BAB IV BATUAN SEDIMEN KLASTIK IV.1. PENGERTIAN BATUAN SEDIMEN KLASTIK Asal mula mula batuan sedimen klastik adalah akibat dari proses-proses yang menyangkut siklus sedimentasi (pelapukan - erosi - transport - sedimentasi - diagenesa). Dalam batuan sedimen kelompok mineral penyusunnya adalah : a. Mineral autigenic Terbentuk di daerah sedimentasi dan langsung diendapkan Contoh : gipsum, kalsit, anhidrit, halit b. Mineral allogenic Tidak terbentuk pada daerah sedimentasi/pada scat sedimentasi. Telah mengalami transportasi dan kemudian diendapkan di daerah sedimentasi Syarat : o Tahan pelapukan o Tahan pengikisan selama transportasi sampai pengendapan Stabilitas mineral dalam batuan sedimen : 1. Mineral tak stabil Merupakan mineral yang berada pada transportasi, tetapi jarang sampai pada pengendapan. a. Mineral yang umumnya allogenic (jarang sekali/tidak pernah authigenic) Universitas Gadjah Mada 1 b. Mineral yang umumnya authigenic 2. Mineral stabil Mineral yang tetap ada mulai dari transportasi sampai dengan pengendapan. Lempung (clay mineral) Kuarsa Chert Muskovit Tourmalin Zirkon Rutile Brookit Anatase IV.2. PROSES PEMBENTUKAN BATUAN SEDIMEN KLASTIK Dalam pembentukan batuan sedimen klastik ada 2 fase proses yaitu : 1. Fase pembentukan endapan 2. Fase pembentukan batuan sedimen klastik 1. Fase pembentukan endapan Fase ini meliputi : Proses pelapukan Proses erosi Proses transportasi Proses pengendapan 2. Fase pembentukan batuan sedimen klastik Fase ini sedimen yang telah terendapkan akan mengalami beberapa proses yaitu: Sementasi, endapan tersemenkan oleh larutan kimia (karbonat, silika, oksida besi) Pemadatan (compaction), memadatnya massa endapan karena pengisian semen Pemampatan (desication), keluarnya air dari rongga-rongga batuan Pembatuan (litification), membatunya endapan yang telah kompak Universitas Gadjah Mada 2 Berdasarkan proses yang terjadi dalam pembentukan batuan sedimen maka dapat dibagi menjadi 3 yaitu: 1. Batuan sedimen basil proses mekanis, dengan media air, angin dan es. Dicirikan oleh banyaknya mineral allogenik, mineralnya detritus, bertekstur klastik, dibedakan : berbutir kasar, misalnya: breksi, konglomerat berbutir sedang, misalnya batupasir berbutir halus, misalnya batulempung, batulanau 2. Batuan sedimen hasil proses kimia, banyak mengandung mineral autogenik, komposisi material non detritus, teksturnya non klastik, dibedakan : sedimen evaporasi, misalnya gipsum, anhidrit, garam sedimen karbonat, misalnya batugamping, dolomit 3. Batuan sedimen yang dihasilkan akibat aktifitas jasad kehidupan (proses organis), misal batubara, diatome, batugamping terumbu. Cara pengendapan : Secara mekanis, ini menghasilkan sedimen detritus (sedimen klastik) Secara kimia, dengan reaksi anorganik (langsung) ataupun dengan reaksi organik (dibantu oleh organisme) Lingkungan pengendapan adalah direfleksikan oleh mineral - mineral dalam batuan. Untuk menghasilkan batuan sedimen, tergantung pada: 1. Litologi batuan asal 2. Stabilitas dari mineral -mineral yang ada 3. Kecepatan erosi : merupakan banyaknya materal sedimen yang dapat diangkut / ditransport, sehingga turut menentukan banyaknya material yang dapat/akan diendapkan. Transport akan menghasilkan : Sorting/ pemilahan Roundness/kebundaran, yaitu ukuran butiran menjadi kecil/lebih kecil Proses diagenesa : Dapat mengubah tekstur batuan sedimen Dapat mengakibatkan rekristalisasi Universitas Gadjah Mada 3 IV.3. KOMPONEN DASAR KLASIFIKASI BATUAN SEDIMEN KLATIK Komponen komposisi pada batuan sedimen terbagi atas: 1. Komposisi kimia 2. Komposisi mineral Faktor yang mempengaruhi susunan komposisi batuan sedimen : a. Besar butir Serpih/ lempung (Al2O3, K3O, FeO) Pasir halus > SiO2 b. Tingkat maturity/kedewasaan Keadaan batuan sedimen dibandingkan dengan batuan induknya Tingkatan : Super mature Mature Sub mature Immature Tingkatan tersebut dilihat berdasarkan : Tekstur Mineral komposisi Makin tinggi tingkat maturitynya maka makin banyak mineral stabil yang dikandungnya. Mineral-mineral yang umum adalah sebagai berikut 