Uploaded by User53110

file 2f940ee6f783760ac3225c929167c5341d7dddaf

advertisement
Badan Penyelenggara Perguruan Tinggi Tamansiswa
UNIVERSITAS TAMANSISWA PADANG
FAKULTAS PERTANIAN
PROGRAM STUDI AKTUARIA
Jln. Tamansiswa No. 9 Padang (25138) | Telp. (0751) 40020 | Fax. (0751) 444170
Web : www.unitas-pdg.ac.id | E-mail : [email protected]
UJIAN TENGAH SEMESTER GENAP TA. 2019/2020
Mata Kuliah / Bobot
Prodi / Kelas
Hari / Tanggal
Waktu
Sifat Ujian
Dosen Pengampu
: Pengantar Teori Peluang / 3 SKS
: Aktuaria / A
: Kamis / 16 April 2020
: 90 Menit
: Tutup Buku
: 1. Melvi Muchlian, S.Pd., M.Si
2. Yulia Rahmawati Z, S.Pd., M.Pd
Bacalah soal dengan teliti sebelum menjawab soal-soal di bawah ini !
Kerjakanlah semua soal ini dengan "analisis yang tepat" dan sistematis !
=======================================================================
SOAL
1. Sebuah dadu dan 2 keping mata uang dilempar bersama-sama. Tentukan ruang contoh untuk
percobaan tersebut !
[20]
2. Empat buah mobil, yaitu M1, M2, M3 dan M4, dipergunakan untuk mengantar penumpang ke
tempat tujuannya. Diketahui bahwa 32% dari penumpang tersebut berhasil diantar sampai
tujuan oleh M1, 18% dari penumpang tersebut berhasil diantar sampai tujuan oleh M2, 34% dari
penumpang tersebut berhasil diantar sampai tujuan oleh M3 dan 16% dari penumpang tersebut
berhasil diantar sampai tujuan oleh M4. Juga diketahui bahwa 5% dari penumpang yang
diantarkan oleh mobil M1 tidak sampai pada tujuan, 2% dari penumpang yang diantarkan oleh
mobil M2 tidak sampai pada tujuan, 3% dari penumpang yang diantarkan oleh mobil M3 tidak
sampai pada tujuan, serta 1% dari penumpang yang diantarkan oleh mobil M4 tidak sampai pada
tujuan. Jika dari suatu daftar penumpang yang diantarkan oleh mobil-mobil tersebut dipilih
seorang penumpang secara acak, tentukan peluang bahwa penumpang tersebut tidak sampai
pada tujuan!
[20]
3. Misalkan fungsi sebaran suatu peubah acak X adalah
0,
𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 π‘₯π‘₯ < 0
⎧1
βŽͺ ,
𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 0 ≤ π‘₯π‘₯ < 1
βŽͺ6
3
𝐹𝐹𝑋𝑋 (π‘₯π‘₯) =
,
𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 1 ≤ π‘₯π‘₯ < 2
⎨6
βŽͺ5
,
𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 2 ≤ π‘₯π‘₯ < 3
βŽͺ6
⎩ 1,
𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 π‘₯π‘₯ ≥ 3
Tentukan
a) Fungsi massa peluang dari X
b) 𝐸𝐸(𝑋𝑋) dan 𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋)
Akreditasi Institusi Perguruan Tinggi (AIPT) Terakreditasi B
SK BAN-PT No. 53/SK/BAN-PT/Akred/PT/III/2018
[20]
Badan Penyelenggara Perguruan Tinggi Tamansiswa
UNIVERSITAS TAMANSISWA PADANG
FAKULTAS PERTANIAN
PROGRAM STUDI AKTUARIA
Jln. Tamansiswa No. 9 Padang (25138) | Telp. (0751) 40020 | Fax. (0751) 444170
Web : www.unitas-pdg.ac.id | E-mail : [email protected]
4. Hitunglah peluang seseorang yang melempar 3 koin akan mendapatkan semua sisi muka atau
semua sisi belakang untuk yang kedua kalinya pada lemparan yang ke 6! (Peubah acak binomial
negatif)
[20]
5. Misalkan X adalah peubah acak kontinu dengan fungsi kepekatan peluang
π‘₯π‘₯ 2
𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 0 < π‘₯π‘₯ < 3
𝑓𝑓𝑋𝑋 (π‘₯π‘₯ ) = οΏ½ 3 ,
0,
𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 π‘₯π‘₯ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
Tentukan
a) 𝐸𝐸(𝑋𝑋 3 )
b) 𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋)
......Selamat Mengerjakan.....
Akreditasi Institusi Perguruan Tinggi (AIPT) Terakreditasi B
SK BAN-PT No. 53/SK/BAN-PT/Akred/PT/III/2018
[20]
Download