analisa solusi persamaan beda linier skripsi varian luthfan program

advertisement
ADLN Perpustakaan Universitas Airlangga
ANALISA SOLUSI PERSAMAAN BEDA LINIER
SKRIPSI
VARIAN LUTHFAN
PROGRAM STUDI S-1 MATEMATIKA
DEPARTEMEN MATEMATIKA
FAKULTAS SAINS DAN TEKNOLOGI
UNIVERSITAS AIRLANGGA
2012
Skripsi
Analisa Solusi Persamaan Beda Linier
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
ANALISA SOLUSI PERSAMAAN BEDA LINIER
SKRIPSI
Sebagai Salah Satu Syarat Untuk Memperoleh
Gelar Sarjana Sains Bidang Matematika
Pada Fakultas Sains Dan Teknologi
Universitas Airlangga
Disetujui oleh
Pembimbing I
Pembimbing II
Dr. Moh. Imam Utoyo, M.Si.
NIP. 19640103 198810 1 001
Cicik Alfiniyah, S.Si., M.Si.
NIP. 19860412 200812 2 003
ii
Skripsi
Analisa Solusi Persamaan Beda Linier
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
LEMBAR PENGESAHAN NASKAH SKRIPSI
Judul
Penyusun
Nomor Induk
Tanggal Ujian
:
:
:
:
Analisa Solusi Persamaan Beda Linier
Varian Luthfan
080810567
22 September 2012
Disetujui oleh:
Pembimbing I,
Pembimbing II,
Dr. Moh. Imam Utoyo, M.Si.
NIP. 19640103 198810 1 001
Cicik Alfiniyah, S.Si., M.Si.
NIP. 19860412 200812 2 003
Mengetahui:
Ketua Program Studi S-1 Matematika
Departemen Matematika
Fakultas Sains dan Teknologi
Universitas Airlangga
Dr. Miswanto, M.Si.
NIP. 19680204 199303 1 002
iii
Skripsi
Analisa Solusi Persamaan Beda Linier
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
PEDOMAN PENGGUNAAN SKRIPSI
Skripsi ini tidak dipublikasikan, namun tersedia di perpustakaan dalam
lingkungan Universitas Airlangga, diperkenankan untuk dipakai sebagai referensi
kepustakaan, tetapi pengutipan harus seizin penyusun dan harus menyebutkan
sumbernya sesuai kebiasaan ilmiah. Dokumen skripsi ini merupakan milik
Universitas Airlangga.
iv
Skripsi
Analisa Solusi Persamaan Beda Linier
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
KATA PENGANTAR
Alhamdulillaahirabbil’aalamiin. Puji syukur penulis panjatkan kepada
Allah SWT yang telah mengaruniakan rahmat dan hidayah-Nya sehingga penulis
dapat menyelesaikan penulisan skripsi ini yang berjudul “Analisa Solusi
Persamaan Beda Linier”.
Materi di dalam skripsi ini bukanlah sesuatu yang baru, tetapi penulis hanya
mengkaji (bedah buku) tentang solusi persamaan beda linier pada buku Difference
Equations (Kelley dan Peterson, 2001), yang belum diperoleh mahasiswa S-1
Matematika. Penulis kemudian memaparkan kembali bukti dari teorema-teorema
yang dikaji secara lebih detail dengan bahasa sendiri dan melengkapinya dengan
contoh yang memenuhi agar lebih mudah dipahami oleh pembaca. Adanya contoh
kasus sistem penggajian pegawai adalah bukti penerapan persamaan beda linier
dalam kehidupan sehari-hari.
Penulis bukanlah orang yang cukup hebat sehingga dapat menyelesaikan
skripsi ini seorang diri. Penulis mendapatkan banyak bantuan dari berbagai pihak.
