Definisi Bioetanol (bioethanol) merupakan etanol (etil alkohol) yang proses produksinya menggunakan bahan baku alami dan proses biologis, berbeda dengan etanol sintetik yang diperoleh dari sintesis kimiawi senyawa hidrokarbon. Etanol yang digunakan sebagai bahan bakar kendaraan memiliki struktur kimia yang persis sama dengan etanol yang ditemukan pada minuman keras. Etanol yang digunakan untuk bahan bakar disebut dengan Fuel Grade Ethanol (FGE) dengan tingkat kemurnian 99.5% Bahan Baku Bahan baku yang digunakan untuk produksi bioetanol terbagi menjadi : 1. Gula (glucose) Gula (glukosa) merupakan bentuk bahan baku yang paling sederhana dengan rumus kimia C6H12O6 , berbeda dengan pengertian gula sehari-hari yang mengandung sukrosa, laktosa dan fruktosa. Gula dapat diperoleh dari tebu (sugarcane) melalui hasil sampingan produksinya berupa tetes (molases). Sebagai bahan baku bioetanol, glukosa dapat langsung digunakan dalam proses peragian. 2. Pati (starch) Pati banyak ditemukan pada jagung, singkong, sagu dan beragam makanan pokok manusia yang mengandung karbohidrat. Rumus kimia dari pati adalah (C6H10O5)n dengan jumlah n antara 40 – 3.000. Sebagai bahan baku bioetanol, pati membutuhkan proses untuk memecah ikatan kimianya menjadi glukosa. Proses yang umum dilakukan adalah dengan penambahan enzim amylase untuk menghidrolisis menjadi glukosa. Penggunaan bahan pati sebagai bahan baku bioetanol secara umum akan bersaing dengan cadangan pangan bagi manusia, yang pada akhirnya akan meningkatkan harga bahan pangan. 3. Selulosa (cellulose) Selulosa merupakan polisakarida dengan rumus kimia (C6H10O5)n ,dengan jumlah n ribuan hingga lebih dari puluhan ribu, yang membentuk dinding tanaman dan kayu. Selulosa merupakan senyawa organik yang paling banyak jumlahnya di muka bumi. Sekitar 1/3 komposisi tanaman adalah selulosa yang tidak tercerna oleh manusia. Karena tidak bersaing dengan bahan pangan, maka selulosa diperkirakan akan mendominasi bahan baku bioetanol di masa mendatang. Sebagai bahan baku bioetanol, selulosa membutuhkan pengolahan awal yang lebih intensif dibandingkan dengan bahan baku lain. Untuk melakukan proses hydrolysis (merubah struktur selulosa menjadi glukosa) dapat ditempuh menggunakan penambahan asam yang dilarutkan pada suhu dan tekanan tinggi. Proses tersebut membutuhkan energi yang cukup besar sehingga net energy gain yang dihasilkan menurun. Selain itu kondisi yang asam akan menggangu proses fermentasi lanjutan, sehingga dibutuhkan proses perantara untuk menetralkan keasaman. Proses Produksi Bahan baku harus melalui proses pre-treatment dengan tujuan untuk meningkatkan kandungan glukosa bahan semaksimal mungkin sebelum memasuki tahap fermentasi. Kandungan glukosa ditingkatkan dengan merubah bentuk gula kompleks (polisakarida) menjadi gula sederhana. Proses pre-treatment sangat bergantung dari tipe bahan baku yang digunakan. Proses produksi bioetanol dilakukan melalui proses fermentasi yang menghasilkan alkohol dengan kadar rendah. Proses fermentasi merubah bahan baku glukosa menjadi alkohol dan residu karbon dioksida. Pada proses tersebut dibutuhkan bantuan ragi saccharomyces cerevisae dengan persamaan kimia sebagai berikut: C6H12O6 → 2 CH3CH2OH + 2 CO2 Proses fermentasi menghasilkan alkohol dengan kadar maksimal hanya 7 – 9% ( 15% jika menggunakan strain ragi yang paling tahan alkohol). Untuk meningkatkan kadar etanol hingga mencapai Fuel Grade Ethanol (FGE) 99.5% dibutuhkan proses penyulingan (distillation) dan dehidrasi (dehydration). Proses penyulingan akan menghasilkan etanol dengan kadar maksimum 95.6% dan tidak bisa ditingkatkan lagi karena sifat azeotrope larutan etanol-air. sumber: Panji Tri Atmojo, 2010 Untuk meningkatkan konsentrasi etanol hingga mencapai FGE dilakukan proses dehidrasi dengan beberapa metode antara lain: 1. Azeotropic Distillation Penambahan benzene pada larutan alkohol-air untuk menghilangkan sifat larutan azeotrope. Dibutuhkan proses tambahan untuk memisahkan benzene dari larutan alkohol. 