BAB III PERANCANGAN SISTEM Dalam bab ini penulis akan menjelaskan mengenai perancangan sistem pemanasan air menggunakan SCADA software dengan Wonderware InTouch yang terdiri dari perangkat keras (hardware) dan perangkat lunak (software). Perancangan perangkat keras terdiri dari perangkat mekanik dan perangkat elektronik, sedangkan perancangan perangkat lunak berupa program untuk mengendalikan perangkat elektronik. Dua bagian perancangan ini memiliki kerja yang berbeda – beda, tetapi harus dijalankan bersama sehingga membentuk suatu sistem yang baik. 3.1 Perangkat Keras Pada bagian ini akan dijelaskan mengenai perancangan perangkat keras sistem yang terdiri dari perancangan mekanik dengan merancang tangki air dan perancangan perangkat elektronik dengan menggunakan komponen – komponen yang digunakan. 3.1.1 Perangkat Mekanik Mekanik yang digunakan dalam skripsi ini adalah sebuah tangki berbentuk silinder yang terbuat dari alumunium. Tangki yang dirancang pada skripsi ini mempunyai dimensi dengan tinggi 50 cm dan diameter 40 cm. Pada tangki terpasang beberapa komponen, yaitu solenoid valve electric, saklar transistor, elemen pemanas dan termokopel. Tata letak komponen pada tangki dapat dilihat pada Gambar 3.1. Ada 3 buah pin yang digunakan sebagai saklar transistor pada tangki, 2 buah pin digunakan sebagai saklar transistor untuk batas atas dan batas bawah air, yang 1 buah lagi digunakan sebagai ground saklar transistor. Letak saklar transistor di bagian bawah berjarak 15 cm dari tepi bagian bawah sedangkan pada bagian atas berjarak 9 cm dari tepi bagian atas tangki, untuk ground saklar berjarak 5 cm dari tepi bagian bawah tangki. Terdapat 2 buah 13 solenoid valve electric pada tangki bagian atas dan tangki bagian bawah. Pada tangki bagian atas, solenoid valve electric berjarak 5 cm dari tepi bagian atas tangki dan berfungsi sebagai keran otomatis untuk masuknya air ke dalam tangki, sedangkan pada solenoid valve electric di tangki bagian bawah berjarak 5 cm dari tepi bagian bawah dan berfungsi sebagai keran otomatis untuk keluarnya air dari tangki. Dua buah elemen pemanas dan sebuah termokopel terdapat di bagian bawah tangki dan masing – masing terletak 10 cm dari tepi bagian bawah tangki. Berikut merupakan gambar perancangan tangki pemanas air dan realisasi tangki tampak depan dan tampak samping. Gambar 3.1. Perancangan Tangki Pemanas Air 14 Diameter 40 cm Jari-Jari 20 cm Gambar 3.2. Tangki Tampak Atas Tinggi 50 cm Gambar 3.3. Tangki Tampak Samping 15 Tangki ini mempunyai volume air secara penuh sebesar 62,8 liter, volume air yang akan dipanaskan sebesar 51,5 liter dan volume air yang akan dikeluarkan sebesar 32,6 liter. Dengan spesifikasi dan perhitungan volume air sebagai berikut : Diameter (d) = 40 cm → Jari-Jari (r) = 20 cm Tinggi (t1 ) = 50 cm Batas air pada saklar atas = 9 cm Batas air pada saklar bawah = 15 cm Tinggi air (tair_panas ) = 50 cm - 9 cm = 41 cm Tinggi air (tair_keluar ) = 50 cm - 9 cm - 15 cm = 26 cm Volume tangki (secara penuh) : 𝑉 = πr 2 t1 𝑉 = 3,14 × (20)2 cm × 50 cm 𝑉 = 3,14 × 400 cm × 50 cm 𝑉 = 62800 𝑐𝑚 𝑉 = 62,8 cm3 → 𝑉 = 62,8 liter Volume air yang dipanaskan : 𝑉 = πr 2 t air_panas 𝑉 = 3.14 × (20)2 cm × 41 cm 𝑉 = 3,14 × 400 cm × 41 cm 𝑉 = 51496 cm 𝑉 = 51,5 cm3 → 𝑉 = 51,5 liter Volume air yang dikeluarkan : 𝑉 = πr 2 t air_keluar 𝑉 = 3,14 × (20)2 cm × 26 cm 𝑉 = 3,14 × 400 cm × 26 cm 𝑉 = 32656 cm 𝑉 = 32,6 cm3 → 𝑉 = 32,6 liter 16 3.1.2 Perangkat Elektronik Perangkat elektronik yang diwujudkan pada sistem dalam skripsi ini yaitu PLC OMRON CPM2A-40CDR-A, PLC Analog OMRON C200H-MAD01, saklar transistor, kontaktor, relay, solenoid valve electric, elemen pemanas, termokopel, modul penguat termokopel, dan catu daya. Berikut adalah skematik bagian elektrik serta penjelasan masing – masing bagiannya. 3.1.2.1 PLC OMRON CPM2A-40CDR-A Sistem pemanas air ini menggunakan PLC OMRON CPM2A-40CDR-A. Dengan 40 I/O yang terdiri dari 24 input dan 16 output. Fungsi utama PLC ini adalah sebagai pengendali utama sistem. Gambar 3.4. PLC OMRON CPM2A-40CDR-A 17 Gambar 3.5. Bagian PLC OMRON CPM2A-40CDR-A Sumber tegangan dari PLC OMRON CPM2A-40CDR-A sebesar 24 VDC digunakan sebagai catu daya untuk rangkaian input pada sistem. Pengkabelan (wiring) pada PLC untuk perangkat keras sebagai input dan output dapat di lihat pada gambar 3.6. Fungsi – fungsi yang dijalankan oleh PLC OMRON CPM2A40CDR yaitu: 1. Untuk menjalankan keseluruhan kerja sistem. 2. Untuk menghidupkan dan mematikan solenoid valve electric. 3. Untuk menerima keluaran saklar transistor sebagai input. 4. Untuk membaca keluaran PLC analog OMRON C200H-MAD01 dari termokopel. 5. Untuk menghidupkan dan mematikan elemen pemanas. 6. Untuk menghubungkan sistem dengan HMI Wonderware InTouch. 7. Untuk menerima data masukan dari tombol push button. 8. Untuk memberikan proteksi pada kerja sistem. 18 19 Gambar 3.6. Diagram Wiring Sistem Pengontrolan Tangki Pemanas Air Pada PLC OMRON CPM2A-40CDR-A Tabel 3.1. Daftar Penggunaan Pin Pada PLC OMRON CPM2A-40CDR-A PIN KETERANGAN PIN 00.00 SAKLAR TRANSISTOR ATAS SAKLAR TRANSISTOR BAWAH PUSH BUTTON FILL_ON PIN 00.01 PIN 00.02 PIN 00.03 PIN 00.04 PIN 00.05 PIN 00.06 PIN 00.07 PIN 00.08 PIN 00.10 PIN 10.00 PIN 10.01 PIN 10.02 PUSH BUTTON 70oC PUSH BUTTON 65oC PUSH BUTTON 60oC PUSH BUTTON 55oC PUSH BUTTON EMPTY_ON PUSH BUTTON EMPTY_OFF PUSH BUTTON EMERGENCY (STOP) SOLENOID VALVE ELECTRIC ATAS SOLENOID VALVE ELECTRIC BAWAH ELEMEN PEMANAS 3.1.2.2 PLC Analog OMRON C200H-MAD01 PLC Analog OMRON C200H-MAD01 merupakan unit komponen expansion I/O dari PLC OMRON CPM2A-40CDR-A. Dengan 3 I/O yang terdiri dari 2 input dan 1 output. PLC analog mempunyai input dan output berupa nilai tegangan dan arus, rentang nilai tegangan dan arus pada input dan output PLC analog adalah 0 – 10 VDC atau 1 – 5 VDC dan 4 – 20 mA [5]. Fungsi utama PLC analog ini pada sistem adalah untuk membaca suatu nilai tegangan keluaran yang dihasilkan sistem dan akan masuk ke PLC utama (CPU Unit) supaya data dapat di program untuk kerja sistem. PLC Analog di sini akan membaca nilai tegangan keluaran dari termokopel dan