Oleh karena itu pada kesempatan ini, penulis ingin menyampaikan terima kasih
yang sebesar-besarnya kepada:
1. Allah SWT, Tuhan yang telah mengaruniakan ilmu yang bermanfaat dan
selalu membimbing penulis dalam setiap langkah penulis.
2. Almarhum ayah, Fatchoer Rozy, ibu tercinta, Setianing, dan adik-adikku
tersayang, Edwin dan Noval, yang telah memberikan kasih sayang,
semangat yang begitu besar, dukungan dan doa yang terus-menerus agar
penulis dapat menyelesaikan studi S-1 dengan baik.
3. Dr. Moh. Imam Utoyo, M.Si. selaku pembimbing I dan Cicik Alfiniyah,
S.Si., M.Si. selaku pembimbing II, yang telah memberikan pengetahuan,
bimbingan, dan perhatian dengan baik dan penuh kesabaran, serta senantiasa
memberikan nasehat dan arahan kepada penulis yang telah banyak
melakukan kesalahan dalam penulisan skripsi ini.
v
Skripsi
Analisa Solusi Persamaan Beda Linier
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
4. Dr. Eridani, M.Si. dan Nenik Estuningsih, M.Si. selaku dosen dan penguji
skripsi ini yang telah memberikan banyak koreksi penting dan masukan
yang sangat berarti.
5. Dr. Miswanto, M.Si. selaku Kepala Departemen Matematika yang telah
memberikan banyak masukan, pikiran, dan semangat.
6. Untuk Jatu Herlina yang telah setia menjadi seorang teman, sahabat,
pemberi motivasi serta semangat yang tak pernah henti. Terima kasih atas
segala do’a dan perhatiannya selama ini.
7. Teman-teman Matematika UNAIR angkatan 2008, Putu, Abi, Harun, Safik,
Rizal, Lefko, Zuda, Adis, Annas, Yani, Andri, Bambang, Athok, Kiky,
Hadi, dan teman-teman lain yang tidak dapat disebutkan satu persatu, terima
kasih atas setiap kritik, saran, masukan, dan motivasi yang kalian berikan
kepada penulis.
Semoga melalui tulisan ini, pembaca dapat memperoleh manfaat serta
perlindungan dari Allah SWT, Amiin Yaa Rabbal’aalamiin.
Surabaya, Juli 2012
Penulis
Varian Luthfan
vi
Skripsi
Analisa Solusi Persamaan Beda Linier
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
Varian Luthfan. 2012. Analisa Solusi Persamaan Beda Linier. Skripsi ini di
bawah bimbingan Dr. Moh. Imam Utoyo, M.Si dan Cicik Alfiniyah, S.Si., M.Si.
Departemen Matematika. Fakultas Sains dan Teknologi Universitas Airlangga.
ABSTRAK
Menyelesaikan sebuah persamaan beda linier berarti menemukan semua
fungsi yang jika disubstitusikan ke persamaan beda tersebut akan bernilai benar.
Fungsi tersebut disebut sebagai solusi dari persamaan beda. Namun, tidak semua
persamaan beda mempunyai solusi. Persamaan beda linier orde
mempunyai
solusi tunggal jika terdapat
nilai awal yang ditentukan. Pada skripsi ini
persamaan beda linier dibatasi hanya untuk persamaan beda linier dengan
koefisien konstan. Beberapa metode dapat digunakan untuk menentukan solusi
umum dari persamaan beda linier dengan koefisien konstan, diantaranya adalah
metode akar dari persamaan karakteristik untuk persamaan beda linier homogen,
metode annihilator untuk persamaan beda linier tak homogen, dan metode variasi
parameter untuk persamaan beda linier homogen dan tak homogen. Dalam
penerapan persamaan beda, tidak hanya solusi yang menjadi kebutuhan utama dari
persamaan beda, tetapi juga perilaku dari solusi tersebut di sekitar titik
kesetimbangan. Menentukan kestabilan solusi persamaan beda linier orde satu
diperoleh dengan mencari titik kesetimbangan dari persamaan beda linier orde
satu, kemudian menentukan solusinya dan limit dari solusi tersebut terhadap titik
kesetimbangannya. Untuk persamaan beda linier orde lebih dari satu, kestabilan
solusinya dilakukan dengan mencari nilai eigen, kemudian mencari jari-jari
spektral, dan jika jari-jari spektralnya kurang dari satu, maka solusi persamaan
beda linier orde lebih dari satu dikatakan stabil asimtotik. Adanya contoh kasus
sistem penggajian pegawai adalah bukti penerapan persamaan beda linier dalam
kehidupan sehari-hari.
