BAB I VEKTOR GAYA DAN RESULTAN SISTEM GAYA BAB I VEKTOR GAYA DAN RESULTAN SISTEM GAYA Pada bab ini, kita akan mempelajari pengaruh gaya-gaya yang bekerja pada suatu partikel. Pemakaian kata “partikel” tidak berarti bahwa kita membatasi pelajaran kita pada benda yang kecil. Yang dimaksud di sini adalah ukuran dan bentuk benda yang ditinjau tidak banyak mempengaruhi penyelesaian masalah. Gaya termasuk besaran vektor. Sehingga pada materi ini kita akan lebih sering menggunakan istilah vektor sebagai pengganti besaran gaya. Karena gaya merupakan besaran vektor, maka sebuah gaya akan ditentukan oleh besar dan arahnya. Besarnya suatu gaya ditentukan oleh suatu satuan. Dalam SI, gaya mempunyai satuan Newton(N), sedang sistem satuan Amerika menggunakan satuan pound(lb). Arah gaya ditentukan dengan suatu tanda panah. Perjanjian tanda yang lazim untuk menyatakan arah gaya dapat dilihat pada gambar 1.1. Y(+) X(+) X(-) Y(-) Gambar 1.1. Perjanjian tanda arah gaya A. GAYA PADA BIDANG DATAR Dua buah vektor , seperti tampak pada gambar 1.2(a) dan (b), yang mempunyai besar dan garis aksi yang sama tetapi arah berbeda, akan memberikan efek yang berlawanan bila bereaksi pada sebuah benda. 1 BAB I VEKTOR GAYA DAN RESULTAN SISTEM GAYA 30 30 (a) (b) Gambar 1.2. Vektor A dan bentuk negatifnya Dua buah vektor P dan Q yang bekerja pada sebuah benda A (gambar 1.3(a)) dapat digantikan dengan sebuah vektor tunggal R yang akan memberikan efek yang sama pada benda tersebut (gambar 1.3(c)). Vektor ini disebut vektor resultan dari vektor P dan Q. P P R R Q A (a) A Q (b) A (c) Gambar 1.3. Resultan vektor Dua buah vektor yang besar dan arahnya sama disebut kedua vektor itu sama, tidak tergantung apakah keduanya mempunyai titik aksi yang sama atau berbeda (gambar 1.4). Dua vektor yang besarnya sama, garis aksi sejajar tetapi berlawanan arah disebut kedua tersebut berbeda (gambar 1.5). 2 BAB I VEKTOR GAYA DAN RESULTAN SISTEM GAYA Gambar 1.4. Dua vektor yang sama Gambar 1.5. Dua vektor yang berbeda B. PENJUMLAHAN DAN PENGURANGAN GAYA Dua buah vektor gaya A dan B bekerja pada satu titik tangkap dan membentuk sudut apit . Resultan atau jumlah kedua vektor tersebut dicari menggunakan hukum jajaran genjang (gambar 1.6(a) dan (b)). B B R A A (a) (b) Gambar 1.6. Hukum Jajaran genjang Besarnya resultan dapat dihitung menggunakan persamaan sebagai berikut : R= = s (1) Dari hukum jajaran genjang, dapat diturunkan cara lain untuk menentukan jumlah dua buah vektor gaya. Metode ini dikenal dengan hukum segitiga (gambar 1.7(a), (b), dan (c), gambar 1.8, dan gambar 1.9) 3 BAB I VEKTOR GAYA DAN RESULTAN SISTEM GAYA B A B ATAU A+B A (a) A+B B A (c) (b) Gambar 1.7. Hukum Segitiga Gambar 1.8. Hukum Segitiga Gambar 1.9. Hukum Segitiga Pengurangan vektor gaya didefinisikan sebagai penjumlahan suatu vektor yang sama dengan arah berlawanan. Gambar 1.10 memperlihatkan pengurangan dua vektor A dan B. B -B A A-B Gambar 1.10. Pengurangan vektor 4 BAB I VEKTOR GAYA DAN RESULTAN SISTEM GAYA Besarnya A-B dihitung menggunakan persamaan berikut ini : s A-B = (2) Dimana = 180 - dan cos (180 - ) = - cos , sehingga persamaan 2 dapat diubah menjadi : s A-B = (3) Rumus hukum segitiga yang sering digunakan dalam perhitungan adalah sebagai berikut : c a b sin sin sin b a Contoh 1. Dua buah gaya P dan Q beraksi pada suatu paku A. Tentukan resultannya. 5 BAB I VEKTOR GAYA DAN RESULTAN SISTEM GAYA Penyelesaian : R Q = 60 N P = 40 N 25 20 R= P P s s = = 97.73 N Contoh 2. 30 Sebuah tiang pancang ditarik dari tanah dengan memakai dua tali seperti tampak pada gambar. a. tentukan besar gaya P sehingga gaya resultan yang timbul pada tiang mengarah vertikal. b. Berapa besar resultan tersebut ?. 