akan di program menjadi suatu nilai berupa bit yang akan dikonversikan dan digunakan sebagai indikator nilai suhu. Termokopel akan masuk ke modul penguat termokopel, lalu keluaran penguat termokopel akan masuk ke pin V IN pada PLC analog, di mana keluaran penguat termokopel berupa nilai tegangan sehingga akan masuk ke pin input PLC analog yang berupa nilai tegangan juga. 20 Gambar 3.7. PLC Analog OMRON C200H-MAD01 3.1.2.3 Kontaktor Magnet (Magnetic Contactor) Kontaktor berfungsi sebagai pengaman PLC dari elemen pemanas, karena merupakan pemutus dan penghubung tegangan PLC ke elemen pemanas. Kontaktor pada pin A2 akan mendapatkan output dari relay yang terhubung oleh PLC dan kontaktor pada pin 2T1 dan 4T2 akan terhubung ke elemen pemanas. Kontaktor yang digunakan mempunyai kemampuan daya 5,5 KWatt, kemampuan menghantarkan arus sebesar 40 A dan kemampuan tegangan dari kumparan magnet 200 – 220 VAC. Sumber tegangan yang dibutuhkan untuk mengaktifkan kontaktor sebesar 220 VAC. 21 Gambar 3.8. Kontaktor Magnet (Magnetic Contactor) 3.1.2.4 Relay Relay merupakan saklar yang berfungsi sebagai pemutus dan penghubung tegangan. Kondisi relay akan NO (Normally Open) apabila koil pada relay dalam keadaan tidak terhubung arus listrik, sehingga kontak yang ada pada relay dalam kondisi terbuka atau tidak terhubung dan kondisi relay akan NC (Normally Close) apabila koil pada relay dalam keadaan terhubung arus listrik, sehingga kontak yang ada pada relay dalam kondisi tertutup atau terhubung [6]. Relay yang digunakan yaitu relay 24 VDC, yang mempunyai kemampuan kerja pada tegangan 28 VDC dan 240 VAC, serta mampu menghantarkan arus sebesar 5 A, sehingga relay dapat bekerja dan mengaktifkan komponen pada tegangan DC maupun AC. Pada sistem pemanas air ini, relay digunakan sebagai saklar yang dapat mengaktifkan input dan output pada PLC. Komponen yang diaktifkan oleh relay yaitu : 1. Input PLC pada pin 00.00 dan 00.01 dari saklar transistor atas dan saklar transistor bawah yang mendapat tegangan 24 VDC (gambar 3.15. dan 3.16.). 22 2. Solenoid valve electric sebagai output dari PLC dengan pin 10.00 dan 10.01 yang menggunakan tegangan kerja 220 VAC (gambar 3.10. dan 3.11.). 3. Kontaktor sebagai output dari PLC dengan pin 10.02 yang akan mengaktifkan elemen pemanas, dengan menggunakan tegangan kerja 220 VAC (gambar 3.12.). Gambar 3.9. Relay Omron 24 VDC Gambar 3.10. Relay Pada Solenoid Valve Electric Atas 23 Gambar 3.11. Relay Pada Solenoid Valve Electric Bawah Gambar 3.12. Relay Pada Kontaktor dan Elemen Pemanas 3.1.2.5 Solenoid Valve Electric Jenis valve yang digunakan pada sistem adalah Solenoid Valve Electric dengan ukuran pipa keluaran 1/2 inch. Sumber tegangan yang dibutuhkan untuk mengaktifkan solenoid valve electric ini sebesar 220 VAC. Katup pada solenoid valve electric akan terbuka jika diberikan tegangan 220 VAC dan katup akan menutup jika tidak ada tegangan masukan [7]. Solenoid valve electric ini berfungsi untuk membuka dan menutup aliran air yang akan masuk ke dalam tangki untuk bagian atas dan aliran air yang akan keluar dari tangki untuk bagian bawah. 