TEORI DASAR DIGITAL Leterature : (1) Frank D. Petruzella, Essentals of Electronics, Singapore,McGrraw-Hill Book Co, 1993, Chapter 41 (2) Ralph J. Smith, Circuit, Devices, and System, Fourth Edition, California, John Wiley & Sons, Inc., 1992, Chapter 13 - 14 OTOMASI SISTEM PRODUKSI 1 ELEKTRONIKA DIGITAL • Elektronika digital telah menyebabkan terjadinya perubahan besar dalam industri, baik dalam industri elektronika maupun industri-industri yang lain. • Beberapa tahun silam, aplikasi elektronika digital terbatas hanya pada sistem komputer. • Belakangan ini penggunaan elektronika digital semakin meluas, seperti misalnya mesin robot dikontrol menggunakan rangkaian digital, pengendalian dan pemonitoran fungsi mesin otomobil, peralatan musik, kontrol panel (keyboard), dan banyak lagi penggunaan yang lainnya. OTOMASI SISTEM PRODUKSI 2 Bentuk gelombang signal digital • Rangkaian digital beroperasi hanya menggunakan signal dua keadaan (two-state signal), yang pada umumnya dinyatakan dengan dua level tegangan berbeda yaitu tinggi dan rendah (high and low) masing-masing dengan simbol H dan L gambar (a). (a) (b) • • Cara lain yang juga digunakan untuk menyatakan dua keadaan tersebut adalah 0 dan 1 masing-masing sebagai pengganti level L dan level H gambar (a). Semua tegangan yang berada di atas level standar menyatakan signal ON (1), dan tegangan di bawah level standar menyatakan signal OFF (0) gambar (b). OTOMASI SISTEM PRODUKSI 3 SISTEM BILANGAN BINER • • Dalam elektronika digital, bilangan biner digunakan sebagai kode untuk menyatakan bilangan desimal, huruf alfabet, dan beberapa jenis informasi yang lain. Sistem bilangan biner merupakan cara lain yang sederhana untuk menyatakan bilangan, dimana hanya digunakan dua digit yaitu 0 dan 1. Count Decimal number Binary number Zerq 0 0 One 1 1 Two 2 10 Three 3 11 Four 4 100 Five 5 101 Six 6 110 Seven 7 111 Eight 8 1000 Nine 9 1001 Ten 10 1010 Eleven 11 1011 Twelve 12 1100 Thirteen 13 1101 Fourteen 14 1110 Fifteen 15 1111 • • Sistem biner dapat digunakan dengan rangkaian digital karena prosesnya hanya terdiri dari signal digital level high dan low saja. Setiap posisi bilangan biner hanya dapat berupa angka 0 atau 1, dan posisi berikutnya kemudian ditempatkan di sebelah kiri. Dalam tabel ditunjukkan bilangan biner untuk nilai desimal 1 sampai dengan 15. OTOMASI SISTEM PRODUKSI 4 Pembobotan dalam sistem desimal • • • Bobot dari bilangan desimal tergantung dari jumlah digit yang membentuknya dan bobot posisi yang ditempati oleh setiap digit bilangan tersebut. Dalam sistem bilangan desimal, bobot posisi pertama, dimulai dari posisi yang paling kanan adalah 0; kedua 1; ketiga 2; dan seterusnya hingga posisi yang terakhir. Setiap posisi berturut-turut dikalikan dengan 100, 101, 102, 103 (atau 1, 10, 100, 1000) dan seterusnya, dan jumlah hasil perkalian merupakan bobot dari keseluruhan bilangan tersebut. Decimal number 3 2 1 0 1 9 6 2 10 2 x 100 = 2 x 1= 2 6 x 101 = 6 x 10 = 60 9 x 102 = 9 x 100 = 900 1 x 103 = 1 x 1000 = 1000 1962 (Sum of products) OTOMASI SISTEM PRODUKSI 5 Konversi sistem biner ke sistem desimal • • Konversi bilangan biner ke bilangan desimal dapat dilakukan dengan cara yang hampir sama. Setiap posisi berturut-turut dikalikan dengan 20, 21, 22, 23 , 24, 25, 26, 27 (atau 1, 4, 8, 16, 32, 64, 128) dan seterusnya, dan jumlah hasil perkalian merupakan bobot dari keseluruhan bilangan desimal hasil konversi dari bilangan biner tersebut. Binary number 7 6 5 4 3 2 1 0 1 0 1 0 1 1 0 1 2 1 x 20 = 1 x 1 = 1 0 x 21 = 0 x 2 = 0 1 x 22 = 1 x 4 = 4 1 x 23 = 1 x 8 = 8 0 x 24 = 0 x 16 = 0 1 x 25 = 1 x 32 = 32 0 x 26 = 0 x 64 = 0 1 x 27 = 1 x 128 = 128 Decimal number 173 (Sum of products) OTOMASI SISTEM PRODUKSI 6 Bit, nibble, byte, dan word • • • Satu angka biner tunggal disebut bit; dalam sistem digital, seluruh informasi disajikan dengan sederetan bit-bit. Satu deretan dengan 4-bit disebut satu nibble; satu deretan 8-bit disebut byte. Satu byte dapat mempresentasikan angka desimal dari 0 sampai dengan 255 (disusun dalam 28 = 256 kombinasi yang berbeda). MSB 0 Bit 1 1 0 0 1 1 0 0 0 1 Byte LSB 1 1 0 1 1 Byte 16 - bit word • • • Kelompok bit-bit dalam deretan yang berurutan disebut word . Pada umumnya komputer menggunakan 8 atau 16 bit untuk membentuk sebuah word ; gambar di atas word dibangun dari 2 byte. Least significant bit (LSB) adalah digit yang menunjukkan nilai terendah dan most significant bit (MSB) adalah digit yang menunjukkan nilai terbesar. OTOMASI SISTEM PRODUKSI 7 Data biner • • Saklar dapat digunakan untuk memasukkan data biner ke dalam peralatan digital Gambar berikut ini menunjukkan bilangan biner 11000101, atau dalam bilangan desimal 197. Indikator sinar seperti LED kadang-kadang digunakan untuk membaca atau mendisplaikan data biner dalam peralatan digital. OTOMASI SISTEM PRODUKSI 8 Sistem bilangan heksadesimal • • • • Sistem biner memerlukan lebih banyak digit daripada sistem desimal, sehingga susah untuk dibaca dan ditulis. Untuk mengatasi masalah ini, sistem bilangan yang lain digunakan agar lebih mudah dan lebih efisien dikomunikasikan dengan rangkaian digital. Sistem bilangan tersebut merupakan kelipatan dua dan termasuk oktal, heksadesimal, desimal kode biner (binary code decimal, BCD). Gambar berikut ini menunjukkan perbandingan antara sistem bilangan heksadesimal, biner, desimal. Hexadecimal 0 1 2 3 4 5 6 7 8 9 A B C D E F Binary 0 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 1111 Decimal 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 • • Heksadesimal terdiri dari angka 0 sampai dengan 9 ditambah lagi dengan huruf A sampai dengan F. Sistem bilangan ini dapat digunakan untuk menghitung dari 0 hingga 15 dengan satu digit karakter tunggal. OTOMASI SISTEM PRODUKSI 9 Cara menuliskan bilangan heksadesimal • • 8-bit bilangan biner dapat dituliskan dalam heksadesimal dengan membagi menjadi dua kelompok, dimana