6 BAB I VEKTOR GAYA DAN RESULTAN SISTEM GAYA Penyelesaian : Karena resultan kedua gaya pada tiang harus vertikal, maka gambar gaya di samping dapat diubah seperti tampak pada gambar berikut. a. Dengan menggunakan persamaan hukum segitiga diperoleh persamaan sebagai berikut. P 120 sin 25 sin 30 sehingga : P = 120 x b. Contoh 3. sin 25 = 101,43 N sin 30 120 R sin 30 sin 125 Tentukan dengan trigonometri besar dan arah resultan duaR gaya seperti tampak pada gambar = 196,6 N di samping. 7 BAB I VEKTOR GAYA DAN RESULTAN SISTEM GAYA Penyelesaian : R= 45 25 200 2 300 2 2 200 300 cos 70 = 413,57 lb 300 lb 200 lb R 45 a R 300 lb Untuk menghitung arah digunakan hukum segitiga. resultan gaya 110 25 200 lb 200 413,57 sin a sin 110 diperoleh a = 27 sehingga arah resultan gaya = 45 + 27 = 72 8 BAB I VEKTOR GAYA DAN RESULTAN SISTEM GAYA Contoh 4. Sebuah mobil mogok ditarik dengan dua tali seperti tampak pada gambar. Tegangan di AB sebesar 400 lb dan sudut sebesar 20. Diketahui resultan dari dua gaya tersebut bekerja di A diarahkan sepanjang sumbu mobil. Tentukan dengan trigonometri (a) tegangan pada tali AC, (b) besar resultan kedua gaya yang beraksi di A. Penyelesaian : a. Gunakan hukum segitiga : AC 400 sin 30 sin 20 AC = 584,76 lb b. Gunakan hukum segitiga : R 400 sin 130 sin 20 R = 895,9 lb C. KOMPONEN TEGAK LURUS SUATU GAYA Sebuah vektor gaya dapat diuraikan dalam sebuah bidang Cartesian dalam komponen Fx sepanjang sumbu x dan Fy sepanjang sumbu y seperti tampak pada gambar 1.11. 9 BAB I VEKTOR GAYA DAN RESULTAN SISTEM GAYA Dimana : Fx = Fcos (4) Fy = Fsin (5) Gambar 1.11. Uraian vektor Begitu juga sebaliknya, jika diketahui dua komponen gaya Fx dan Fy yang saling tegak lurus, maka dapat dihitung resultan kedua gaya dan arah resultan gaya tersebut menggunakan persamaan berikut : tan Fy Fx F Fx 2 Fy 2 (6) (7) D. RESULTAN GAYA DENGAN MENAMBAH KOMPONEN X DAN Y Tiga buah gaya F1, F2, dan F3 bekerja pada suatu bidang kartesian pada satu titik tangkap seperti ditunjukkan pada gambar 1.12. 10 BAB I VEKTOR GAYA DAN RESULTAN SISTEM GAYA Y F2 F2y F1 F1y 2 F2x 1 3 F3y F1x F3x X F3 Gambar 1.12. Resultan Beberapa Vektor Untuk mencari resultan ketiga gaya tersebut, maka harus diuraikan masingmasing gaya terhadap sumbu x dan y sehingga terdapat komponen gaya-gaya : F1x = F1cos 1 F1y = F1sin 1 F2x = F2cos 2 F2y = F2sin 2 F3x = F3cos 3 F3y = F3sin 3 Dari komponen-komponen gaya di atas, dapat dijumlahkan secara aljabar terhadap sumbu x dan y, yaitu : Fx = F1x - F2x + F3x (8) dan Fy = F1y + F2y - F3y (9) sehingga resultan ketiga gaya dicari menggunakan persamaan : 11 BAB I VEKTOR GAYA DAN RESULTAN SISTEM GAYA R F x 2 Fy 2 (10) Contoh 5. Tentukan komponen x dan y setiap gaya pada gambar di samping. Penyelesaian : Y 45 lb 60 lb X Besar(lb) Sumbu X(lb) Sumbu Y(lb) 60 60cos 35 = 49,15 60sin 35 = 34,41 45 45cos 55 = 25,81 45sin 55 = 36,86 75 75cos 50 = 48,21 75sin 50 = 57,45 75 lb 12 BAB I VEKTOR GAYA DAN RESULTAN SISTEM GAYA Contoh 6. Silinder hidrolik GE menimbulkan suatu gaya P diarahkan sepanjang garis GE pada bagian DF. Diketahui P harus mempunyai komponen tegak lurus DF sebesar 600 N. Tentukan : a. besar gaya P. b. komponennya terhadap DF. yang sejajar Penyelesaian : P F 600 N a. Py = Psin 30 600 = 0,5P E 30 P = 1200 N D b. Px = Pcos 30 = 1200 cos 30 56 = 1039,23 N G 13 BAB I VEKTOR GAYA DAN RESULTAN SISTEM GAYA Contoh 7. Tegangan pada kabel penguat tiang telepon sebesar 370 lb. Tentukan komponen horizontal dan vertikal gaya yang ditimbulkan pada penambat di C. Penyelesaian : R= 6 2 17,5 2 18,5 ft Tx = - Tcos = - 370 x 6 = - 120 lb 18,5 = 120 lb (ke kiri) Ty = Tsin = 370 x 17,5 = 350 lb 18,5 14 BAB I VEKTOR GAYA DAN RESULTAN SISTEM GAYA E. KESETIMBANGAN