24 Pada bagian atas tangki, solenoid valve electric pada terminal masukan (Inlet Port) terpasang selang yang terhubung pada keran air PDAM, sedangkan pada bagian terminal keluaran (Outlet Port) terhubung pada badan tangki untuk dapat mengalirkan dan mengisi air ke dalam tangki. Pada bagian bawah tangki, solenoid valve electric pada terminal masukan (Inlet Port) terhubung pada badan tangki, sedangkan bagian terminal keluaran (Outlet Port) untuk dapat mengalirkan dan mengeluarkan air dari dalam tangki. Gambar 3.13. Solenoid Valve Electric Gambar 3.14. Struktur Bagian Dalam Solenoid Valve Electric 25 Pada perancangan sistem, salah satu kabel pada solenoid valve electric terhubung dengan relay pada kaki no. 9 dan kaki no. 5 pada relay terhubung dengan catu daya 220 VAC. Sedangkan satu kabel lainnya pada solenoid valve electric langsung terhubung pada ground. Relay solenoid valve electric tersebut terhubung pada pin 10.00 untuk solenoid valve electric atas dan pin 10.01 untuk solenoid valve electric bawah sebagai keluaran dari PLC. 3.1.2.6 Modul Saklar Transistor Saklar ini menggunakan transistor PNP TIP32C yang memerlukan tegangan sebesar 24 VDC. Saklar ini berfungsi untuk menentukan batas level air bagian atas dan bawah pada tangki. Saklar transistor ini digunakan untuk mendeteksi ada atau tidaknya air pada tangki. Skematik saklar transistor dapat dilihat pada gambar 3.15. untuk saklar transistor bagian atas dan gambar 3.16. untuk saklar transistor bagian bawah. Pada tangki air, jarak antara saklar transistor bagian atas dan bagian bawah sebesar 26 cm. Saklar transistor bagian atas akan bekerja secara NC ketika mendeteksi adanya air dan bekerja secara NO jika tidak ada air, sebaliknya untuk saklar transistor bagian bawah akan bekerja secara NO ketika mendeteksi adanya air dan bekerja secara NC jika tidak ada air. Karena transistor yang digunakan adalah PNP, maka pada kaki emitor transistor mendapat masukan tegangan 24 VDC, sedangkan kaki kolektor terhubung dengan relay pada kaki no. 14. Untuk memicu transistor tersebut pada kaki basis terhubung dengan pin saklar yang ada pada badan tangki. Apabila pin saklar terendam air maka saklar akan bernilai 1 dan selanjutnya memicu transistor dengan memberikan tegangan sebesar 24 VDC pada kaki relay [8]. 26 V4 24V +V Q2 PNP RLY2 24VSPDT PLC R2 1k W1 W2 Gambar 3.15. Rangkaian Saklar Transistor Bagian Atas V1 24V +V V2 24V +V RLY1 24VSPDT Q1 PNP PLC R1 1k W3 W4 Gambar 3.16. Rangkaian Saklar Transistor Bagian Bawah Nilai 𝑅1 = 1k di dapat dari : 𝑅1 = 𝑅1 = VB − VBE IB max 24 V − 0,7 V 1A 𝑅1 = 23,3 Ω ⟶ Jadi nilai 𝑅1 maksimal = 23,3 Ω 27 Transistor sebagai saklar di sini memanfaatkan mode saturasi dan cut off untuk menyambung dan memutuskan tegangan. Transistor akan saturasi pada saat VBE ≥ 0,7 V di mana nilai VCE = 0,2 V sedangkan transistor akan cut off pada saat VBE ≤ 0,7 V dan IC = 0 A. 3.1.2.7 Elemen Pemanas Air (Water Heater Element) Elemen pemanas merupakan suatu komponen yang