1. Mineral Utama Mineral yang terbentuk sebagai penyusun batuan sedimen Kuarsa Feldspar Mika Lempung Karbonat 2. Mineral ikutan/tambahan Jumlahnya sedikit Zirkon Garnet Magnetit Tourmalin Piroksen Manfaat dari Universitas Gadjah Mada 4 komposisi mineral: Menunjukkan komposisi batuan induk Memberi nama batuan Mengetahui proses pembentukannya Mengetahui lingkungan sedimentasinya (environment) Kepentingan ekonomi IV.4. TEKSTUR DAN STRUKTUR BATUAN SEDIMEN KLASTIK a. Tekstur batuan klastik Batuan sedimen yang terbentuknya berasal dari hancuran batuan lain, kemudian tertranportasi dan terdeposisi, selanjutnya mengalami diagenesa, sehingga terbentuk batuan tersebut, misalnya : batupasir. Khusus batuan sedimen klastik untuk penelitian hares diperhatikan mengenai ukurannya, bentuk (shape), kebundaran (roundness), tekstur permukaan, orientasi dan komposisi mineralnya. Shape adalah bentuk daripada butiran tersebut, dapat dibedakan menjadi 4 macam, yaitu: Golongan I oblate/ tabular Golongan H equent/equiaxial Golongan III bladed/triaxial Golongan IV prolate/rod shape Sphericity, pengukurannya dengan cara membandingkan luas permukaan bola yang berisi obyek yang volumenya sama dengan volume bola tersebut. Roundness yaitu derajat kebulatan dari butiran tersebut atau bisa juga disebut dengan keruncingan dari bola tersebut. Bentuk dari pada sedimen sangat dipengaruhi oleh bentuk semula, struktur, Jaya tahan, media transportasi, jarak transportasi dan lama tertransport. Orientasi butir adalah susunan dari pada butiran tersebut, yang mencerminkan proses pengendapannya. Tekstur permukaan yaitu morfologi dan butiran akibat pengaruh media transportasi dan proses setelah transportasi. Maturity yaitu derajat kedewasaan diketahui dengan membandingkan komposisi mineral pada suatu tempat dengan mineral yang terdapat pada batuan asalnya. Universitas Gadjah Mada 5 Gambar IV. 1. Derajat kebundaran Universitas Gadjah Mada 6 b. Struktur batuan sedimen Struktur batuan sedimen klastik terbagi atas : 1. Struktur Syngenetik (terjadi bersamaan dengan terjadinya sedimentasi) a. Proses fisik Eksternal struktur yaitu kelihatan dari luar Misal ukuran dan bentuk dari tubuh sedimen. Contoh : bentuk lembaran (sheet), lensa, lidah, delta dan shoestring. Ada juga yang hubungannya berupa konkresi, interfingering dan intertongue. Internal struktur yang tercermin pada batuan sedimen itu tersendiri Perlapisan dan laminasi (bedding dan lamination) o Normal current bedding yaitu perlapisan karena arus normal, misal: perlapisan sejajar. Berdasarkan ukurannya dibedakan menjadi : - laminasi, bila tebal lapisan < 1 cm - stratum, bila tebal lapisan lebih dari 1 cm - bed, kumpulan dari beberapa laminer dan straith o cross bedding (perlapisan silang siur) yang terjadi akibat adanya perubahan arah arus. o Graded bedding (perlapisan tersusun), yang terjadi karena adanya pemilahan ukuran butir halus ke kesar atau sebaliknya Freature of bedding planes yaitu bentuk dari permukaan lapisan selama proses sedimentasi. Ripplemark yaitu bentuk permukaan bergelombang karena adanya proses arcs satu arah Mud crack yaitu bentuk retak-retak pada lapisan lumpur, biasanya berbentuk segi lima. Rain drops prints yaitu bekas titik-titik air hujan pada permukaan batuan Swash and riil marks yaitu jejak binatang pada permukaan lapisan Flute cast yaitu bentuk gerusan pada permukaan lapisan yang bentuknya seperti seruling - Load cast yaitu lekukan pada baths perlapisan yang diakibatkan oleh gaya tekan dari muatan yang ada diatasnya. Deformational structure Yaitu terjadinya perubahan struktur batuan pada saat sedimen terendapkan karena adanya tekanan. Post deposisional slump feature Yaitu struktur luncuran yang terjadi akibat adanya desakan yang tinggi Universitas Gadjah Mada 7 Intraformationalkonglomerat Yaitu struktur hancuran yang menyerupai konglomerat karena adanya pergerakan pada sedimen sebelum mengalami litifikasi b. Struktur sedimen yang terbentuk akibat proses biologi External structure Biostromes Bioherm Keterangan menurut Cuming (1932) Bioherm adalah merupakan panggul bukit, lensa atau yang serupa yang mempunyai penyebaran terbatas, terdiri atas kerangka organisme yang belum tertransportasi dan dikelilingi oleh litologi yang berbeda. Biostromes menurut Cuming (1932) berupa struktur batugamping yang berlapis sebagaimana shellbed , cronoid, coral bed, yang berupa akumulasi sisa organisme yang belum tertransport dan tidak menunjukkan pembengkaan seperti tanggul bukit atau lensa. Biostromes menurut Lingk (1950) merupakan batugamping yang berlapis dan terdiri dari organisme yang merambat dan membentuk lapisan keras. Internal structure Misal fosil dalam batuan 2. Struktur epigenetik terjadi setelah batuan tersebut terbentuk) a. Karena proses fisik (mekanis) External structure Batas antara tiap lapisan o Batas tegas atau gradual o Baths selaras atau tak selaras Lipatan dan sesar Internal structure Clastic dike yaitu terjadi karena adanya tekanan hidrostatika yang kuat sehingga material seperti diinjeksikan b. Karena proses kimia atau organisme Corroion zone Concretions Stilolites Cone in cone Cristal mold and cast Seins and dike Universitas Gadjah Mada 8 IV.5. KLASIFIKASI BATUAN SEDIMEN KLASTIK Universitas Gadjah Mada 9 Gambar IV. 3. Recent Sands as Seen in Thin Section A. Firm beach sand, Point Reyes, California. Impregnated with plastic before collection in order to preserve texture. Diam. 3 mm. Uncompacted sub-rounded grains very well sorted; porosity very high—about 30%. This is a lithic sand with high feldspar content; it contains abundant chert grains (heavily stippled), quartz (lightly stippled), feldspar (shown with deavage lines), and various rock fragments. B. Sand from channel of jacalibps Creek, Coalinga, California. Impregnated with plastic before collection in order to preserve texture. Diam. 3 mm. Uncompacted subangular grains fairly well sorted; porosity very high; finer-grained layer at bottom. This is a lithic sand derived from a mixed sedimentary terrane including volcanic sandstones; it contains about 40% chips of andesite, argillite, shale, chert, and serpentine, 35% quartz, and 25% feldspar. Universitas Gadjah Mada 10 Gambar IV. 4. Uncemented Sandstones as Seen in Thin Section A. St. Peter Sandstone (Ordovician), Beloit, Wisconsin. Diam. 2.5 mm. Very well-sorted sandstone consisting of subrounded quartz grains, a quartz arenite. The texture is very porous, but grains have been compacted until they are in close contact. Compare texture in Figure 11-4A. B. Temblor arkosic sandstone (Miocene), 2500 m below surface, Kettlernan Hills, California. Diam. 2.5 mm. Moderately sorted sandstone consisting of abundant subangular grains of quartz and feldspar (with deavage), together with fewer biotite flakes (lined) and rock particles (heavily stippled). Texture very porous, but deep burial has caused rearrangement and compaction of grains. Compare the texture in Figure 11-4B. Note deformed biotite pinched between compacted grains. Universitas Gadjah Mada 11 A. Lithic arenite (Miocene, Temblor Formation), 2500 m below surface, Kettle-man Hills, California. Diam. 1 mm. Lithic grains, quartz, and plagioclase enclosed in and cemented by a single barite crystal. Note uniformly oriented right-angle cleavages in barite. B. Volcanic arenite (Miocene, Temblor formation), 1000 m below surface, Jacal-itos Field, California. Diam. 1 mm. Cement is chlorite. A micronbrous fringe rims each grain, but in the centers of pores the chlorite appears microgranular. C. Arkose (Miocene, Topanga Formation), Santa Monica Mountains, California. Diam. 1 mm. Calcite replacing plagioclase, irregular patches of uniformly oriented feldspar being enclosed within a single calcite crystal. An adjacent quartz-feldspar grain (upper left) is not replaced. Gambar IV. 6. Cements in Sandstones A. Pennsylvanian sandstone, Zuni Mountains, New Mexico. Diam. 1.5 mm. Quartz and turbid rock particles coated with ferric oxide (black), locally covered in turn by clear euhedral overgrowths of quartz, and the whole cemented by calcite (stippled). Note trains of globular opaque inclusions in quartz grains. B. Cretaceous arkosic arenite, Gualala, California. Diam. 0.5 mm. Local clear euhedral overgrowths of authigenic quartz on detrital quartz (center, lower right, and left). Quartz overgrowths covered and remaining pores filled by the zeolite laumontite (cleavage lines but no stippling). C. Lithic sandstone (Miocene, Temblor Formation), Reef Ridge, California. Diam. 0.75 mm. An incomplete cement of uniformly oriented calcite (stippled, with cleavage lines); voids fringed with microfibrous chlorite covering both calcite and detrital grains alike; chloritic fringe covered with opal (blank). Universitas Gadjah Mada 12 Gambar IV. 7. Graywacke A. Ordovician lithic graywacke (Fortune Formation), Lawrence Harbor, Newfoundland. Diam. 1.5 mm. An unsorted aggregate of angular grains of sand and coarse silt set in an abundant argillaceous matrix. Grains are quartz (clear or lightly stippled), feldspar (chiefly plagioclase, shown with cleavage), a few shreds of mica, and particles of phyllite, argillite, chert, and andesite or basalt. Long dimensions of most grains lie roughly parallel to bedding plane which is nearly normal to the section. B. Franciscan graywacke, Mendocino County, California. Diam. 1.5 mm. Generally similar to A, but shows less orientation of grains, slightly less matrix, and more grains of feldspar and basalt. This specimen is typical of many Franciscan sandstones thai fall near the boundary between lithic and feldspathic types. C. Precambrian feldspathic graywacke, Hurley, Wisconsin. Diam. 1.3 mm. Texturally like B, except that the margins of the grains are corroded. Quartz grains are very abundant, feldspar is common, and rock chips are sparse. This is a well-known chemically analyzed graywacke (U.S. Geological Survey Bulletin, vol. 150 (1898): pp. 84-87). Universitas Gadjah Mada 13 A. Arkose (Tertiary), Lake Manapouri, New Zealand. Diam. 2.5 mm. Unsorted angular grains of orthoclase and oligoclase (with cleavage) and of quartz (dear), accompanied by large and small unoriented flakes of biotite and a grain of sphene (upper left), all bound together by a mortar of silty clay slightly stained with limonite. Essentially residual, resting on granitic rock from which it was derived. B. Arkose (Pennsylvanian, Fountain Formation), Boulder, Colorado. Diam. 2.5 mm. Poorly sorted angular grains of quartz, turbid oligoclase, and microdine (both feldspars stippled and showing deavage), and accessory flakes of muscovite, all bound together by a matrix of silty clay stained red by ferric oxides. The deposit has been transported but suggests a nearby granitic source. C. Torridonian arkose (Precambrian), Loch Assynt, Scotland. Diam. 2.5 mm. Poorly sorted subangular grains of quartz (dear and very slightly stippled) and of microcline, orthoclase, and oligodase, firmly bonded in a matrix of micaceous clay. Feldspars are in part fresh (shown with cleavage) and in part very turbid (stippled). A few rock fragments (schist) are not shown. Gambar IV. 9.Arkosic Sandstones A. Miocene arkosic arenite, or arkose, 3000 m below surface, near Simmler, California. Diam. 2 mm. Very tightly packed angular and subangular grains: not well sorted, but free from clay. Consolidated by compaction without cement. Plagioclase, orthoclase, and microcline (all lightly stippled) and quartz (blank) are about equally abundant; grains ofcalcite (heavily, stippled) and biotite are accessory. Note pinched and contorted mica. B. Micaceous arkosic arenite, or arkose (Triassic), Portland, Connecticut. Diam. 2 mm. Fairly well-sorted angular to subangular grains of feldspar (lightly stippled) and quartz (blank); abundant parallel oriented flakes of muscovite and chloritized biotite, larger than other grains, lie parallel to the bedding. The rock is lightly cemented by scattered grains of calcite (heavily stippled and showing cleavage) and secondary Universitas Gadjah Mada 14 quartz overgrowths (separated from detrital quartz by dotted