Kata Kunci: Persamaan Beda Linier, Metode Akar Persamaan Karakteristik,
Metode Annihilator, Metode Variasi Parameter, Kestabilan Solusi.
vii
Skripsi
Analisa Solusi Persamaan Beda Linier
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
Varian Luthfan.
. Analisa Solusi Persamaan Beda Linier. This skripsi in
under the guidance by Dr. Moh. Imam Utoyo, M.Si. and Cicik Alfiniyah, S.Si.,
M.Si. Mathematics Department of Science and Technology Faculty. Airlangga
University.
ABSTRACT
Solving a linear difference equation means finding all the functions which,
if substituted into that difference equation has true value. The function is called a
solution of difference equation. But, not all difference equation has solution. The
-order linear difference equation has unique solution if there are
prescribed initial values. In this skripsi linear difference equation is limited for
linear difference equation with constant coefficients. Several methods can be used
to determine the general solution of linear difference equations with constant
coefficients, including the roots of the characteristic equation method for
homogeneous linear difference equations, annihilator method for
nonhomogeneous linear difference equations, and variation of parameters method
for homogeneous and nonhomogeneous linear difference equations. In application
of difference equation, not only the solution that becomes central parts of
difference equation, but also behavior of the solution around the equilibrium
point. Determine the stability of solutions of first-order linear difference equation
is obtained by finding the equilibrium point of first-order linear difference
equation, and then define the solution and the limit of such solutions to the
equilibrium point. For the higher-order linear difference equation, the stability of
the solutions is done by finding the eigenvalues, then find the spectral radius and
if the spectral radius less than one, then the solutions of higher-order linear
difference equation is said to be asymptotically stable. Existence of employee
payroll system is evidence of linear difference equations application in daily life.
Keywords: Linear Difference Equation, Roots of Characteristic Equation Method,
Annihilator Method, Variation of Parameters Method, Stability of
Solutions.
viii
Skripsi
Analisa Solusi Persamaan Beda Linier
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
DAFTAR ISI
Halaman
LEMBAR JUDUL ....................................................................................
i
LEMBAR PERNYATAAN ......................................................................
ii
LEMBAR PENGESAHAN ......................................................................
iii
LEMBAR PEDOMAN PENGGUNAAN SKRIPSI .................................
iv
KATA PENGANTAR ..............................................................................
v
ABSTRAK ................................................................................................
vii
ABSTRACT ..............................................................................................
viii
DAFTAR ISI .............................................................................................
ix
BAB I PENDAHULUAN .........................................................................
1
1.1. Latar Belakang Masalah ............................................................
1
1.2. Rumusan Masalah .....................................................................
3
1.3. Tujuan .......................................................................................
4
1.4. Manfaat .....................................................................................
4
1.5. Batasan Masalah ........................................................................
5
BAB II TINJAUAN PUSTAKA ...............................................................
6
2.1. Kalkulus Beda ...........................................................................
6
2.2. Persamaan Beda Linier .............................................................
12
2.3. Kestabilan Solusi .......................................................................
13
BAB III METODE PENULISAN .............................................................
17
BAB IV PEMBAHASAN .........................................................................
