APLIKASI FUNGSI LINIER DALAM BIDANG EKONOMI FUNGSI PERMINTAAN & PENAWARAN Oleh : Agus Arwani, SE, M.Ag. FUNGSI PERMINTAAN Qdx,t = ƒ (Px,t, Py,t, Yt, PeX,t+1,St) Dimana Qdx,t Px,t Py,tt Yt Pex,t+1 St = Jumlah produk X yang dibeli/diminta oleh konsumsi dalam periode t. = Harga produk X dalam periode t. = Harga produk yang saling berhubungan dalam periode t. = Pendapatan konsumen dalam periode t. = Harga produk X yang diharapkan dalam periode mendatang t + 1. = Selera dari konsumen pada periode t. Qdx = ƒ(Px) P Bila fungsi permintaan ini ditranformasikan kedalam bentuk persamaan linier, maka bentuk umumnya adalah, (0,P) Qx = a – bPx Dimana Qx = Jumlah produk X yang diminta Px = Harga produk X a dan b = Parameter Qd = a - bp (Q,0) 0 X Hukum Permintaan Fungsi permintaan menunjukkan hubungan antara jumlah produk yang diminta oleh konsumen dengan harga produk. Di dalam teori ekonomi dijelaskan bahwa jika harga naik maka jumlah barang yang diminta turun, demikian juga sebaliknya bahwa jika harga turun maka jumlah barang yang diminta naik, sehingga grafik fungsi permintaan mempunyai slope negatif (miring ke kiri) Notasi fungsi permintaan akan barang x adalah: P a/b Qd = a - bP Qx = f (Px) Qx = a – b Px dimana: Qx = Jumlah produk x yang diminta Px = Harga produk x a dan b = parameter 0 b Qd Contoh Suatu produk jika harganya Rp. 100 akan terjual 10 unit, dan bila harganya turun menjadi Rp. 75 akan terjual 20 unit. Tentukanlah fungsi permintaannya dan gambarkanlah grafiknya? Penyelesaian : Diketahui: P1 = 100; P2 = 75; Q1 = 10; Q2 = 20 Q – Q1= Q2 – Q1 P – P1 P2 – P1 P (0,125) Q – 10 = 20 – 10 P – 100 75 – 100 Q = 50 – 2/5 P 100 (Q – 10) = 10/-25 (P-100) 75 (Q – 10) = 40 – 2/5 P 50 Q = 50 – 2/5 P atau Q + 2/5P – 50 = 0 25 Kurva permintaan ini ditunjukkan oleh Gambar disamping. 0 (50,0) 10 20 30 40 50 Q FUNGSI PERMINTAAN KHUSUS p p D D 0 Q Q 0 FUNGSI PENAWARAN Qsx,t = ƒ(Px,t , Tt , PF,t , PR,t , Pex,t+1) Dimana Qsx,t = jumlah produk X yang ditawarkan oleh produsen dalam periode t. Px,t = harga produk X dalam periode t Tt = Teknologi yang tersedia dalam periode t PF,t = harga faktor-faktor produksi dalam periode t PR,t = harga produk lain yang berhubungan dalam periode t Pex,t+1 = harapan produsen terhadap harga produk dalam perideo t + 1 Qsx = g (Px) Dimana Qsx = jumlah produk X yang ditawarkan oleh produsen Px = Harga produk X P Qsx = a + bP S Qs = a + bP - a/b 0 Q Hukum Penawaran Fungsi penawaran menunjukkan hubungan antara jumlah produk yang ditawarkan oleh produsen untuk dijual dengan harga produk. Di dalam teori ekonomi dijelaskan bahwa jika harga naik maka jumlah barang yang ditawarkan bertambah, demikian juga sebaliknya bahwa jika harga turun maka jumlah barang yang ditawarkan turun, sehingga grafik fungsi permintaan mempunyai slope positif (miring ke kanan) Notasi fungsi penawaran akan barang x adalah: Qx = f (Px) P Qx = -a + b Px dimana: Qx = Jumlah produk x yang ditawarkan Px = Harga produk x a dan b = parameter Qs = -a + bP a/b -a 0 Qd Contoh Jika harga suatu produk adalah Rp. 500, maka jumlah yang akan terjual sebanyak 60 unit. Bila harganya meningkat menjadi Rp. 700, maka jumlah produk yang terjual sebanyak 100 unit. Tunjukkanlah fungsi penawarannya dan gambarkanlah dalam satu diagram Penyelesaian : Diketahui: P1 = 500; P2 = 700; Q1 = 60; Q2 = 100 Q – Q1 = Q2 – Q1 P – P1 P2 – P1 P (0,125) Q – 60 = 100 – 60 P – 500 700 – 500 (Q – 60) = 40/200 (P-500) (Q – 60) = -100 +1/5 P Q = -40 + 1/5 P atau Q + 1/5P + 40 = 0 700 600 500 (60, 500) 400 Q = -40 + 0,2P 300 Kurva permintaan ini ditunjukkan oleh Gambar 200 (50,0) 100 0 20 40 60 80 100 Q KESEIMBANGAN PASAR SATU MACAM PRODUK p Qs Pe E (Qe, Pe) Qd 0 Qe Q Contoh Jika fungsi permintaan dan penawaran dari suatu barang ditunjukkan oleh : Qd = 6 – 0,75 P Qs = -5 + 2P a) Berapa harga dan jumlah keseimbangan pasar? b) Tunjukkanlah secara geometri keseimbangan pasar tersebut! Penyelesaian: a) Syarat keseimbangan Qd = Qs Bila Qd = Qs, maka 6 – 0,75P = -5 + 2P -2,75P = -11 P=4 Untuk memperoleh nilai Q substitusikan nilai P = 4 kedalam salah satu persamaan permintaan atau penawaran sehingga, Q = 6 – 0,75 (4) Q=6–3 Q=3 Jadi, harga dan jumlah keseimbangan E(3,4). b) Menggambarkan keseimbangan pasar : Untuk fungsi permintaan Q = 6 – 0,75 P Jika P = 0, maka Q = 6, sehingga titik potong dengan sumbu Q adalah (6,0) Jika Q = 0, maka P = 8, sehingga titik potong dengan sumbu P adalah (0,8) Untuk fungsi permintaan Q = -5 + 2P Jika P = 0, maka Q = -5, sehingga titik potong dengan sumbu Q adalah (-5,0) Jika Q = 0, maka P = 2,5, sehingga titik potong dengan sumbu P adalah (0,5/2) Grafik keseimbangan pasar ini ditunjukkan oleh Gambar p 8 (0, 8) 7 Qs = -5 + 2P 6 5 E (3, 4) 4 3 Qd = 6 – 0,75P 2,5 2 1 (6, 0) 0 1 2 3 4 5 6 Q Fungsi Kuadrat pada Fungsi Permintaan dan Penawaran Fungsi Permintaan Fungsi Penawaran Variabel p selalu positif atau 0 ≤ p ≤ b (b = titik puncak) Untuk setiap p ada satu nilai Q. Grafik fungsi turun. P Variabel p selalu positif atau 0 ≤ p ≤ b (b = titik puncak) Untuk setiap p ada satu nilai Q. Grafik fungsi naik. P Q Q Latihan Tentukan titik keseimbangan pasar dan gambarkan grafiknya dari fungsi-fungsi permintaan dan penawaran berikut: 1. Pd = -Q2 + Q + 2 dan Ps = Q2 + Q - 2 P Jawab: Ps 2 2 -2 -1 1 0 -2 2, 2 Q 2 2 Pd Contoh Jika fungsi permintaan adalah Q = 64 – 8P – 2P2, gambarkanlah fungsi permintaan tersebut dalam satu diagram! Penyelesaian : Jika P = 0, maka Q = 64, sehingga titik potong dengan sumbu Q adalah (64,0) 64 - 8P – 2P2 = 0 atau Jika Q = 0, maka P = 4P – 32 = 0 (P + 8) (P – 4) = 0 P = -8 (Tidak memenuhi) P=4 Jadi, titik potong dengan sumbu P adalah (0,4) dan (0, -8). a = -2 b = -8 c= 64 Koordinat titik puncak Jadi Titik puncak=(72,-2) D b , 2a 4a 8 576 , 4 8 (2,72) Berdasarkan titik-titik potong dengan sumbu