2. Molecular Sieve Penambahan zat adsorbent untuk memerangkap air dari larutan etanol-air. Zat adsorbent yang jamak digunakan antara lain zeolite. Dalam proses yang lebih sederhana dapat digunakan kapur gamping (CaO) bubuk yang dilarutkan dalam larutan etanol-air. 3. Membrane Pervaporation Proses pervaporation menggunakan membran porous atau non-porous untuk memfilter fase gas dari larutan azeotrope alkohol-air. Proses ini diklaim mengonsumsi energi relatif rendah karena memanfaatkan tekanan dan suhu rendah. Teknologi Pengolahan Bioetanol Teknologi produksi bioethanol berikut ini diasumsikan menggunakan jagung sebagai bahan baku, tetapi tidak menutup kemungkinan digunakannya biomassa yang lain, terutama molase. Secara umum, produksi bioethanol ini mencakup 3 (tiga) rangkaian proses, yaitu: Persiapan Bahan baku, Fermentasi, dan Pemurnian. 1. Persiapan Bahan Baku Bahan baku untuk produksi biethanol bisa didapatkan dari berbagai tanaman, baik yang secara langsung menghasilkan gula sederhana semisal Tebu (sugarcane), gandum manis (sweet sorghum) atau yang menghasilkan tepung seperti jagung (corn), singkong (cassava) dan gandum (grain sorghum) disamping bahan lainnya. Persiapan bahan baku beragam bergantung pada bahan bakunya, tetapi secara umum terbagi menjadi beberapa proses, yaitu: Tebu dan Gandum manis harus digiling untuk mengektrak gula Tepung dan material selulosa harus dihancurkan untuk memecahkan susunan tepungnya agar bisa berinteraksi dengan air secara baik Pemasakan, Tepung dikonversi menjadi gula melalui proses pemecahan menjadi gula kompleks (liquefaction) dan sakarifikasi (Saccharification) dengan penambahan air, enzyme serta panas (enzim hidrolisis). Pemilihan jenis enzim sangat bergantung terhadap supplier untuk menentukan pengontrolan proses pemasakan. Tahap Liquefaction memerlukan penanganan sebagai berikut: Pencampuran dengan air secara merata hingga menjadi bubur Pengaturan pH agar sesuai dengan kondisi kerja enzim Penambahan enzim (alpha-amilase) dengan perbandingan yang tepat Pemanasan bubur hingga kisaran 80 sd 90 C, dimana tepung-tepung yang bebas akan mengalami gelatinasi (mengental seperti Jelly) seiring dengan kenaikan suhu, sampai suhu optimum enzim bekerja memecahkan struktur tepung secara kimiawi menjadi gula komplek (dextrin). Proses Liquefaction selesai ditandai dengan parameter dimana bubur yang diproses menjadi lebih cair seperti sup. Tahap sakarifikasi (pemecahan gula kompleks menjadi gula sederhana) melibatkan proses sebagai berikut: Pendinginan bubur sampai suhu optimum enzim sakarifikasi bekerja Pengaturan pH optimum enzim Penambahan enzim (glukoamilase) secara tepat Mempertahankan pH dan temperature pada rentang 50 sd 60 C sampai proses sakarifikasi selesai (dilakukan dengan pengetesan gula sederhana yang dihasilkan) 2. Fermentasi Pada tahap ini, tepung telah sampai pada titik telah berubah menjadi gula sederhana (glukosa dan sebagian fruktosa) dimana proses selanjutnya melibatkan penambahan enzim yang diletakkan pada ragi (yeast) agar dapat bekerja pada suhu optimum. Proses fermentasi ini akan menghasilkan etanol dan CO2. Bubur kemudian dialirkan kedalam tangki fermentasi dan didinginkan pada suhu optimum kisaran 27 sd 32 C, dan membutuhkan ketelitian agar tidak terkontaminasi oleh mikroba lainnya. Karena itu keseluruhan rangkaian proses dari liquefaction, sakarifikasi dan fermentasi haruslah dilakukan pada kondisi bebas kontaminan. Selanjutnya ragi akan menghasilkan ethanol sampai kandungan etanol dalam tangki mencapai 8 sd 12 % (biasa disebut dengan cairan beer), dan selanjutnya ragi tersebut akan menjadi tidak aktif, karena kelebihan etanol akan berakibat racun bagi ragi. Dan tahap selanjutnya yang dilakukan adalah destilasi, namun sebelum destilasi perlu dilakukan pemisahan padatan-cairan, untuk menghindari terjadinya clogging selama proses distilasi. 