18
4.1. Penentuan Syarat Suatu Persamaan Beda Memiliki Solusi ......
18
4.2. Penentuan Solusi Persamaan Beda Linier .................................
24
4.2.1. Metode Akar Persamaan Karakteristik ...........................
31
4.2.2. Metode Annihilator .........................................................
35
4.2.3. Metode Variasi Parameter ...............................................
38
4.3. Kestabilan Solusi Persamaan Beda Linier ................................
42
4.3.1. Kestabilan Solusi Orde Satu ............................................
43
4.3.2. Kestabilan Solusi Orde Lebih Dari Satu .........................
44
ix
Skripsi
Analisa Solusi Persamaan Beda Linier
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
4.4. Contoh Kasus Persamaan Beda Linier ......................................
54
BAB V KESIMPULAN ............................................................................
58
5.1. Kesimpulan ...............................................................................
58
5.2. Saran ..........................................................................................
59
DAFTAR PUSTAKA ...............................................................................
60
x
Skripsi
Analisa Solusi Persamaan Beda Linier
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
BAB I
PENDAHULUAN
1.1
Latar Belakang Masalah
Persamaan beda muncul sebagai gambaran alami dari fenomena perubahan
yang teramati dengan variabel waktu diskrit. Penerapan teori persamaan beda
berkembang pesat dalam berbagai bidang, seperti analisis numerik, teori kontrol,
matematika hingga, dan ilmu komputer (Lakshmikantham dan Trigiante,
2002). Persamaan beda seringkali digunakan sebagai alternatif penyelesaian
persamaan diferensial, karena tidak semua persamaan diferensial dapat
diselesaikan secara analitik (Penna, 2005).
Secara umum, persamaan beda dengan orde
[
dengan
(
( ) dan
)
( ) dan
( )
( )
( )
( ) berturut-turut
( )
[
didefinisikan sebagai
( ) ( )]
(
didefinisikan
sebagai
)
( )
( )] , serta ( ) dan ( ) adalah fungsi
yang belum diketahui sedangkan adalah variabel bebasnya. Dalam kasus tertentu
seperti penerapannya pada bilangan Fibonacci dan masalah menara Hanoi, pada
skripsi ini, nilai interval beda
maka persamaan (
yang digunakan adalah
. Jika fungsi
) disebut persamaan beda linier. Jika fungsi
linier,
tak linier,
yang berarti dalam fungsi tersebut terdapat variabel yang berderajat lebih/kurang
dari satu,
maka persamaan (
) disebut
persamaan beda tak
linier
(Lakshmikantham dan Trigiante, 2002).
1
Skripsi
Analisa Solusi Persamaan Beda Linier
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
2
Konsep persamaan beda linier dinilai penting untuk sejumlah alasan.
Penerapan matematika dalam kehidupan seringkali menggunakan konsep
persamaan beda linier, seperti pada bilangan Fibonacci dan masalah menara Hanoi
(Kelley dan Peterson, 2001). Selain itu, linierisasi digunakan pada persamaan
beda tak linier untuk menganalisis kestabilan dari solusinya. Oleh karena itu,
persamaan beda linier merupakan salah satu bahasan yang penting.
Persamaan beda linear adalah persamaan beda yang memiliki bentuk
( )
( )
( )
dengan definisi awal bahwa
( )
( )
( ) ( )
(
)
( )
(
)
( ) , maka persamaan (
)
dapat dibentuk menjadi
( ) (
Persamaan (
( )
)
( ) (
)
( ) ( )
( )
(
)
) disebut juga persamaan beda linear tak homogen orde . Jika
, maka persamaan (
) adalah persamaan beda linier homogen orde
(Kelley dan Peterson, 2001). Selain homogen dan tak homogen, adanya solusi
persamaan beda menunjukkan persamaan tersebut adalah pernyataan yang benar.