Q dan P serta koordinat titik Y puncat, maka gambar dari fungsi permintaan Q = 64 – 8P – 2P2 dapat digambarkan seperti di bawah. P (0,4) Q =64 – 8P – 2P2 4 3 2 1 (64,0) Q -1 8 -2 16 24 32 40 48 56 64 72 (72,-2) (2,0) KESEIMBANGAN PASAR DUA MACAM PRODUK Di pasar terkadang permintaan suatu barang dipengaruhi oleh permintaan barang lain. Ini bisa terjadi pada dua macam produk atau lebih yang berhubungan secara substitusi (produk pengganti) atau secara komplementer (produk pelengkap). Produk substitusi misalnya: beras dengan gandum, minyak tanah dengan gas elpiji, dan lain- lain. Sedangkan produk komplementer misalnya: teh dengan gula, semen dengan pasir, dan lain sebagainya. Dalam pembahasan ini dibatasi interaksi dua macam produk saja. Secara matematis fungsi permintaan dan fungsi penawaran produk yang beinteraksi mempunyai dua variabel bebas. Kedua variabel bebas yang mempengaruhi jumlah yang diminta dan jumlah yang ditawarkan adalah (1) harga produk itu sendiri, dan (2) hargaproduk lain yang saling berhubungan. Penggunaan Fungsi dalam ekonomi Analisa keseimbangan pasar Keseimbangan pasar – Model linear Asumsi-1: Keseimbangan pasar terjadi jika “ekses demand” = 0 atau (Qd – Qs = 0) Asumsi-2: Qd = jumlah permintaan adalah fungsi linear P (harga). Jika harga naik, maka Qd turun. Asumsi-3: Qs = jumlah penawaran adalah fungsi linear P. Jika harga naik, maka Qs juga naik, dengan syarat tidak ada jlh yang ditawarkan sebelum harga lebih tinggi dari nol. Persoalan,bagaimana menentukan nilai keseimbangan ? Dalam pernyataan matematis, keseimbangan terjadi pada saat: Qd = Qs 22 Qd = a - bP, slope (-) (1) Qs = -c + dP, slope (+) (2) Gambarnya sbb: Qd , Qs a Qd = a -bP Qs = -c + dP keseimbangan Q0 0 P1 P0 P -c Matematika Ekonomi Kasus lain, keseimbangan dapat dilihat sbb: 2 dan Q = 4P – 1 Q = 4 – p s d 23 Jika tidak ada pembatasan misalnya, berlaku dalam ekonomi, maka titik potong pada (1, 3), dan (-5, -21) tetapi karena batasan hanya pada kuadran I (daerah positip) maka keseimbangan pada (1, 3)} 4 QS = 4p - 1 1,3 3 1/4 -1 0 keseimbangan QD = 4 - p2 1 2 Matematika Ekonomi Latihan Temukan keseimbangan dari Qd dan Qs tersebut 24 Matematika Ekonomi Keseimbangan pasar (lanjutan) 25 Pada nilai Q dan p berapa terjadi keseimbang-an permintaan dan penawaran dari suatu komoditi tertentu jika: Qd = 16 – P2 , (Permintaan) QS = 2p2 – 4p (penawaran) Gambarkan grafiknya Apa yang terjadi jika p = 3.5 dan p = 2.5 Matematika Ekonomi Penjelasan Pada saat keseimbangan maka Q = Q d s 26 16 – p2 = 2p2 – 4p 3p2 – 4p – 16 = 0 Ingat fungsi polinom derajad 2 atau n = 2 dengan bentuk umum: ax2 + bx + c Koefisien a = 3, b = -4, dan c = -16 p = (-b) ± (b2 – 4ac)1/2 = 4 ± (16 + 192)1/2 = 3.1 (+) 6 2a Qd = 16 – p2 = 16 - (3.1)2 = 6.4 Jadi keseimbangan tercapai pada Jlh komoditas 6.4 dan harga 3.1. Atau (Q, p) = (6.4 , 3.1) Matematika Ekonomi Grafik: Fungsi Permintaan: Qd = 