BAB II TINJAUAN PUSTAKA A. Persamaan Diferensial Definisi 2.1

advertisement
BAB II
TINJAUAN PUSTAKA
A.
Persamaan Diferensial
Definisi 2.1 Persamaan diferensial
Persamaan diferensial adalah suatu persamaan yang memuat variabel bebas, variabel
tak bebas, dan derivatif-derivatif dari variabel tak bebas terhadap variabel bebas-n
(Marwan dan Said, 2009).
Contoh persamaan diferensial :
y’ + xy = 3
y” + 5y’ + 6y = cos x
y” = ( 1 + y’2) (x2 + y2)
Dari contoh di atas fungsi yang tak diketahui dinyatakan dengan y dan dianggap
sebagai fungsi satu peubah bebas x, yaitu y = y(x).
Menurut peubah bebas, persamaan differensial dapat dibedakan menjadi dua
macam yaitu persamaan differensial biasa dan parsial sedangkan persamaan
differensial dilihat dari bentuk fungsi atau pangkatnya juga dibedakan menjadi
dua yaitu persamaan differensial linear dan persamaan differensial non linear
(Marwan dan Said, 2009).
B.
Persamaan Diferensial Biasa
Definisi 2.2 Persamaan Differensial Biasa
Persamaan diferensial yang mempunyai turunan hanya tergantung pada satu
variabel bebas, maka persamaan diferensial tersebut dikatakan persamaan
diferensial biasa. (Marwan dan Said, 2009).
Contoh:
x
+
- xy = 0
contoh tersebut merupakan persamaan diferensial biasa, karena vareabel tak bebas
y hanya bergantung pada variable bebas x.
Definisi 2.3
Suatu persamaan diferensial biasa orde-n adalah suatu persamaan yang dapat
ditulis dalam bentuk:
,
( )
( )
( )
( )-
6
Persamaan di atas menyatakan hubungan antara peubah bebas x, fungsi u dan
turunanya u’, u”, u”’, …un . untuk selanjutnya akan digunakan variabel y sebagai
( )
( )
( )
(
( ), sehingga dapat ditulis dalam bentuk :
)
(Marwan dan Said, 2009).
Definisi 2.4 Persamaan Diferensial Biasa Orde Pertama
Suatu persamaan diferensial biasa orde pertama adalah persamaan yang memuat
satu variabel bebas, biasanya dinamakan x, satu variabel tak bebas dinamakan y,
dan derivative
. Suatu persamaan diferensial biasa orde pertama dapat
dinyatakan dalam bentuk:
Dengan (
(
).
) adalah fungsi kontinu pada x dan y.
Secara umum, persamaan diferensial linier orde pertama mempunyai bentuk
umum :
( )
( )
dengan p dan g adalah fungsi kontinu pada interval
( Panggabean, 2008).
Berikut ini diberikan pengertian order dan derajat persamaan diferensial
Definisi 2.5 Tingkat (order)
Persamaan diferensial adalah tingkat tertinggi dari derivatif yang terdapat dalam
persaman diferensial.
Definisi 2.6 Derajat (degree)
Persamaan diferensial adalah pangkat tertinggi dari derivatif tingkat tertinggi yang
terdapat dalam persamaan diferensial.
7
Contoh :
+5
-2(
(
)4 +
(
)-
+ 6y – cos x = 0 ;
persamaan diferensial orde 2 derajat 1.
)3 + 3y – sin x = 0 ;
+ 2y = 0 ;
- 3y = 0 ;
persamaan diferensial orde 2 derajat 1.
persamaan diferensial orde 2 derrajat 4.
persamaan diferensial orde 3 derajat 2.
Notasi y’ , y’’ , y’’’ , y (4) , … , y (n) dapat digunakan untuk menyatakan berturut –
turut derivative pertama, kedua, ketiga, …, dan derivative ke-n. Dari variable tak
bebas y terhadap suatu variable bebas.
Contoh :
-2
t2
+ 3y = 0
+t
+ 2y = sin t
atau dapat ditulis :
y” – 2y’ + 3y = 0
t2 y” + ty’ + 2y = sin t (Marwan dan Said, 2009).
C.
Persamaan Diferensial Linear
Definisi 2.7 Persamaan Differensial Linear
Sebuah persamaan differensial termasuk persamaan diferensial linier jika
memenuhi dua hal berikut:
8
a. Variabel-variabel terikat dan turunannya paling tinggi berpangkat satu dan tidak
terdapat fungsi transenden dalam bentuk peubah tak bebas, serta an(x) adalah
fungsi kontinu.
b. Tidak mengandung bentuk perkalian antara sebuah variabel terikat dengan
variabel terikat lainnya, atau turunan yang satu dengan turunan lainnya, atau
variabel terikat dengan sebuah turunan (Marwan dan Said, 2009).
Jadi istilah linear berkaitan dengan kenyataan bahwa tiap suku dalam persamaan
diferensial itu, peubah-peubah y, y', , yn berderajat satu atau nol.
Bentuk umum persamaan differensial linear orde-n adalah:
an (x) yn + an-1 (x) yn-1 + … + a1(x)y’ + a0(x)y = f(x)
dimana a0 , a1 ,…, an , f merupakan fungsi dari x.
Contoh :
1.
2.
3.
4.
(Ladas,1988).
9
D.
Persamaan Differensial Non Linear
Definisi 2.8 Persamaan Differensial Non Linear
Persamaan differensial yang bukan persamaan differensial linier (Pamuntjak dan
Santosa, 1990).