Menyelesaikan persamaan beda berarti menemukan semua fungsi yang
apabila disubstitusikan ke persamaan beda akan bernilai benar. Fungsi tersebut
disebut sebagai solusi dari persamaan beda. Namun, tidak semua persamaan beda
mempunyai solusi, sebagai contoh, persamaan beda yang didefinisikan sebagai
[ (
)
( )]
[ ( )]
tidak punya solusi, sebab tidak ada fungsi bernilai real
yang memenuhi
persamaan tersebut. Oleh karena itu, perlu dilakukan pengkajian terhadap syarat
suatu persamaan beda mempunyai solusi.
Skripsi
Analisa Solusi Persamaan Beda Linier
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
3
Solusi persamaan beda dapat dicari dengan berbagai cara. Persamaan beda
dapat diselesaikan dengan proses yang sederhana, tetapi seringkali diperlukan
substitusi-substitusi tertentu pada persamaan tersebut sedemikian hingga
persamaan dapat berubah menjadi suatu bentuk yang lebih sederhana. Disamping
itu, dalam penerapan persamaan beda, tidak hanya solusi yang menjadi kebutuhan
utama dari persamaan beda, tetapi juga perilaku dari solusi tersebut di sekitar titik
kesetimbangan.
Berdasarkan uraian di atas dalam penulisan ini penulis tertarik untuk
membahas bagaimana syarat agar persamaan beda mempunyai solusi. Apabila
persamaan tersebut mempunyai solusi, bagaimana menentukan solusi dari
persamaan beda tersebut. Selain itu, penentuan perilaku dari solusi yang
dihasilkan dengan/tanpa mencari solusinya juga menjadi bagian penting dari
penulisan ini.
1.2
Rumusan Masalah
Berdasarkan
latar
belakang
di
atas
maka
penulis
merumuskan
permasalahan sebagai berikut:
1. Apakah syarat yang diperlukan agar suatu persamaan beda memiliki
solusi?
2. Bagaimana cara menyelesaikan persamaan beda pada kasus homogen dan
tak homogen?
3. Apakah syarat yang diperlukan untuk menentukan kestabilan solusi
persamaan beda?
Skripsi
Analisa Solusi Persamaan Beda Linier
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
4
4. Bagaimana cara menentukan kestabilan solusi persamaan beda tanpa
mencari solusinya terlebih dahulu?
5. Bagaimana mengkonstruksi dan menyelesaikan persamaan beda linier
dalam permasalahan sehari-hari?
1.3
Tujuan
Tujuan dari skripsi ini adalah:
1. Mengetahui syarat yang diperlukan agar suatu persamaan beda memiliki
solusi.
2. Mengetahui cara menyelesaikan persamaan beda pada kasus homogen dan
tak homogen.
3. Mengetahui syarat yang diperlukan untuk menentukan kestabilan solusi
persamaan beda.
4. Mengetahui cara menentukan kestabilan solusi persamaan beda tanpa
mencari solusinya terlebih dahulu.
5. Mengetahui cara mengkonstruksi dan menyelesaikan persamaan beda
linier dalam permasalahan sehari-hari.
1.4
Manfaat
Manfaat yang diharapkan dari penulisan ini adalah sebagai berikut:
1. Sebagai salah satu referensi yang terkait dengan solusi dari persamaan
beda linier.
2. Menerapkan dan mengembangkan konsep persamaan beda dalam
kehidupan sehari-hari.
Skripsi
Analisa Solusi Persamaan Beda Linier
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
1.5
5
Batasan Masalah
Mengacu pada rumusan masalah yang telah disebutkan, maka yang
dimaksud dengan persamaan beda dalam penulisan skripsi ini adalah persamaan
beda linier orde
Skripsi
dan mempunyai solusi tunggal.
Analisa Solusi Persamaan Beda Linier
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
BAB II
TINJAUAN PUSTAKA
Dalam bab ini, akan diberikan definisi maupun teorema yang akan
digunakan dalam pembahasan, diantaranya adalah kalkulus beda, yang berguna
untuk mempermudah dan mengkaji syarat-syarat yang diperlukan dalam
penyelesaian persamaan beda, dan persamaan beda linier, konsep yang
mendukung penulisan ini, serta kestabilan solusi, yang menjadi bagian penting
dalam penentuan kestabilan solusi.