16 – p2 27 a. Titik potong dengan sb Q p = 0; Q = 16, (16,0) b. Titik potong dengan sb p Q = 0; 16 – p2 = 0 (p – 4)(p + 4). p – 4 = 0, p = 4, ttk (0, 4) p + 4 = 0, p = -4, ttk (0, -4) c.Titik maks/min: (Q,p) Q = (-b/2a) = 0/-2 = 0 p = (b2 – 4ac)/(-4a) = 0 – 4(-1)(16)/(-4)(-1)) = 16 atau pada titik (0, 16) Matematika Ekonomi Grafik: Fungsi penawaran 28 Qs = 2p2 – 4p a. Titik potong dengan sb Q p = 0; Q = 0, (0,0) b. Titik potong dengan sb p Q = 0; 2p2 – 4p = 0 Atau 2p(p – 2) = 0; 2p = 0; p = 0; ttk pot (0, 0) (p – 2) = 0; p = 2; ttk pot ( 0, 2) c. Titik maks/min: (Q,p) Q = (-b/2a) = 4/4 = 1 p = (b2 – 4ac)/(-4a) = (-4)2 – 4(2)(0)/(-4)(2) = 2 atau pada titik (1, 2) Matematika Ekonomi Grafik: 29 Qs p 4 3.1 Qd 2 0 6.4 16 Q Apa yang terjadi jika p = 3.5 dan p = 2.5 Untuk p = 3.5, terjadi ekses supply dan p = 2.5, terjadi ekses demand Matematika Ekonomi Penjelasan ekses suplai dan ekses demand 30 Qs Qd Ekses demand mendorong harga naik, dan ekses supply mendorong harga turun. Matematika Ekonomi Notasi fungsi permintaan menjadi: Qdx = a0 - a1Px + a2Py Qdy = b0+ b1Px - b2Py Sedangkan fungsi penawarannya: Qsx = -m0 + m1Px + m2Py Qsy = -n0 + n1Px + n2Py Dimana: Qdx= Jumlah yang diminta dari produk X Qdy= Jumlah yang diminta dari produk Y Qsx= Jumlah yang ditawarkan dari produk X Qsy= Jumlah yang ditawarkan dari produk Y Px= Harga produk X Py = Harga produk Y a0,b0,m0,n0 = konstanta SYARAT KESEIMBANGAN PASAR DICAPAI JIKA: Qsx = Qdx dan Qsy = Qdy Contoh : Diketahui fungsi permintaan dan fungsi penawaran dari dua macam produk yang mempunyai hubungan substitusi sebagai berikut: Qdx = 5 -2Px + Py Qdy = 6 + Px – Py dan Qsx = -5 + 4Px - Py Qsy = -4 - Px + 3Py Carilah harga dan jumlah keseimbangan pasar Penyelesaian: Syarat keseimbangan pasar : Qsx = Qdx -5 + 4Px – Py = 5 - 2Px + Py 4Px + 2Px – Py – Py = 5 + 5 6Px – 2Py = 10 …(1) Qsy = Qdy -4 – Px + 3Py = 6 + Px – Py -Px – Px + 3Py + Py = 6 + 4 -2Px + 4Py = 10 - Px + 2Py = 5 …(2) (1)Dan (2) 6Px – 2Py = 10 - Px + 2Py = 5 5Px = 15 Px = 3 Py = 4 Qsx = 3 Qsy = 5 MEx = ( 3, 3 ) MEy = ( 5, 4 ) KESEIMBANGAN PASAR (FUNGSI KUADRAT) Contoh : Carilah secara aljabar dan geometri harga dan jumlah keseimbangan dari fungsi permintaan dan penawaran berikut ini : Pd = 24 – 3Q2 Ps = Q2 + 2Q + 4 Penyelesaian : Syarat keseimbangan pasar adalah Pd = Ps 24 – 3Q2 = Q2 + 2Q + 4 4Q2 + 2Q - 20 = 0 Q1, 2 2 4 {( 4)( 4)( 20)} 2 324 Q,1, 2 8 8 Q 1 2 18 2 8 2 18 Q1 2,5 tidak memenuhi 8 Substitusikan nilai Q yang memenuhi ke dalam salah satu persamaan permintaan penawaran, sehingga diperoleh nilai P, yaitu P = 24 – 3(2) P = 24 – 12 = 12 Jadi, jumlah dan harga keseimbangan pasar adalah E (2,12). Selanjutnya, berdasarkan fungsi permintaan Pd = 24 – 3 Q2 dan fungsi penawaran Ps = Q2 + 2Q + 4, maka gambar dari keseimbangan pasar dapat digambarkan seperti dibawah. s P P =q2 + 2Q + 4 24 (3,19) 20 16 12 E (2,12) P =24 – 3Q 8 4 Q 0 1 2 2,83