4 II. TINJAUAN PUSTAKA 2.1. Bahan Organik Bahan organik tersusun atas bahan-bahan yang sangat beraneka berupa zat yang ada dalam jaringan tumbuhan dan hewan, sisa organik yang sedang menjalani perombakan, dan hasil metabolisme mikroorganisme yang menggunakan sisa organik sebagai sumber energi. Perombakan bahan organik dapat berlangsung terbatas atau tuntas. Perombakan yang berlangsung terbatas menghasilkan zat-zat organik lebih sederhana dari yang ada semula, sedangkan yang berlangsung tuntas membebaskan unsur-unsur yang semula berada dalam ikatan molekul organik menjadi senyawa-senyawa anorganik (Notohadiprawiro, 1999). Pelapukan bahan organik merupakan salah satu kegiatan jazad mikro, yang membebaskan unsur hara yang terikat dalam bentuk organik menjadi tersedia bagi tumbuhan. Kecepatan pelapukan tergantung pada kandungan senyawa dari bahan organik tersebut. Adapun urutan senyawa-senyawa yang ditemukan dalam jaringan tumbuhan menurut tingkat mudah tidaknya senyawa tersebut dilapuk yaitu: gula, zat pati, protein sederhana, protein kasar, hemiselulosa, selulosa, lignin, lemak dan lilin (Supardi, 1983). Senyawa organik memiliki peranan yang sangat penting dalam sifat-sifat kimia tanah. Menurut Kussow (1971) senyawa organik dapat mempertahankan pH tanah pada kisaran 5,0 - 8,5 dan senyawa organik berfungsi secara langsung dalam reaksi oksidasi-reduksi dalam tanah. Bahan organik segar tidak dapat digunakan secara langsung oleh tanaman karena perbandingan kandungan C/N dalam bahan tersebut tidak sesuai dengan C/N tanah dimana rasio C/N tanah berkisar antara 10-20 (Suryadikarta dan Simanungkalit, 2006). Oleh karena itu perlu dilakukan penurunan nilai C/N rasio bahan organik dengan cara melakukan pengomposan terhadap bahan tersebut. Menurut Indranada (1986) pengomposan adalah dekomposisi bahan organik segar menjadi bahan yang menyerupai humus (rasio C/N mendekati 10). Proses 5 perombakan bahan organik ini terjadi secara biofisiko-kimia, melibatkan aktivitas biologi mikroba dan mesofauna (Suryadikarta dan Simanungkalit, 2006). Hasil pengomposan berupa kompos, yaitu jenis pupuk yang terjadi karena proses penghancuran oleh alam (Sarief, 1985) dan mikroorganisme pengurai terhadap bahan organik (daun-daunan, jerami, alang-alang, rumput-rumputan, dedak padi, batang jagung serta kotoran hewan). Adapun karakteristik umum yang dimiliki kompos antara lain: (1) mengandung unsur hara dalam jenis dan jumlah bervariasi tergantung bahan asal, (2) menyediakan unsur hara secara lamban (slow release) dan dalam jumlah terbatas, dan (3) mempuyai fungsi utama memperbaiki kesuburan dan kesehatan tanah (Suryadikarta dan Simanungkalit, 2006). Sifat fisik dari kompos antara lain kadar kelembaban (< 35%), bobot isi, kemampuan memegang air, dan ukuran bahan, sedangkan sifat kimia dari kompos antara lain karbon organik total, kapasitas tukar kation, Nitrogen total, pH, daya hantar listrik (DHL), P, K, Ca, Mg dan unsur mikro (Sullivan dan Miller, 2001). Hasil analisis hara kotoran sapi dan ayam serta kandungan hara dalam kompos yang berasal dari kedua jenis kotoran dapat dilihat pada Tabel 1. Tabel 1. Kandungan Hara dari Kotoran dan Kompos Kotoran Sapi dan Ayam Jenis Bahan Asal Kotoran sapi Kotoran ayam Kompos kotoran sapi Kompos kotoran ayam C ----- % ----63,44 42,18 39,31 18,36 N Kadar Hara C/N 1,53 1,50 2,34 1,70 41,47 28,12 16,80 10,80 P K -------%------0,67 1,97 1,08 2,12 0,70 0,68 0,69 1,45 Sumber: Hartatik dan Widowati, 2006 2.2. Gugus Fungsional Dekomposisi bahan organik menghasilkan asam-asam organik yang selanjutnya membentuk koloid organik dengan tapak muatan yang jauh lebih banyak dibandingkan koloid inorganik. Tapak-tapak reaktif ini terdiri dari gugusgugus fungsional dari senyawa organik (Anwar dan Sudadi, 2007). Menurut Tan 6 (1991) bahan organik mengandung sejumlah gugus fungsional seperti gugus karboksilat, gugus-gugus hidroksil fenolat dan alkoholik, gugus asam amino, amida, keton, dan aldehida. Gugus fungsional yang mempunyai peranan dalam jerapan air adalah gugus karboksil. Menurut Hart (2003) gugus fungsional utama dapat digolongkan dalam beberapa kelompok, seperti gugus fungsional yang merupakan bagian dari kerangka molekul (alkana, alkuna, dan alkena), gugus yang mengandung oksigen (alkohol, eter, aldehida, keton, asam karboksilat, ester), gugus yang mengandung nitrogen (amina dan amida), dan gugus yang mengandung belerang (tiol, tioter, asam