dan pengurangan 0,63524 X 103 0,63215 X 103 + ---------------1,26739 X 103 0,11000 X 23 0,10100 X 22 ---------------- + 0,126739 X 104 0,11000 X 23 0,01010 X 23 ---------------- + 0,00010 X 23 Perkalian (0,253 x 102) x (0,124 x 103) = (0,253) x (0,124) x 102+3 = 0,031 x 105 = 0,31 x 104 Bilangan biner bertanda terdiri dari: Magnitude – Sign Komplemen 1 (1st complement) Komplemen 2 (2nd complement) Untuk ketiga bentuk bilangan biner bertanda, bila bernilai positif, maka biarkan dibentuk biner yang sebenarnya. Tanda (sign digit) diletakkan pada posisi paling kiri. “0” menandakan positif, “1” menandakan negatif. Contoh: Sign-magnitude untuk +9 dalam 8 bit: +9 = 00001001 Sign-magnitude untuk -9 dalam 8 bit: +9 = 10001001 Kelemahan: tidak dapat digunakan untuk penjumlahan biner Bilangan komplemen 1: Biner “0” menjadi “1”, biner “1” menjadi “0” Contoh: Komplemen-1 untuk +9 dalam 8 bit: +9 = 00001001 Komplemen-1 untuk -9 dalam 8 bit: -9 = 11110110 Bilangan ini banyak digunakan dalam sistem komputer untuk memproses persamaan aritmetika dan bilangan biner Bentuk ini lebih mudah membedakan bilangan biner positif dan negatif Kelebihan: proses penjumlahan dan pengurangan dapat dilakukan baik pada bilangan positif dan negatif. Cara mengubah ke komplemen 2: Ubah ke bentuk komplemen-1 Komplemen-1 di tambahkan 1 Contoh: Komplemen-2 dari +9 dalam 8 bit: +9 = 00001001 Komplemen-2 dari -9 dalam 8 bit: Biner: 00001001 Komplemen-1 : 11110110 Komplemen-2 : 11110110 1+ 11110111 Konversikan bentuk komplemen-2 11110111 ke bentuk desimal: Komplemen-2: 11110111 Komplemen-1: 10001000 1 ------------- + Biner : 10001001 Desimal : -9 Konversikan +3510 dan - 3510 ke : Magnitude-sign komplemen-1 komplemen-2 Konversikan komplemen-2 11011101 ke bentuk desimal Hitunglah dalam komplemen-2 -210 + 110 Jawab: 1110 + 0001 = 1111 = -110 -610 + 610 Jawab: 1010 + 0110 = 10000 = 0000 = 010 Overflow diabaikan Proses pengurangan dilakukan dengan menjumlahkan bilangan dengan bilangan komplemen-2. Contoh: Hitunglah 610 – 310 = 610 + (-3) 10 = 0110 + 1101 = 10011 = 0011 = 310 310 – 610 = 310 + (-6) 10 = 0011 + 1010 = 1101 = -310 Pada bilangan komplemen-2, overflow terjadi jika penjumlahan dua buah bilangan dengan tanda yang sama dapat menghasilkan bilangan yang tandanya berbeda Contoh: Hitung 410 + 610 dalam 4 bit 0100 + 0110 = 1010 = -610 akibat overflow Jika perhitungan dilakukan dalam 5 bit (pelebaran 1 bit): 00100 + 00110 = 01010 = 1010 Ketika bilangan komplemen-2 diperlebar 1 atau beberapa bit, bit tanda harus disalin ke dalam posisi bit msb. Proses ini disebut penambahan tanda (sign extention). Contoh: 3 dan -3 dalam 4 bit 0011 dan 1101 Bila 3 dan -3 diperlebar dalam 7 bit maka: 0000011 dan 1111101 BCD (Binary Code Decimal) BCO (Binary Code Octal) BCH (Binary Code Hexadecimal) Kode Gray Kode Ekses-3 Kode ASCII Kode BCD menggunakan desimal yang berkode biner. Kode BCD menggunakan 4 bit (1 nibble) untuk merepresentasikan setiap digit desimal dari 0 sampai 9 BCD hanya kode dalam bentuk biner yang merepresentasikan nilai yang sesungguhnya Kode umumnya adalah BCD8421 Desimal Biner BCD 0 0 0000 1 1 0001 2 10 0010 3 11 0011 4 100 0100 5 101 0101 6 110 