BAB I PENDAHULUAN A. Latar Belakang Medan gaya adalah daerah dimana terjadinya interakasi dari suatu gaya. Sebagai contoh adalah medan gaya gravitasi, listrik dan magnet. Ketiga medan gaya ini adalah besaran vektor. Suatu medan, merupakan sebuah vektor yang bergantung pada vektor lainnya. - Medan Gravitasi Medan gravitasi adalah medan yang menyebabkan suatu benda bermassa mengalami gaya gravitasi. Medan ini dibangkitkan oleh suatu benda bermassa. - Medan Listrik Medan listrik adalah efek yang ditimbulkan oleh keberadaan muatan listrik, seperti elektron, ion, atau proton, dalam ruangan yang ada di sekitarnya. - Medan Magnet Medan magnet adalah suatu medan yang dibentuk dengan menggerakan muatan listrik (arus listrik) yang menyebabkan munculnya gaya di muatan listrik yang bergerak lainnya. B. Tujuan Penulisan Tujuan kami dalam penyusunan makalah ini ialah : Sebagai penggenapan nilai tugas kelompok mata kuliah MEKANIKA. Dapat menjelaskan tentang Medan Gaya. C. Rumusan Masalah Dari tujuan maka masalah yang dapat dirumuskan adalah : Bagaimana hubungan antara Medan Gaya Konservatif dengan energi Potensial dan Mekanika. BAB II PEMBAHASAN Gaya Medan Konservatif Gaya konservatif yaitu gaya yang tidak bergantung pada jalan atau lintasan yang ditempuh, melainkan hanya bergantung pada posisi awal dan posisi akhir benda. Medan konservatif yaitu daerah atau ruang yang dipengaruhi gaya konservatif. Contoh gaya konservatif yaitu gaya berat, gaya gravitasi newton, dan gaya elastik pegas. - Gaya Berat Gaya berat adalah gaya yang dialami semua benda yang berada di atas permukaan bumi. Rumus : W = (-mg)∆h Keterangan: W m g = usaha (J) = massa (kg) = gravtasi (m/s2 ∆h = perpindahan (m) Benda yang dilempar keatas Jika gerak benda dengan gaya berat benda tidak searah maka W bertanda (-) Keterangan : 1) ht = Ketinggian akhir 2) h0 = Ketinggian awal 3) w = Berat 4) W = usaha Benda dilempar Kebawah Jika gerak benda dengan gaya berat benda tidak searah maka w bertanda (+) • Keterangan : 1) ht 2) h 3) w 4) W 5) ∆H = = = = Ketinggian akhir Ketinggian awal Berat usaha = perubahan ketinggian Benda bergerak ke samping Jika gerakan tegak lurus dengan gaya berat maka W=0 - Gaya Gravitasi Syarat : h > 10km dari permukaan bumi Rumus : W gravitasi = GMm(1/r 1-1/r 2) Keterangan : W = usaha (J) G = tetapan umum gravitasi (6,67 x 10-11 Nm2/kg2) M = massa bumi (6,0 x 1024 kg) m = massa benda r1 = posisi awal dari pusat bumi r2 = posisi akhir sampai pusat bumi h = ketinggian awal Berikut gambar dari usaha oleh gaya gravitasi newton - Gaya pegas Usaha oleh Gaya Pegas Rumus : Wpegas = - ½ k (x22 – x12) Keterangan : W = usaha (J) K = konstanta pegas ( N/m ) x1 = posisi awal saat seimbang x2 = posisi akhir dihitung dari titik seimbang Usaha oleh gaya pegas dapat digambarkan dengan : ① Hubungan Gaya Konservatif dengan Energi Potensial. energi potensial berat konstan Rumus : Wk=-(EPak-EPaw) Keterangan : Wk = Usaha oleh gaya-gaya konservatif EPak = Energi potensial akhir EPaw = Energi potensial awal energi potensial gravitasi konstan Rumus : EPkons=mgh Keterangan : Epkons = Energi potensial gravitasi konstan m = Massa bumi g = Gravitasi h = Ketinggian energi potensial elastis pegas Rumus : EPpegas= ½ kx2 Keterangan : Eppegas = Energi potensial pegas k = Tetapan pegas x = Panjang ② Hubungan gaya konservatif dengan hukum kekekalan energi mekanik rumus : EPak+Ekak=EPaw+EKaw Keterangan : Wres = Usaha total oleh gaya resultan EK = Perubahan energi kinetik Wk = Usaha oleh gaya konservatif Wtk = Usaha oleh gaya tak konservatif EM = Perubahan eneri mekanik Emaw = Energi mekanik awal Emak = Energi mekanik akhir 1) Gaya berat Syarat : Dapat digunakan misalnya pada kasus gerak jatuh bebas , vertikal keatas , dan gerak peluru jadi EP=mgh dan EK=1/2 mv2 Rumus : mghak+ ½ mv2ak=mghaw+ ½ mv2aw Keterangan : m = Massa bumi g = Gravitasi h = Ketinggian v = kecepatan Ak = Akhir aw = Awal 2) Gaya pegas Syarat : Dapat digunakan misalnya pada kasus gerak benda yang dihubungkan ke ujung pegas mendatar jadi EPpegas=kx2 dan EKbenda=mv2 Rumus : ½ kx2ak+ ½ mv2ak= ½ kx2aw+ ½ mv2aw Keterangan : m = Massa bumi k = Konstanta pegas x = Simpangan v = kecepatan Ak = Akhir aw = Awal contoh soal 1. Sebuah balok bermassa 10kg didorong dari dasar suatu bidang miring yang panjangnya 5m dan puncak bidang miring dianggap licin ( g = 10 m/s2 ). Usaha yang harus dilakukan untuk mendorong balok adalah…. a.300 Joule b.1500 Joule c.3500 Joule d. 3800 Joule e. 4000 Joule penyelesaian Diketahui : g = 10 m/s2 m = 10 kg h =3m e =5m Ditanya : W = ....? Jawab : W = (-mg)∆H = (-10 . 10 ) ( 0 – 3 ) = -100 . (-3) = 300 Joule 2. Sebuah roller coaster bergerak dari titik tanpa kecepatan awal . Jika selama gerakan tidak ada gesekan , hitung berapa kecepatan roller coaster titik B! (g=10 m/s) a.10 b.11 c.5 e. 10 d. 10 penyelesaian diketahui : ha = 25 m hb = 0 m ditanya : Vb = ⋯ ? Jawab : EPak+EKak= EPaw+EKaw mghB+mv2B= mghA+0 2ghB+v2B V2 B VB VB VB VB = 2ghA = 2ghA-2ghB = 2g(hA-hB ) = 2.10 (25-0) = 500 =10 m/s