masing-masing kelompok terdiri dari 4-bit bilangan biner. Masing-masing kelompok 4-bit menunjukkan bilangan 0 hingga 15 (0000 dan 1111). Contoh • Bilangan desimal 47 dalam sistem biner adalah 0010 1111, dan dalam heksadesimal adalah 2F, dimana 2 = 0010 dan F = 1111 (lihat tabel). Decimal number 4 0 0 Equivalent hexadecimal number 1 7 0 1 2 F 1 1 OTOMASI SISTEM PRODUKSI 1 Equivalent binary number 10 GERBANG LOGIKA • • Gerbang logika dapat didefinisikan sebagai peralatan yang dapat menghasilkan suatu output hanya bila telah ditentukan sebelumnya kondisi input yang ada. Dalam hal ini digunakan istilah gerbang karena menunjukkan keadaan terbuka atau tertutup. Gerbang AND • • Rangkaian saklar sederhana dalam gambar di samping kiri menunjukkan bahwa bateri hanya dapat mensuplai lampu bila saklar A dan B dalam keadaan ON (1). Gambar (A) dan (B) di bawah berturut-turut menunjukkan simbol dan tabel kebenaran (truth table) gerbang AND. A. Standard AND-gate symbol B. AND truth table OTOMASI SISTEM PRODUKSI 11 • Gambar (C) menunjukkan skematik rangkaian AND dan gambar (D) menunjukkan chip IC gerbang AND dua-input. C. Circuit schematic • D. Typical quad two-input AND gate IC chip Gerbang AND dapat memiliki lebih dari dua input. OTOMASI SISTEM PRODUKSI 12 Diagram waktu gerbang AND • Bila input A dan input B merupakan pulsa, maka bentuk pulsa outputnya sesuai dengan kaidah tabel kebenarannya (truth table). Gerbang OR • • Rangkaian saklar sederhana berikut ini menunjukkan bahwa bateri dapat mensuplai lampu bila saklar A dan/atau saklar B dalam keadaan ON (1). Gambar (A) dan (B) di bawah berturut-turut menunjukkan simbol dan tabel kebenaran gerbang OR. A. Standard OR-gate symbol B. OR truth table OTOMASI SISTEM PRODUKSI 13 • Gambar (C) menunjukkan skematik rangkaian OR dan gambar (D) menunjukkan chip IC gerbang OR dua-input. C. Circuit schematic • D. Typical quad two-input OR gate IC chip Gambar (E) menunjukkan aplikasi gerbang dalam otomotif dan gambar (F) menunjukkan diagram waktu bila input A dan B berupa pulsa. E. Typical automotive application OTOMASI SISTEM PRODUKSI F. Timing diagram 14 Gerbang NOT • • • Tidak seperti gerbang AND dan OR, gerbang NOT hanya memiliki satu input. Rangkaian saklar sederhana berikut ini menunjukkan bahwa bateri dapat mensuplai lampu ( A = 1) bila saklar A dalam keadaan OFF (0), sedang bila saklar A dalam keadaan ON (1) arus listrik yang melewati lampu sangat kecil sehingga tidak dapat menyalakan lampu ( A = 0). Gambar (A) dan (B) di bawah berturut-turut menunjukkan simbol dan tabel kebenaran gerbang NOT (INVERTER). A. Standard INVERTER symbol B. INVERTER truth table OTOMASI SISTEM PRODUKSI 15 • Gambar (C) menunjukkan skematik rangkaian NOT dan gambar (D) menunjukkan chip IC gerbang NOT input tunggal. C. Circuit schematic • D. Typical INVERTER IC chip Gambar (E) menunjukkan bahwa dalam operasi gerbang NOT, kondisi pulsa high (1) pada input dibalik menjadi kondisi low (0) pada output