Diodes Waveform shaping Circuits Lecture notes: page 2-20 to 2-31 Sedra & Smith (6th Ed): Sec. 4.5 & 4.6 Sedra & Smith (5th Ed): Sec. 3.5 & 3.6 F. Najmabadi, ECE65, Winter 2012 Two-port networks as building blocks Recall: Transfer function of a two-port network can be found by solving this circuit once. Concept of input resistance can be used to find vi/vsig (will be discussed in transistor amplifier section)! We focus on finding transfer function, vo vs vi (circuit below) o “Open-loop” Transfer function (RL → ∞ or io = 0) F. Najmabadi, ECE65, Winter 2012 Rectifier Circuit KCL : io = iD KVL : vi = vD + vo → vo = vi − vD Ω Law : iD = vo / RL Diode OFF : iD = 0 and vD < VD 0 vo = RL iD = 0 vD < VD 0 → vi − vo = vi < VD 0 Diode ON : vD = VD 0 and iD ≥ 0 vo = vi − vD = vi − VD 0 iD = vo / RL ≥ 0 → vo = vi − vD ≥ 0 → vi ≥ VD 0 For vi ≥ VD 0 , Diode ON and For vi < VD 0 , Diode OFF and F. Najmabadi, ECE65, Winter 2012 vo = vi − VD 0 vo = 0 Rectifier Circuit: vo is the positive portion vi For vi ≥ VD 0 , Diode ON and For vi < VD 0 , Diode OFF and F. Najmabadi, ECE65, Winter 2012 vo = vi − VD 0 vo = 0 Application of Rectifier Circuit: AC to DC convertor for power supply Half-wave rectifier (only converts half of AC input to DC value) Full-wave rectifier (converts all of AC input to DC value) F. Najmabadi, ECE65, Winter 2012 Each pair of diodes conduct only for half of the cycle F. Najmabadi, ECE65, Winter 2012 Clipper or Limiter Circuit (open-loop transfer function) vD = VD 0 Diode OFF : iD = 0 and vD < VD 0 Diode ON : vi = R × 0 + vo → vo = vi vo = VD 0 vD < VD 0 iD = (vi − VD 0 ) / R ≥ 0 → vi < VD 0 For vi ≥ VD 0 , Diode ON F. Najmabadi, ECE65, Winter 2012 and For vi < VD 0 , Diode OFF and vo = VD 0 vo = vi and iD ≥ 0 → vi ≥ VD 0 Clipper Circuit does not allow vo > VD0 to go through For vi ≥ VD 0 , Diode ON and For vi < VD 0 , Diode OFF and F. Najmabadi, ECE65, Winter 2012 vo = VD 0 vo = vi Impact of RL is discussed as an exercise problem Rectifier & clipper circuits are the same but vo is taken at different locations Half-wave Rectifier Clipper F. Najmabadi, ECE65, Winter 2012 Clipper circuit limits vo when the diode is ON By adjusting “VD0 ” we can adjust limiting voltage! F. Najmabadi, ECE65, Winter 2012 Limiting voltage can be adjusted vo limited to ≤ VD0 + VDC F. Najmabadi, ECE65, Winter 2012 vo limited to ≤ VD0 + VZ Bottom portion of signal can also be clipped vo limited to ≥ − VD0 − VDC vo limited ≥ − VD0 −VZ F. Najmabadi, ECE65, Winter 2012 Both top & bottom portions of the signal can be clipped simultaneously vo limited to ≤ VD0 + VDC1 and ≥ − VD0 − VDC2 vo limited to ≤ VD0 + VZ1 and ≥ − VD0 − VZ2 F. Najmabadi, ECE65, Winter 2012 “Ideal” Peak Detector Circuit Because vc cannot change suddenly, the state of diode will depend not only on vi but also on the “history” of the circuit (e.g., dvi/dt , vc at certain times,) Diode OFF : iD = 0 and vD < VD 0 Capacitor does not charge or discharge! vc (t) = vc0 where vc0 is the capacitor voltage at the moment diode turned OFF! vo = vc 0 = const. vD = vi − vc < VD 0 → vi < vc 0 + VD 0 F. Najmabadi, ECE65, Winter 2012 “Ideal” Peak Detector Circuit (open-loop