sulfonat), serta gugus yang mengandung halogen (alkil dan halide asam). Alkohol dan fenol digolongkan dalam gugus hidroksil (-OH). Fenol mempunyai gugus yang sama dengan alkohol, tetapi gugus fungsinya melekat langsung pada cicin aromatik. Gugus hidroksil bersifat polar sebagai akibat atom oksigen elektronegatif yang menarik elektron ke arah dirinya sendiri. Akibatnya, molekul air tertarik ke gugus fungsional. Hal ini akan membantu melarutkan senyawa organik yang mengandung gugus hidroksil. Sedangkan, asam karboksilat digolongkan sebagai gugus karboksil (COOH). Alkohol, fenol dan asam karboksilat dapat mengion dan melepaskan H+ dari ion hidroksilnya. Aldehida dan keton digolongkan dalam gugus fungsional karbonil (C=O) (Hart, 2003). Alkana tidak larut dalam air. Hal ini disebabkan karena molekul air bersifat polar, sedangkan alkana bersifat nonpolar. Ketidaklarutan alkana dan air sangat menguntungkan bagi tumbuhan (Hart, 2003). 7 2.3 Senyawa Organik Larut Air Senyawa organik larut air (SOLA) merupakan fraksi dari bahan organik yang terlarut atau dissolved organic matter (DOM) yang diekstrak dengan air secara perlahan-lahan, dan secara konseptual merupakan bagian dari DOM total yang mobile dan yang tersedia (Zsolnay, 1996 dalam Corvasce et al., 2006). DOM menggambarkan bagian bahan organik yang paling aktif dan mobile (Corvasce et al., 2006). SOLA diperoleh dengan melakukan penyaringan ekstrak bahan organik menggunakan saringan 0,45 µm yang sebelumnya dikocok dan disentrifuse (Zsolnay, 2003). Karbon organik terlarut (dissolved organic carbon/DOC) merupakan bagian dari SOLA dan salah satu cadangan karbon yang paling aktif dalam siklus karbon organik dan berperan penting pada transportasi nutrisi seperti N, P dan S, serta logam berat (Jimenez dan Lal, 2006 dalam Undurraga et al., 2009). Siklus DOC dalam tanah dipengaruhi oleh kombinasi proses kimia, fisika dan biologi. Proses pengendalian siklus DOC dalam horizon tanah yang utama adalah mikroba dan pengaturan retensi DOC dalam horizon mineral melalui adsorpsi pada permukaan tanah (Kalbitz et al., 2000 dalam Kothawala et al., 2008) Ketersediaan DOC dalam tanah dipengaruhi oleh tingkat pemupukan dan kedalaman dari sampel tanah (Undurraga et al., 2009). Menurut Zsolnay (1996 dalam Chantigny, 2003) konsentrasi SOLA cenderung lebih besar di hutan daripada di tanah pertanian, yaitu konsentrasi DOC di lantai hutan berkisar 5 sampai 440 mg/L, sedangkan DOC di tanah pertanian nilainya bervariasi dari 0 sampai 70 mg/L. Senyawa organik larut air dari kompos memiliki peran utama dalam banyak proses kimia dan biologi selama proses terjadinya kompos. Aktifitas biologi SOLA yang berasal dari kompos sebagian besar bergantung pada jenis substrat aktif yang digunakan untuk proses pengomposan dan lamanya proses tersebut. Selama terjadinya proses pengomposan yang terdiri atas penghancuran bahan asal dari bahan organik berukuran besar yang didegradasi oleh mikroorganisme dan sintesis biokimia dari bahan molekul berbobot rendah, sebagian besar berpengaruh terhadap perubahan konsentrasi dan komposisi kimia dari SOLA (Said-Pullicino et al., 2007 dalam Traversa et al., 2010). 8 2.4. Spektrofotometer Infra Merah Serapan inframerah berkaitan dengan getaran molekul atau atom. Atom dan molekul dalam suatu senyawa bergetar pada frekuensi sekitar 103-1014 hitungan per detik. Frekuensi ini sesuai dengan frekuensi radiasi inframerah, oleh karena itu radiasi inframerah dapat diserap oleh getaran molekul. Getaran molekul atau atom menyebabkan perubahan jarak antar atom karena pergerakan atom. Hal ini disebut osilasi. Ada dua jenis getaran yaitu getaran regang/uluran dan getaran lengkung/tekukan. Getaran regang/uluran yaitu atom berosilasi pada arah sumbu ikatan tanpa mengubah sudut ikatan. Geteran lengkung/tekukan yaitu gerakan atom-atom menghasilkan perubahan dalam sudut ikatan. Posisi pita dalam analisis inframerah dinyatakan dalam satuan frekuensi yaitu cm- (Tan, 1991). Frekuensi uluran dari suatu ikatan kimia tergantung pada beberapa faktor, antara lain masa atom, energi ikatan, dan ikatan ganda. Ikatan yang terbentuk dari atom yang berat dan atom yang ringan selalu bergetar pada frekuensi yang lebih tinggi dibadingkan ikatan yang terbentuk dari dua atom yang berat. Ikatan ganda dua bergetar pada frekuensi yang lebih tinggi dibandingkan dengan ikatan tunggal yang terbentuk diantara atom-atom yang sama (Hart, 2003).