dapat mengubah energi listrik menjadi energi panas. Elemen pemanas berfungsi untuk memanaskan air. Elemen pemanas yang digunakan pada sistem ini ada 2 buah dan masing – masing mempunyai daya 1000 Watt dan tegangan masukan 240 VAC, sehingga dapat di hitung berapa lama waktu yang diperlukan untuk memanaskan 51 liter air yang ada di dalam tangki. Daya elemen pemanas (𝑃) = 2000 Watt Volume air (𝑉 ) = 51 liter Massa jenis air = 1000 kg/𝑚3 Massa air = ρ × V = 1000 kg/𝑚3 × (51 × 10−3 𝑚3 ) = 51 kg Kalor jenis air = 4200 Joule/kg℃ Suhu awal (T1 ) = 0℃ Suhu akhir (T2 ) = 70℃ ∆T = T2 -T1 = 70℃ Waktu yang diperlukan untuk memanaskan 51 liter air : Q = mc∆T Q = 51 kg × (4200 Joule/kg℃) × (70℃) Q = 14994000 Joule Q=P×t Q P 14994000 Joule t= 2000 Watt t= t = 7497 s 28 7497 s = 124,95 menit 60 124,95 menit t= = 2 jam 8 menit 60 t= Jadi waktu yang diperlukan untuk memanaskan air dalam tangki sebanyak 51 liter dengan menggunakan elemen pemanas yang mempunyai daya 2000 Watt adalah 2 jam 8 menit [10] [11] [12]. Total daya pemanas : Hambatan dalam pemanas : 𝑅1 = 56 Ω 𝑅2 = 58 Ω Di pasang pararel = 56 × 58 = 28,49 Ω 56 + 58 V2 P= R (220 V)2 P= 28,49 Ω P = 1698,84 Watt Jadi total daya yang diperlukan pemanas untuk memanaskan air dalam tangki adalah 1698,84 Watt. Gambar 3.17. Elemen Pemanas Air (Water Heater Element) 29 3.1.2.8 Termokopel (Thermocouple) Termokopel yang digunakan adalah termokopel tipe K. Termokopel tipe K dapat membaca suhu dari -200 – 1250oC dan mempunyai sensitivitas 40,44 µV/oC, tetapi batas suhu yang akan di baca pada sistem ini adalah dari 40 – 70oC [9] [13]. Nilai tegangan yang dihasilkan termokopel terlalu kecil, sehingga membutuhkan modul penguat termokopel agar nilai tegangan yang dihasilkan dapat terbaca oleh voltmeter dan PLC analog. Gambar 3.18. Termokopel Tipe K 3.1.2.9 Modul Penguat Termokopel (Thermocouple Amplifier) Rangkaian penguat termokopel tipe K menggunakan IC AD595A yang mempunyai tegangan masukan +5 V sampai ± 15 V dan ralat suhu ± 3oC di atas suhu 25oC. Penguat termokopel ini menggunakan Single Supply, yaitu dapat membaca suhu dari 0 – 300oC tergantung pada tegangan catu daya yang diberikan, 0 – 300oC jika mendapat catu daya +5 V dan -200 – 1250oC jika mendapat catu daya ±15 V [13]. Penguat termokopel pada sistem mendapatkan catu daya sebesar 5 VDC, sehingga dapat membaca suhu dari 0 – 300oC. 30 Rumus konversi dari termokopel untuk keluaran AD595A : 𝑂𝑢𝑡𝑝𝑢𝑡 AD595A = (Termokopel Type K Voltage + 11 μV) × 247,3 Untuk suhu 60oC : 𝑂𝑢𝑡𝑝𝑢𝑡 AD595A = (2,436 mV + 11 × 10−3 mV) × 247,3 𝑂𝑢𝑡𝑝𝑢𝑡 AD595A = 605,14 mV Hasil yang di dapat sama dengan yang ada di datasheet untuk IC AD595A. Gambar 3.19. Rangkaian Dalam IC AD595A Gambar 3.20. Rangkaian Modul Penguat Termokopel dan Saklar Transistor 31 3.1.2.10 Panel Box Panel box adalah modul antarmuka sistem yang berisi komponen – komponen listrik di mana operator dapat mengendalikan sistem atau mengontrol sistem, panel box juga dapat berfungsi sebagai pengaman dan kerapihan suatu instalasi listrik. Pada bagian antar muka panel box ini terdapat (dapat di lihat pada gambar 3.21.): 1 buah tombol start untuk pengisian air, yaitu tombol Fill_ON untuk mengalirkan air masuk ke tangki. 