SUATU PARTIKEL Bila resultan semua gaya yang bekerja pada suatu partikel adalah nol, maka partikel tersebut dalam keadaan setimbang. Syarat untuk mencapai keadaan setimbang secara matematis dapat ditulis sebagai berikut ini : Fx = 0 dan Fy = 0 (11) contoh 8. Dua kabel diikatkan bersamasama di C dan diberi beban seperti terlihat pada gambar. Tentukan tegangan di AC dan BC. Penyelesaian : Y TAC TACSIN 50 TBC TBCSIN 30 50 30 TACCOS 50 X TBCCOS 30 400 Fx = 0 TBC Cos 30 – TAC Cos 50 = 0 0,87 TBC = 0,64 TAC 15 BAB I VEKTOR GAYA DAN RESULTAN SISTEM GAYA TBC = 0,74 TAC (a) Fy = 0 TAC Sin 50 + TBC Sin 30 – 400 = 0 0,77 TAC + 0,5 TBC = 400 (b) Substitusikan (a) ke dalam (b) : 0,77 TAC + 0,5 (0,74 TAC) = 400 1,14 TAC = 400 TAC = 350,88 lb Masukkan TAC ke dalam (a) : TBC = 0,74 x 350,88 = 259,65 lb Contoh 9 : Hitung tegangan tali T1, T2, dan T3 pada gambar berikut ini jika titik A setimbang. W adalah berat benda. 30 60 A W = 20 N Penyelesaian : Diagram gaya-gaya yang bekerja : 30 60 T2 T1 A T3 W = 20 N 16 BAB I VEKTOR GAYA DAN RESULTAN SISTEM GAYA Tinjau benda W : Benda ini berada pada keadaan setimbang sehingga : T3 = W = 20 N Tinjau titik A : Karena titik ini setimbang, maka berlaku syarat kesetimbangan. Y T1sin 30 T1 T2sin 60 30 T2 X 60 T1cos 30 T2cos 60 T3 FX = 0 T2cos 60 - T1cos 30 = 0 T2 1 1 = T1 3 2 2 T2 = T1 3 (1) FY = 0 T1sin 60 + T2sin 30 - T3 = 0 T1 1 1 = T3 3 +T2 2 2 (2) Substitusikan persamaan (1) ke persamaan (2), kita peroleh : T1 1 1 = 20 3 + (T1 3 ) 2 2 17 BAB I VEKTOR GAYA DAN RESULTAN SISTEM GAYA T1 3 = 20 T1 = 20 N 3 Subtitusikan nilai T1 ke persamaan (1) untuk mendapatkan nilai T2 T1 = 20 N Contoh 10. Suatu kotak yang dapat digerakkan berikut isinya mempunyai 960 lb. Tentukan panjang rantai terpendek ACB yang dapat digunakan untuk mengangkat beban kotak tersebut bila tegangan pada rantai tidak melebihi 730 lb. Penyelesaian : Karena berbentuk simetris, maka TAC = TBC = T. Fy = 0 2T sin - 960 = 0 2 x 730 x sin = 960 sin = 0,658 = 41,1 sehingga R = 13,75 = 18,33 in cos 41,1 maka panjang rantai minimum =2 x 18,33 = 36,67 in 18 BAB I VEKTOR GAYA DAN RESULTAN SISTEM GAYA LATIHAN 1. Determine the magnitude of the resultant force FR = F1 + F3 and its direction, counterclockwise measured from the positive x-axis. 2. Determine the magnitude of the resultant force FR = F1 + F2 and its direction, counterclockwise measured from the positive x-axis 3. Resolve the force F1 into components acting the u and v axes and determine the magnitudes of the components 19 BAB I VEKTOR GAYA DAN RESULTAN SISTEM GAYA 4. The plate is subjected to the two forces at A and B as shown. If = 60, determine the magnitude of the resultant of these forces and its direction measured from the horizontal 5. Determine the magnitudes of F1 and F2 so that the particle P is in equilibrium 6. Determine the magnitude and direction of F so that the particle is in equilibrium 20 BAB I VEKTOR GAYA DAN RESULTAN SISTEM GAYA 7. The device shown is used to straighten the frames of wrecked autos. Determine the tension of each segment of the chain, i.e., AB and BC if the force which hydraulic cylinder DB exerts on point B is 3,50 kN, as shown 8. Determine the force in cables AB and AC necessary to support the 12 kg traffic light 9. Coeds AB and AC can each sustain a maximum tension of 800 lb. If the drum has a weight of 900 lb, determine the smallest angle at which they can be attached to the drum 21 BAB I VEKTOR GAYA DAN RESULTAN SISTEM GAYA 10. The 500 lb crate is hoisted using the ropes AB and AC. Each rope can withstand a maximum tension 2500 lb before it breaks. If AB always remains horizontal, determine the smallest angle to which the crate can be hoisted 22