transfer function) Diode ON : vD = VD 0 and iD ≥ 0 vo = vc = vi − VD 0 dvc d (vi − VD 0 ) dv =C =C i dt dt dt dvi ≥0 iD = ic ≥ 0 → dt iD = ic = C For dvi /dt ≥ 0 & vi = vc + VD 0 : Diode ON , vo = vc = vi − VD 0 For vi < vc + VD 0 : Diode OFF, vo = vc 0 = const Because state of diode depends on vc , we cannot produce a universal plot vo vs vi F. Najmabadi, ECE65, Winter 2012 Response of the “Ideal” Peak Detector (1) For dvi /dt ≥ 0 & vi = vc + VD 0 : Diode ON , vo = vc = vi − VD 0 For vi < vc + VD 0 : Start at t = 0 with vc= 0 For t > 0, dvi/dt > 0. For vi < vc0 + VD0 = VD0 , diode remains OFF. o vo = vc0 = 0 F. Najmabadi, ECE65, Winter 2012 Diode OFF, vo = vc 0 = const When vi = vc0 + VD0 = VD0 , diode turns ON (since dvi/dt > 0) Capacitor starts to charge and vc tracks vi o vo = vc = vi - VD0 Response of the “Ideal” Peak Detector (2) For dvi /dt ≥ 0 & vi = vc + VD 0 : Diode ON , vo = vc = vi − VD 0 For vi < vc 0 + VD 0 : Cap continue to charge until vi = V + (vc = V + - VD0 ) Afterward vi starts to decrease (dvi/dt < 0) and diode turns OFF. o vo = vc0 = V + − VD0 F. Najmabadi, ECE65, Winter 2012 Diode OFF, vo = vc 0 = const Even when vi starts to increase (dvi/dt > 0) diode remains OFF as vo < vc0 + VD0 o vc0 + VD0 = V + − VD0 +VD0 = V + ! Diode turns ON vi = V + and immediately turns OFF vi starts to decrease (dvi/dt < 0) Response of the “Ideal” Peak Detector (3) vo is the “peak” value of input waveform (V + – VD0 ): “Peak Detector” o Note vo did not “drop” after the peak was decreased in the 3rd cycle. Exercise: Show that if the diode direction is reversed, circuit detects the “negative” peak value, −V − (i.e., lowest voltage of the wave form which should be negative) F. Najmabadi, ECE65, Winter 2012 Practical Peak Detector Circuit (1) A resistor is added in parallel to the capacitor! (It can be the load for the circuit) Diode OFF : iD = 0 and vD < VD 0 Capacitor discharges into the resistor with a time constant of τ = RC F. Najmabadi, ECE65, Winter 2012 vo = vc (t ) = vc 0 exp[ - (t − t0 )/τ ] vD = vi − vc < VD 0 → vi < vc (t ) + VD 0 Practical Peak Detector Circuit (2) Diode ON : vD = VD 0 and iD ≥ 0 vo = vc = vi − VD 0 dvc d (vi − VD 0 ) dv =C =C i dt dt dt dvi ≥0 iD = ic ≥ 0 → dt iD = ic = C For dvi /dt ≥ 0 &, vi = vc + VD 0 : Diode ON , vo = vc = vi − VD 0 For vi < vc + VD 0 : F. Najmabadi, ECE65, Winter 2012 Diode OFF, vo = vc (t ) = vc 0 exp[ - (t − t0 )/τ ] Response of the Practical Peak Detector (1) For dvi /dt ≥ 0 &, vi = vc + VD 0 : Diode ON , vo = vc = vi − VD 0 For vi < vc + VD 0 : Start at t = 0 with vc= 0 For t > 0, dvi/dt > 0. For vi < vc0 + VD0 = VD0 , diode remains OFF. o vo = vc0 = 0 F. Najmabadi, ECE65, Winter 2012 Diode OFF, vo = vc (t ) = vc 0 exp[ - (t − t0 )/τ ] When vi = vc0 + VD0 = VD0 , diode turns ON (since dvi/dt > 0) Capacitor starts to charge and vc tracks vi o vo = vc = vi - VD0 Response of the Practical Peak Detector (2) For dvi /dt ≥ 0 &, vi = vc + VD 0 : Diode ON , vo = vc = vi − VD 0 For vi < vc + VD 0 : Cap continue to charge until vi = V + (vc = V + - VD0 ) Afterward vi starts to decrease (dvi/dt < 0) and diode turns OFF. Capacitor discharges: vo = vc (t ) = vc 0 exp[ - (t − t0 )/τ ] F. Najmabadi, ECE65, Winter 2012 Diode OFF, vo = vc (t ) = vc 0 exp[ - (t − t0 )/τ ] Even when vi starts to increase (dvi/dt > 0) diode remains OFF as long as vo < vc + VD0 Diode turns ON when vi = vc + VD0 and charges capacitor until vi = V + is reached) Response of the Practical Peak Detector (3) Shape of output signal depends on the ratio of τ/T “ideal” peak detector: τ/T → ∞ “Good” peak detector: τ/T >> 1 As τ/T decreases, the circuit departs from a peak detector. For τ/T << 1, capacitor discharges very fast and circuit resembles a rectifier circuit Decreasing τ/T F. Najmabadi, ECE65, Winter 2012 Peak detector is used in AM receivers Carrier wave amplitude is modulated with the sound data (sound signal is the “envelop” of the carrier wave) Tcarrier << τ = RC << Tsound F. Najmabadi, ECE65, Winter 2012 Peak-Detector with a “load” A clipper circuit with a load RL is similar to the open-loop clipper with R → R || RL Examples of Design Choices: As a peak detector (want τ/T → ∞) R is NOT needed and we should set C RL to be large (>>T). o Peak detector circuit is used to “smooth” out the output voltage of a rectifier for the power supply circuit (Need a large C!). For applications such as AM receiver when the peak detector is used as separate the signal from a carrier, R and C should be chosen such that Tcarrier << τ = RC << Tsound and R << RL F. Najmabadi, ECE65, Winter 2012 Clamp Circuit “Ideal” peak detector: vo = vc = V + − VD0 Clamp circuit: vo = vD vc = V + − VD 0 vo = vD = vi − vc = vi − (V + − VD 0 ) vo is equal to vi but shifted “downward” by − (V + − VD0) If amplitude of vi (V + ) changes, the shift would changes and vo becomes distorted! F. Najmabadi, ECE65, Winter 2012 Clamp Circuit with a Load Capacitor charges when the diode is ON: Capacitor charges when the diode is ON: vc = V + − VD0 Capacitor remains charged when diode is OFF. vc = V + − VD0 Capacitor discharges into RL when diode is OFF. As long as τ = RLC >> T capacitor discharges little and clamp circuits works fine! F. Najmabadi, ECE65, Winter 2012 Voltage shift in a clamp circuit can be adjusted! vA = vi − VDC V + : peak of vi V +A : peak of vA V +A = V + − VDC F. Najmabadi, ECE65, Winter 2012 Peak detector circuit: vc = V +A − VD0 vc = V + − VDC − VD0 vc = V + − VDC − VD 0 vo = vi − vc = vi − (V + − VDC − VD 0 ) vo is equal to vi but shifted “downward” by − (V + − VDC − VD0) vo = vi − (V + − VZ − VD 0 ) Clamp circuit can also introduce a “positive” shift Peak detector (diode is reversed): vo = vc = − (V − − VD0) Clamp circuit (diode reversed): v o = vD vc = − (V − − VD 0 ) vo = vD = vi − vc = vi + (V − − VD 0 ) vo is equal to vi but shifted “upward” by (V − − VD0) F. Najmabadi, ECE65, Winter 2012 The positive shift can also be adjusted. vo = vi + (V − − VDC − VD 0 ) vo = vi + (V − − VZ − VD 0 ) How to find response of clipper or clamp circuits: Assume diode is ON and calculate vc . o If vc = +vi …, replace vi with V+ (peak positive value) o If vc = −vi …, replace vi with −V− (peak negative value) If clipper, vo = vc . If Clamp, use KVL to find vo (e.g., , vo = vi − vc ) F. Najmabadi, ECE65, Winter 2012