2 buah tombol untuk pengosongan air, yaitu tombol Empty_ON untuk mengeluarkan air dari tangki dan tombol Empty_OFF untuk memberhentikan air keluar dari tangki. 4 buah tombol pilihan untuk menentukan suhu yang diinginkan, yaitu tombol 70°C, 65°C, 60°C, dan 55°C. 1 buah tombol untuk keadaan darurat atau untuk menghentikan proses jalannya sistem, yaitu tombol Emergency (STOP). Pada bagian dalam panel box terdapat, 1 buah PLC OMRON CPM2A- 40CDR-A, 1 buah PLC Analog OMRON C200H-MAD01, 5 buah relay 24 VDC, 1 buah kontaktor, rangkaian saklar transistor PNP TIP32C dan modul penguat termokopel IC AD595A, dan komponen listrik lainnya (dapat di lihat pada gambar 3.22.) 3.1.2.11 Catu Daya Catu daya berfungsi untuk memberikan tegangan dan arus pada perangkat yang terdapat pada sistem pemanasan air. Sistem ini menggunakan 3 buah catu daya yaitu catu daya 220 VAC, 24 VDC dan 5 VDC. Catu daya 220 VAC berasal dari sumber tegangan PLN, dimana catu daya 220 VAC merupakan sumber tegangan utama pada PLC, solenoid valve electric, kontaktor dan elemen pemanas. Catu daya 24 VDC berasal dari keluaran tegangan pada PLC OMRON CPM2A-40CDR-A, catu daya 24 VDC merupakan 32 Gambar 3.21. Antar Muka Panel Box Push Button PLC Analog PLC OMRON Terminal Listrik Kontaktor Relay Gambar 3.22. Bagian Dalam Panel Box 33 Rangkaian Saklar Transistor & AD595A sumber tegangan pada relay dan saklar transistor. Sedangkan catu daya 5 VDC berasal dari power supply yang terpisah, catu daya 5 VDC merupakan sumber tegangan untuk modul penguat termokopel. 3.2. Perangkat Lunak Sistem menggunakan 2 macam perangkat lunak yang dapat mengawasi dan mengendalikan proses kerja sistem. Perangkat lunak yang digunakan adalah program CX-Programmer pada PLC dan program HMI InTouch pada WIT. Program PLC sebagai pengendali utama sistem, sedangkan program HMI merupakan user interface (UI) yang berfungsi sebagai sarana interaksi operator dengan sistem yang dirancang. Melalui bagian ini operator dapat mengawasi dan mengaktifkan peralatan elektronik yang terhubung dengan PLC. HMI secara keseluruhan terhubung dan dikendalikan oleh bagian pengendali utama yaitu PLC. Berikut ini akan dijelaskan mengenai diagram alir program yang mewakili proses kerja sistem pemanas air. 3.2.1 Program PLC Program PLC sebagai pengendali utama sistem pemanas air mempunyai 3 tahap kerja yaitu : 1. Bagian pengisian air 2. Bagian pemanasan air 3. Bagian pengosongan air Gambar 3.23. untuk diagram alir program pada bagian pengisian dan pemanasan air, gambar 3.24. untuk diagram alir program pada bagian pengosongan air. Berikut penjelasan mengenai masing – masing tahapan kerja beserta gambar diagram alir program. 