dan sebaliknya kondisi pulsa low (0) pada input dibalik menjadi kondisi high (1) pada output. E. Pulsed operation OTOMASI SISTEM PRODUKSI 16 Gerbang NAND (NOT-AND) • Gerbang NAND merupakan kombinasi gerbang AND dan INVERTER, gambar (A) menunjukkan simbol standar gerbang NAND sedang gambar (B) merupakan gerbang NAND equivalen yang dirangkai dari gerbang AND dan INVERTER. A. Standard NAND-gate symbol B. Equivalent NAND-gate wired using an AND-gate and INVERTER • • C. NAND truth table D. Typical quad two-input NAND gate IC chip Tabel kebenaran gerbang NAND dalam gambar (C) menujukkan nilai output yang berlawanan dengan nilai output tabel kebenaran gerbang AND. Gambar (D) menunjukkan chip IC gerbang NAND dua-input. OTOMASI SISTEM PRODUKSI 17 • Gambar (E) menunjukkan skematik rangkaian NAND dan gambar (F) menunjukkan diagram waktu bila input A dan B berupa pulsa. E. Circuit schematic F. Timing diagram Gerbang NOR (NOT-OR) • Gerbang NOR merupakan kombinasi gerbang OR dan INVERTER, gambar (A) menunjukkan simbol standar gerbang NOR sedang gambar (B) merupakan gerbang NOR equivalen yang dirangkai dari gerbang OR dan INVERTER. B. Equivalent NOR-gate wired using an OR-gate and INVERTER OTOMASI SISTEM PRODUKSI 18 A. Standard NOR-gate symbol • • Tabel kebenaran gerbang NOR dalam gambar (C) menujukkan nilai output yang berlawanan dengan nilai output tabel kebenaran gerbang OR. Gambar (D) menunjukkan chip IC gerbang NOR dua-input. C. NOR truth table • D. Typical quad two-input NOR gate IC chip Gambar (E) menunjukkan skematik rangkaian NOR dan gambar (F) menunjukkan diagram waktu bila input A dan B berupa pulsa. E. Circuit schematic F. Timing diagram OTOMASI SISTEM PRODUKSI 19 Fungsi Eksklusif-OR (Exclusive-OR , XOR ) • • • • Kombinasi gerbang yang sering digunakan adalah fungsi ekslusif-OR (XOR) seperti ditunjukkan dalam gambar di bawah ini. Gerbang XOR juga ada dalam bentuk IC dengan simbol tersendiri, jadi tidak perlu menghubungkan gerbang-gerbang terpisah untuk membangun fungsi XOR tersebut. Dari tabel kebenarannya dapat dilihat bahwa output hanya akan 1 bila salah satu inputnya 1, tetapi bila kedua-duanya memiliki digit yang sama maka outputnya 0. Gerbang XOR sering digunakan untuk membandingkan dua bilangan biner seperti gambar berikut ini. OTOMASI SISTEM PRODUKSI 20 • Sebagai contoh bilangan biner yang menunjukkan temperatur dapat dibandingkan dengan bilangan biner yang menunjukkan level tegangan dari sensor pendingin (coolant sensor) untuk menentukan temperatur pendingin. • Bilangan yang menunjukkan temperatur dihubungkan ke satu input gerbang XOR, dan bilangan yang menunjukkan temperatur pendingin dihubungkan ke input yang lain. Bila kedua input 1 atau keduanya 0, maka outputnya 0, jadi bila kodenya sama berarti temperatur yang diinginkan telah sesuai. • OTOMASI SISTEM PRODUKSI 21 Aljabar Boolean • • • Kombinasi rangkaian logika dapat direncanakan menggunakan aljabar Boolean. Fungsi rangkaian dinyatakan dengan persamaan Boolean. Gambar di atas menunjukkan bagaimana fungsi AND, NAND, OR, NOR, dan NOT digunakan untuk membentuk persamaan Boolean. OTOMASI SISTEM PRODUKSI 22 Teorema Boolean • Hukum-hukum dasar diperlihatkan dalam tabel berikut ini Hukum-hukum Boolean dengan 0 dan 1 OR 0 0 1 1 + + + + 0 1 0 1 = = = = AND 0 1 1 1 0 0 1 1 . . . . 