Dengan demikian persamaan differensial F( x, y’, …, y(m)) = 0 adalah persamaan
differensial tak linier, jika salah satu dari berikut dipenuhi oleh F :
-
F tidak berbentuk polinom dalam y, y’ , , y (m)
-
F tidak berbentuk polinom berpangkat lebih dari 2 dalam y, y’ , , y (m)
Contoh :
1. yy’ + xy’’ = 0 ; persamaan diferensial tak linier karena
F(x, y, y’, y’’) = yy’ + xy’’ polinom berbangkat dua dalam y, y’, y’’.
2. sin xy
y,
E.
,
+ cos
= 0 ; tak linier karena F tak berbentuk polinom dalam
. (Pamuntjak dan Santosa, 1990).
Masalah Nilai Awal (MNA)
Definisi 2.9 Masalah nilai awal suatu masalah yang melibatkan satu atau lebih
fungsi yang tidak diketahui beserta turunannya dalam sebuah persamaan yang
memenuhi syarat awal yang diberikan.
Dengan definisi di atas, MNA untuk sistem persamaan diferensial orde pertama
diberikan dalam bentuk berikut ini
(
( ))
( )
pada interval
,
-
10
( ))
(
Persamaan
( )
pada interval
,
- akan mempunyai
penyelesaian tunggal jika fungsi F memenuhi syarat Lipschitz.
Teorema 2.1
( ))
(
Jika persamaan
( )
,
pada interval
- dan F
memenuhi syarat Lipschitz yaitu ada sebuah konstanta k sedemikian sehingga
| (
Untuk semua
,
)
(
- dan semua
)|
|
|
, kemudian ada fungsi y(x) yang
terdiferensial dan kontinu sedemikian hingga
(
( ))
dengan syarat awal,
( )
( Joseph, 2008).
Iterasi Picard untuk masalah nilai awal
Secara umum, permasalahan persamaan diferensial selalu melibatkan masalah
nilai awal, yang dapat ditulis sebagai berikut:
(
( ))
( )
Dengan kondisi awalnya
( )
dapat disebut sebagai masalah nilai awal.
Metode iterasi Picard digunakan untuk penyelesaian secara hampiran persamaan
diferensial dengan nilai awal.
(
( ))
( )
(2.1)
Dua ide yang mendasari metode ini. Pertama Integrasikan ke dua sisi (2.1)
diperoleh y(x) =
∫
,
( )-
(2.2)
11
Kemudian dalam metode iterasi Picard ini akan didapat persamaan pada interval
,
-
( )
y1(x) =
∫
(
y2(x) =
∫
(
( ))
y3(x) =
∫
,
( )-
y4(x) =
∫
,
( )-
y5(x) =
∫
,
( )-
y6(x) =
∫
,
( )-
yn(x) =
∫
,
yn+1(x) =
∫
)
( ),
( )-
(2.3)
( Joseph, 2008).
F.
Barisan dan Deret
Definisi 2.10 Barisan
Barisan adalah himpunan dari bilangan u1, u2, u3, … , un. dengan susunan aturan yang
pasti.
Contoh:
Barisan (xn ) dengan (xn ) =
(xn ) =
.
(Wikaria, 2007).
12
Definisi 2.11 Deret Tak hingga
maka deret ( )
Jka (un) suatu barisan dan
disebut deret tak hingga.
Bilangan – bilangan
disebut jumlah parsial deret tak hingga
yang didefinisikan dengan,
u1
Deter tak hingga ∑
dan mempunyai jumlah S, apabila barisan
jumlah-jumlah parsial * + konvergen menuju S.
Apabila * +
, maka deret divergen (tidak memiliki jumlah) (Purcell,
1987).
G.
Kriteria Konvergensi
Untuk menyelidiki konvergensi suatu deret dapat dilakukuan dengan menguju
(test) terhadap dirinya sendiri “ kriteria konvergensi” atau “test konvergensi”.
Definisi 2.12 Tes Rasio
Andaikan ∑
i. Jika
sebuah deret yang sukunya positif dan andaikan
deret konvergen
13
ii. Jika
deret divergen
iii. Jika
pengujian ini tidak memberikan kepastian.
Bukti :
Oleh karena
, maka
seperti deret geometri dengan pembanding
apabila hasil bagi
i. Oleh karena
misalnya r = (
; ini berarti bahwa deret ini
Deret geometri akan konvergen
dan divergen apabila hasilbagi
, dapat dipilih bilangan r sehingga
)
,
Kemudian pilih N sehingga untuk
.
Maka :
Oleh karena itu
deret geometri dengan
,
maka deter ini akan konvergen.
ii. Andikan
, maka ada N sedemikian sehingga
untuk semu
Jadi
14
Jadi
untuk semua
, yang berarti bahwa
tidak
mungkin sama dengan nol. Maka uji cob suku-n, deret ∑
iii. Diketahui jika ∑ divergen sedangkan ∑
konvergen. Untuk deret yng
pertama,
Untuk deret kedua,
(
)
(
)
Jadi, uji hasilbagi ini tidak dapat membedakan deret yang konvergen dengan deret
yang divergen apabila
(William, 1972).
Definisi 2.13 Deret berselang seling
Berganti tanda secara teratur positif-negatif.
Jika deret ∑ (
i.
)
Barisan
konvergen bila terpenuhi:
monoton turun, maksudnya
ii.
(Wikaria, 2007).
Definisi 2.14 Konvergen Mutlak
Deret ∑
dinamakan konvergen mutlak jika hanya jika deret ∑ |
|
konvergen.
Missal, ∑
sebuah deret yang sukunya positif dan andaikan
|
|
|
|
15
i.
Jika
deret divergen
ii.
Jika
deret konvergen
iii.
Jika
pengujian ini tidak memberikan kepastian.
(Wikaria, 2007).
16
Download