34 Gambar 3.23. Diagram Alir Pengisian dan Pemanasan Air 35 Gambar 3.24. Diagram Alir Pengosongan Air 36 3.2.1.1 Bagian Pengisian Air Pada saat operator menekan tombol Fill_ON pada layar HMI atau pada panel, maka keluaran PLC pada pin 10.00 akan mengaktifkan relay di pin no. 5 dan 9 yang terhubung ke solenoid valve electric bagian atas, sehingga solenoid valve electric mendapat tegangan sebesar 220 VAC yang akan membuka katup dan mulai mengalirkan air dari sumber air (PDAM) untuk memenuhi tangki. Pada saat air mengalir ke dalam tangki, saklar transistor yang ada di bagian atas tangki akan mendeteksi apakah air sudah mencapai pin saklar pada batas atas air yang sudah ditentukan atau belum. Jika air sudah mencapai pin saklar transistor pada kaki basis maka saklar transistor di kaki kolektor akan mendapat tegangan sebesar 24 VDC yang akan mengaktifkan relay di pin no. 13 dan 14. Relay akan mengaktifkan PLC pada pin masukan 00.00 dan PLC akan memutuskan aliran arus listrik pada solenoid valve electric bagian atas sehingga katup akan tertutup dan berhenti mengalirkan air, tetapi jika kaki basis pada saklar transistor belum terdeteksi air maka solenoid valve electric bagian atas akan tetap ON dan terus mengalirkan air. 3.2.1.2 Bagian Pemanasan Air Apabila solenoid valve electric bagian atas sudah menutup dan air berhenti mengalir, maka keluaran PLC pada pin 10.02 akan mengaktifkan relay di kaki no. 5 dan 9 yang terhubung ke kontaktor pada pin A2. Kontaktor mendapat tegangan sebesar 220 VAC dan akan mengaktifkan elemen pemanas yang terhubung pada kontaktor di pin 2T dan 4T. Elemen pemanas yang ada di bagian bawah tangki akan mulai bekerja untuk memanaskan air yang ada di dalam tangki. Pada saat elemen pemanas aktif, termokopel akan mengukur suhu air di dalam tangki, keluaran dari termokopel berupa nilai tegangan yang akan masuk ke PLC analog dan di ubah menjadi nilai suhu. Termokopel akan membaca suhu sesuai dengan batas suhu yang sudah ditentukan oleh operator melalui tombol suhu. Tombol suhu yang ada di sistem ini untuk suhu 70°C, 65°C, 60°C, dan 55°C, jika sebelumnya operator tidak menekan tombol untuk menentukan suhu, maka sistem akan otomatis membuat termokopel membaca suhu maksimum 70°C. Jika suhu 37 belum mencapai batas suhu yang sudah ditentukan, maka elemen pemanas akan tetap ON untuk memanaskan air, tetapi jika suhu sudah mencapai batas suhu, maka PLC akan memutuskan aliran arus yang mengalir ke elemen pemanas. Apabila termokopel membaca suhu air pada tangki mengalami penurunan suhu maksimum 40°C, maka PLC akan mengaktifkan elemen pemanas dan memanaskan kembali air di dalam tangki agar sesuai dengan target suhu yang sudah ditentukan. 3.2.1.3 Bagian Pengosongan Air Pada saat operator menekan tombol Empty_ON pada layar HMI atau pada panel, maka keluaran PLC pada pin 10.01 akan mengaktifkan relay di pin no. 5 dan 9 yang terhubung ke solenoid valve electric bagian bawah, sehingga solenoid valve electric mendapat tegangan sebesar 220 VAC yang akan membuka katup dan mulai mengalirkan air panas dari tangki. Pada saat air mengalir keluar dari tangki, saklar transistor yang ada di bagian bawah tangki akan mendeteksi apakah air sudah mencapai pin saklar pada batas bawah air yang sudah ditentukan atau belum. Jika