lines). Porosity high. A few schist particles, not shown in this field. C. Red arkosic wacke, or arkose (Triassic), Mt. Tom, Massachusetts. Diam. 3 mm. Unsorted angular-to-subangular grains of quartz and turbid feldspar, in a very abundant matrix of ferruginous clay. Gambar IV. 10. Lithic Arenite and Lithic Graywacke A. Calcareous lithic arenite (Miocene Modelo Formation), Santa Monica Mountains, California. Diam. 2.5 mm. Fairly well-sorted sandstone consisting of subangular and subrounded slate and schist fragments and smaller angular grains of quartz and feldspar (trace only) cemented with fine-grained calcite. B. Bragdon lithic graywacke (Mississippian), Trinity County, California. Diam. 2.5 mm. An unsorted aggregate of angular grains set in a dark argillaceous matrix. Less matrix than in graywackes of Figure 13-5. Grains are largely chert and devitrified rhyolites (stippled), andesile, and slate; there are fewer angular quartz grains (clear) and a trace of plagioclase (with cleavage). No preferred orientation of grains is visible. C. Volcanic graywacke (Triassic), southern New Zealand. Diam. 2.5 mm. An unsorted aggregate of angular and subangular grains in a matrix containing much microcrystalline chlorite. Grains are chiefly fragments of andesilic or basaltic rocks; plagioclase grains (with cleavage) are common; and quartz (clear) is subordinate. Universitas Gadjah Mada 15 Gambar IV. 11. Miscellaneous Lithic Sandstones A. Andesite arenite (Upper Miocene, Neroly Formation), Mount Diablo, California. Diam. 2.5 mm. Well-sorted, loosely packed, subangular grains of andesite rock, andesine (clear, with cleavage), hypersthene (center and top), and hornblende (lower left and right). Each grain enclosed in a thin fibrous rim of smectite. Hypersthene and hornblende are euhedral, but hypersthene has been etched by intrastratal solutions after development of smectite rims. This is an epiclastic arenite, not a tuff or a tuffaceous arenite. B. Calcareous tuffaceous sandstone (Oligocene, Tunnel Point Formation), Coos Bay, Oregon. Diam. 3 mm. A mixture of pyrodastic and epiclastic material deposited in a marine environment, where it was mixed with glauconite and cemented with very finegrained calcite (stippled). Curved glass shards and detrital quartz and feldspar are clear; turbid fragments of meta-andesite and phyllite, and spheroidal pellets of glauconite, are darkly stippled. C. Calcareous serpentine arenite (Eocene), southeastern Monterey County, California. Diam. 3 mm. Angular and subangular grains of serpentine (line pattern), together with microcrystalline carbonate pellets (stippled), firmly cemented with finely granular calcite. Note two unbroken foraminifers. Universitas Gadjah Mada 16 A. Triassic sandstone, Boonton, New Jersey. Diam. 2 mm. Not well soned, but contains lithe or no day. Composed of angular and subangular grains derived from sedimentary and low-grade metamorphic rocks. Rock fragments of shale, slate, argillite, and limestone (lower left and right); also ragged grains of quartz and very few of feldspar. B. Chico Sandstone (Cretaceous), near Chico, California. Diam. 1 mm. Finegrained, well-sorted arenite consisting of subangular grains; poorly consolidated and very porous. Rock fragments are slate and Hne schist, with a littlt-chert; quartz (clear or slightly stippled) is abundant, and feldspar (with deavage), both fresh and cloudy, is common; hornblende and epidote (darkly stippled, with cleavage, in upper left and at bottom) are present in every thin section; a bent flake oiotite in upper It. C. Triassic sandstone (Keuper), Stuttgart, Germany. Diam. 1 mm. Tightly packed subangular grains; porosity relatively low. Abundant schist and micro-granular rock particles (lined and stippled); abundant quart], and feldspar (lightly stippled with cleavage), both orthoclase and plagioclase; some mica flakes. Grains of mica schist are commonly oriented parallel to bedding and give the rock a very micaceous aspect in hand specimen. Universitas Gadjah Mada 17