0 1 0 1 = = = = 0 0 0 1 Teorema-teorema Boolean dengan satu variabel NOT OR AND 0 =1 1 =0 A+0=A A+1=1 A+A=A A+A=1 A.0=0 A.1=A A.A=A A.A=0 NOT A =A Teorema-teorema Boolean untuk lebih dari satu variabel Hukum Komutasi Hukum Asosiasi Teorema DeMorgan A+B=B+A A + (B + C) = (A + B) + A A+B=A.B A.B=B.A A . (B . C) = (A . B) . A A.B=A+B Hukum Serapan Hukum Distribusi A + (A . B) = A A . (B + C) = (A . B) + (A . C) A . (A + B) = A A + (B . C) = (A + B) . (A + C) OTOMASI SISTEM PRODUKSI 23 Gerbang XOR dalam persamaan Boolean • Persamaan Boolean untuk gerbang XOR adalah sebagi berikut : A XOR B = A A A B B B = (A + B) . AB A A+B B Simbol gerbang XOR A Tabel kebenaran A B 0 0 1 1 0 1 0 1 A AB B 0 1 1 0 Rangkaian XOR OTOMASI SISTEM PRODUKSI 24 B Contoh soal 1 Tunjukkan teorema-teorema berikut ini dengan tabel kebenaran. A+A=1 dan A.1 =A Jawab : Berdasarkan teorema Boolean, tabel kebenarannya adalah : A A 0 1 1 0 A+A 1 1 A 0 A.1 0 1 1 Contoh soal 2 Tunjukkan A + (A . B) = A dengan teorema dasar lainnya. Jawab : Penguraian dengan teorema distribusi : A + (A . B) = (A + A) . (A + B) = A . (A + B) = A.A + A.B Substitusi A. 1 untuk A.A : A + (A . B) = A.A + A.B = A.1 + A.B = A . (1 + B) = A OTOMASI SISTEM PRODUKSI 25 Contoh soal 3 Gunakan gerbang NAND untuk membentuk gerbang OR dua-input. Jawab : Fungsi satu gerbang OR dua-input adalah Y = A + B Berdasarkan teorema DeMorgan : A + B = A . B Y = A + B = A . B Ini berarti output Y dapat dibentuk dengan satu gerbang NAND dengan dua input NOT. Karena A . A = A, ini berarti bila kedua input gerbang NAND disatukan akan melakukan operasi NOT. Jadi rangkaian ekuivalen gabungan gerbang NAND dapat digambarkan sebagai berikut : A A Y=A+B B B OTOMASI SISTEM PRODUKSI 26 Contoh soal 4 Tunjukkan bahwa rangkaian di bawah ini dapat diganti dengan satu gerbang NAND tunggal dengan cara (a) membuat tabel kebenaran, (b) dengan aljabar Boolean. A AB B Y Output A A +B Jawab : (a) Tabel kebenaran : Jadi Y = A B A B 0 0 1 1 0 1 0 1 AB A+B Y 1 1 1 0 0 0 1 0 1 1 1 0 gerbang NAND OTOMASI SISTEM PRODUKSI 27 (b) Aljabar Boolean : Output rangkaian logika dapat dituliskan sebagai berikut : Y=AB + A+B = (A + B) + A B (Teorema DeMorgan) = A + ( B + A B) (Hukum asosiasi) = A + B (1 + A) (Hukum distribusi) =A+B (1 + A = 1) =AB (Teorema DeMorgan) Jadi Y = A B A B gerbang NAND Y = A.B OTOMASI SISTEM PRODUKSI 28 Contoh soal 5 Tunjukkan bahwa rangkaian di bawah ini dapat diganti dengan satu gerbang XOR tunggal dengan cara (a) membuat tabel kebenaran, (b) dengan aljabar Boolean. A B A AB B Y A B AB Jawab : (a) Tabel kebenaran : OTOMASI SISTEM PRODUKSI 29