air sudah mencapai pin saklar transistor pada kaki basis maka saklar transistor di kaki kolektor akan mendapat tegangan sebesar 24 VDC yang akan mengaktifkan relay di pin no. 13 dan 14. Relay akan mengaktifkan PLC pada pin masukan 00.01 dan PLC akan memutuskan aliran arus listrik pada solenoid valve electric bagian bawah sehingga katup akan tertutup dan berhenti mengalirkan air, dan otomatis akan mengaktifkan solenoid valve electric bagian atas dan mulai mengisi air ke dalam tangki, tetapi jika kaki basis pada saklar transistor belum terdeteksi air maka solenoid valve electric bagian bawah akan tetap ON dan terus mengalirkan air. Apabila pada saat air mengalir keluar dan belum mencapai batas bawah air, operator menekan tombol Empty_OFF pada layar HMI atau pada panel, maka PLC akan langsung memutuskan aliran arus listrik pada solenoid valve electric bagian bawah sehingga katup akan tertutup dan berhenti mengalirkan air, apabila operator ingin kembali mengeluarkan air, maka operator dapat menekan kembali tombol Empty_ON pada layar HMI atau pada panel. Jika tangki ingin di isi 38 kembali maka operator dapat menekan tombol Fill_ON pada layar HMI pengisian air atau pada panel. 3.2.2 Program WIT Program WIT merupakan HMI yang dapat memudahkan operator dalam mengoperasikan sistem secara keseluruhan. Pada Wonderware InTouch ada 3 tahapan utama yang akan digunakan dalam membuat HMI [3], yaitu: 1. InTouch Application Manager berfungsi untuk mengorganisasikan aplikasi yang akan dibuat. Dapat di lihat pada gambar 3.25. 2. InTouch Window Maker berfungsi untuk membuat tampilan layar pada HMI. Dapat di lihat pada gambar 3.26. 3. InTouch Window Viewer berfungsi untuk menampilkan layar grafik yang telah di buat pada InTouch. Dapat di lihat pada gambar 3.27. Gambar 3.25. Tampilan InTouch Application Manager 39 Gambar 3.26. Tampilan InTouch Window Maker Gambar 3.27. Tampilan InTouch Window Viewer 40 Pada sistem pemanas air ini tampilan HMI di buat menjadi 4 bagian yang terdiri dari : 1. Tampilan “Menu”, yaitu tampilan awal pada saat HMI di jalankan. Tampilan yang memungkinkan operator dapat memilih proses – proses yang ingin di tampilkan. Pada tampilan awal ini disediakan pilihan untuk melihat proses pengisian air, pengosongan air dan kondisi sistem saat beroperasi. Tampilan dapat di lihat pada gambar 3.28. 2. Tampilan “Status Water”, yaitu tampilan yang memungkinkan operator untuk dapat mengawasi proses kerja sistem. Operator dapat melihat kapasitas air dan suhu yang sedang di ukur. Tampilan dapat di lihat pada gambar 3.29. 3. Tampilan “Fill Water”, yaitu tampilan yang memungkinkan operator untuk dapat melakukan proses pengisian air dan pengaturan suhu. Tampilan dapat di lihat pada gambar 3.30. 4. Tampilan “Empty Water”, yaitu tampilan yang memungkinkan operator untuk dapat melakukan proses pengosongan air. Tampilan dapat di lihat pada gambar 3.31. Gambar 3.28. Tampilan “Menu” 41 Gambar 3.29. Tampilan “Status Water” Gambar 3.30. Tampilan “Fill Water” 42 Gambar 3.31. Tampilan “Empty Water” 43