3. Pemurnian / Distilasi Distilasi dilakukan untuk memisahkan etanol dari beer (sebagian besar adalah air dan etanol). Titik didih etanol murni adalah 78 C sedangkan air adalah 100 C (Kondisi standar). Dengan memanaskan larutan pada suhu rentang 78 - 100 C akan mengakibatkan sebagian besar etanol menguap, dan melalui unit kondensasi akan bisa dihasilkan etanol dengan konsentrasi 95 % volume. Prosentase Penggunaan Energy Prosentase perkiraan penggunaan energi panas/steam dan listrik diuraikan dalam tabel berikut ini: Peralatan Proses Adapun rangkaian peralatan proses adalah sebagai berikut: Peralatan penggilingan Pemasak, termasuk support, pengaduk dan motor, steam line dan insulasi External Heat Exchanger Pemisah padatan - cairan (Solid Liquid Separators) Tangki Penampung Bubur Unit Fermentasi (Fermentor) dengan pengaduk serta motor Unit Distilasi, termasuk pompa, heat exchanger dan alat kontrol Boiler, termasuk system feed water dan softener Tangki Penyimpan sisa, termasuk fitting Penggunaan Penggunaan bioetanol sebagai bahan bakar kendaraan bermotor bervariasi antara blend hingga bioetanol murni. Bioetanol sering disebut dengan notasi “Ex”, dimana x adalah persentase kandungan bioetanol dalam bahan bakar. Beberapa contoh penggunaan notasi “Ex” antara lain: 1. E100, bioetanol 100% atau tanpa campuran 2. E85, campuran 85% bioetanol dan bensin 15% 3. E5, campuran 5% bioetanol dan bensin 95% Pertamina telah menjual biopremium (E5) yang mengandung bioetanol 5% dan premium 95%. Bahan bakar E5 dapat digunakan pada kendaraan yang menggunakan bensin (gasoline) standar, tanpa modifikasi apapun. Namun, bahan bakar E15 ke atas atau persentase bioetanol lebih dari 15% harus memanfaatkan kendaraan dengan tipe Flexible-Fuel Vehicle. Brazil sebagai salah satu negara yang menggunakan bioetanol terbesar di dunia, telah mengadopsi bahan bakar E100, dimana kandungan bioetanol 100%. Bioetanol dengan kandungan 100% memiliki nilai oktan (octane) RON 116 – 129, yang relatif lebih tinggi dibandingkan bahan bakar premium dengan nilai oktan RON 88. Karena nilai oktan yang tinggi, bioetanol dapat digunakan sebagai pendongkrak oktan (octane booster) untuk bahan bakar beroktan rendah. Nilai oktan yang lebih tinggi pada bioetanol juga berpengaruh positif terhadap efisiensi dan daya mesin. Penggunaan bahan bakar E10 dan E20 memiliki performa (power dan force) yang lebih baik untuk mesin, seperti tercantum dalam tabel pengujian berikut: Sumber: Lab BTMP-BPPT, 2006 Sayangnya untuk menghasilkan power dan force yang lebih tinggi, dibutuhkan bahan bakar E20 dalam jumlah lebih banyak per jam relatif terhadap Pertamax. Untuk nilai fuel consumption / power bahan bakar pertamax memberikan hasil yang terbaik diikuti oleh E20 dan E10. Secara umum, pencampuran premium dengan bioetanol memberikan dampak yang baik bagi performa mesin. Emisi Penggunaan bioetanol juga mampu mengurangi emisi gas beracun (CO dan HC) yang umum ditemukan pada pembakaran bensin. Hal tersebut disebabkan oleh air-fuel ratio yang lebih baik pada bioetanol sehingga menyebabkan pembakaran bahan bakar yang lebih sempurna. Namun sayangnya justru emisi NOx lebih tinggi dibandingkan pembakaran bahan bakar premium. sumber: Reksowardojo, 2006 Selain emisi gas beracun, emisi karbon dioksida (greenhouse gas) juga menjadi perhatian utama dalam pemilihan bahan bakar yang ramah lingkungan. Pembakaran bioetanol E100 akan menghasilkan sekitar 1.5 kg gas rumah kaca, sedangkan pembakaran 100% oktana (octane) menghasilkan sekitar 2.1 kg gas rumah kaca. Menurut data EPA (Environmental Protection Agency) pembakaran 1 Liter bensin akan menghasilkan sekitar 2.3 kg gas karbon dioksida. Daftar emisi karbon dioksida pada pembakaran bahan bakar secara sempurna diringkas sebagai berikut: sumber: Panji Tri Atmojo, 2010 Dalam bentuk persentase, pembakaran bioetanol (E100) mengurangi sekitar 45% emisi karbon dioksida dibandingkan pembakaran oktana. Namun perbandingan emisi pembakaran E10 terhadap oktana hanya menghasilkan penghematan sekitar 4%, angka yang kurang signifikan untuk mengurangi efek gas rumah kaca. Sumber: Panji Tri Atmojo, 2010 Dalam proses produksi bietanol dari awal hingga akhir terdapat beberapa tahapan umum yang selalu dilalui yaitu proses produksi bahan baku dan proses produksi bioetanol dari bahan baku. Dalam seluruh rangkaian proses tersebut terdapat siklus energi dan karbon dioksida (juga biaya) yang terlibat. sumber: Panji Tri Atmojo, 2010 sumber: Panji Tri Atmojo, 2010 Road map BIOETANOL