0110 7 111 0111 8 1000 1000 9 1001 1001 10 1010 0001 0000 11 1011 0001 0001 12 1100 0001 0010 Contoh: 684(10) = …… (BCD8421) 6 = 0110 8 = 1000 4 = 0100 Jadi 684(10) = 0110 1000 0100(BCD8421) 684(10) = …… (BCD5421) 6 = 1001 8 = 1011 4 = 0100 Jadi 684(10) = 1001 1011 0100(BCD5421) Berapakah penjumlahan desimal 16 + 7 secara biner dan secara BCD? Desimal 16 7 ----23 Biner BCD 10000 111 ------10111 0001 0110 0111 ------------0001 1101 Cara penyelesaian penjumlahan BCD Jika lebih dari desimal 9, maka ditambahkan 0110 atau 6 16 7 ----23 0001 0110 0111 ------------0001 1101 0110 -------------0010 0011 Berapa hasil penjumlahan 28 + 17 secara BCD? Berapa hasil penjumlahan 349 + 57 secara BCD? Bilangan Oktal pada setiap tempat terdiri dari 8 bilangan yang berbeda-beda. Untuk 8 elemen yang berbeda-beda diperlukan 3 bit. Sebuah BCO mempunyai 3 bit biner untuk setiap tempat bilangan Oktal Contoh: 634(8) = 110 011 100 Biner Code Octal 6 3 4 Bilangan Oktal Bilangan Heksadesimal pada setiap tempat terdiri dari 16 bilangan yang berbeda-beda (angka dan huruf). Untuk 16 elemen yang berbeda-beda diperlukan 4 bit. Sebuah BCH mempunyai 4 bit biner untuk setiap tempat bilangan Heksadesimal Contoh: 31AF(16) = 0011 0001 1010 1111 Biner Code Heksadesimal 3 1 A F Cara konversi biner ke Gray: Digit pertama biner sama dengan digit pertama kode Gray Kemudian digit pertama biner ditambahkan ke digit berikutnya untuk menentukan digit Gray berikutnya sampai penambahan digit terakhir Contoh: Berapakah kode gray dari 1010 bilangan biner? Jawab: Digit pertama Gray = Digit pertama biner = 1 Digit kedua Gray = 1 + 0 = 1 Digit ketiga Gray = 0 + 1 = 1 Digit keempat Gray = 1 + 0 = 1 Berarti 1010(2) = 1111 (Gray) Cara konversi kode Gray ke biner Digit pertama Kode Gray sama dengan digit pertama biner Digit kedua biner = digit pertama biner ditambah digit kedua gray Digit ketiga biner = digit kedua biner ditambah digit ketiga gray Contoh: Berapakah bilangan biner dari 1011 Kode Gray? Jawab: Digit pertama biner = digit pertama gray = 1 Digit kedua biner = 1 + 0 = 1 Digit ketiga biner = 1 + 1 = 0 Digit keempat biner = 0 + 1 = 1 Maka 1011(gray)= 1101(2) Konversi desimal ke Ekses-3 Untuk mengkodekan bilangan desimal menjadi kode ekses-3, maka setiap angka desimal tersebut harus ditambah dengan 3 lalu diubah menjadi bentuk biner Contoh: Berapa ekses-3 dari 7? Jawab: 7 + 3 = 10 10 1010 7(10) = 1010 (xs-3) Konversi Ekses-3 ke desimal Setiap kelompok ekses-3 dikonversikan ke desimal, kemudian kurangkan masing-masing desimal dengan 3 Contoh: Berapa bilangan desimal dari 1011 1010 (xs-3) Jawab: 1011 11 dan 11 – 3 = 8 1010 10 dan 10 – 3 = 7 Jadi 1011 1010 (xs-3) = 87 (10) Untuk penjumlahan kode ekses-3 ada 2 cara penyelesaian: 1. Apabila hasil penjumlahan dua buah bilangan desimal adalah 9 atau kurang, maka bilangan ekses3 harus dikurangkan dengan 0011 2. Apabila hasil penjumlahan dua buah bilangan desimal lebih dari 9, maka terjadi bawaan dari satu kelompok ke kelompok berikutnya sehingga hasilnya untuk bilangan ekses-3 adalah dengan menambahkan 0011 kepada kelompok yang menghasilkan bawaan dan kurangkan 0011 kepada kelompok yang tidak menghasilkan bawaan