2.1
Kalkulus Beda
Bagian dari kalkulus beda yang digunakan dalam penulisan ini antara lain
operator beda beserta sifat-sifatnya yang merupakan komponen dasar dari
perhitungan yang melibatkan beda hingga, operator geser yang merupakan bentuk
sederhana dari operator beda, jumlah tak tentu yang merupakan operator
kebalikan dari operator beda, serta fungsi faktorial yang merupakan konsep yang
mendukung dalam penyelesaian persamaan beda.
Definisi
(Operator Beda) Misalkan
sebuah fungsi dengan variabel
bilangan real atau bilangan kompleks. Sebuah operator beda
, didefinisikan
sebagai
Sebagian besar, domain dari
adalah himpunan bilangan bulat berurutan,
seperti bilangan asli
(Kelley dan Peterson, hal 13-14, 2001)
6
Skripsi
Analisa Solusi Persamaan Beda Linier
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
7
Operator beda orde kedua ditulis sebagai
[
]
[
]
[
]
[
]
Secara umum, operator beda orde ke- didefinisikan sebagai
∑
( )
Operator dasar yang sering digunakan bersama dengan operator beda
adalah operator geser.
Definisi
(Operator Geser) Diberikan sebuah fungsi
. Operator geser
didefinisikan sebagai
(Kelley dan Peterson, hal 14, 2001)
Dengan menerapkan operator geser dua kali akan didapatkan
[
]
[
Jika diartikan sebagai operator identitas, yaitu
]
maka
hal ini berarti bahwa
atau
Skripsi
Analisa Solusi Persamaan Beda Linier
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
Jika
sebarang bilangan asli
8
, maka operator geser memiliki bentuk
umum yang didefinisikan sebagai
[
]
∑( )
Pada operator beda berlaku sifat-sifat dasar operator beda. Teorema
berikut ini adalah sifat-sifat dasar dari operator beda.
Teorema
(Sifat Operator Beda) Misalkan
konstanta, sehingga
1.
2.
( )
3.
(
( )
4.
(
)
(
)
)
5.
6.
[
7.
[
8.
[
9.
[
10.
*
untuk semua bilangan bulat positif
]
.
]
, dengan
]
dan .
konstanta.
]
+
.
(Kelley dan Peterson, hal 15, 2001)
Skripsi
Analisa Solusi Persamaan Beda Linier
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
9
Bukti:
1.
2.
( )
(
)
3.
( )
(
)
4.
(
)
5.
6.
7.
[
]
[
[
]
[
[
8.
[
9.
[
]
]
]
]
[
]
[
]
]
,
.
10.
*
+
[
Skripsi
]
[
Analisa Solusi Persamaan Beda Linier
]
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
Definisi
Jumlah tak tentu (atau anti beda) dari
10
, dinotasikan ∑
,
adalah sebarang fungsi sedemikian hingga
*∑
+
untuk setiap dalam domain dari .
(Kelley dan Peterson, hal 20, 2001)
Pada jumlah tak tentu berlaku pula sifat-sifat dasar jumlah tak tentu.
Teorema berikut ini adalah sifat-sifat dasar dari jumlah tak tentu.
Teorema
Diberikan
1. Untuk
sebuah konstanta.
,
2. ∑
(
3. ∑
(
4. ∑
)
)
5. ∑
6. ∑[
]
7. ∑
∑
8. ∑[
9. ∑[
]
∑
∑
,
dengan
konstanta.
∑
]
∑
(Kelley dan Peterson, hal 22, 2001)
Bukti:
Skripsi
Analisa Solusi Persamaan Beda Linier
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
11
1.
2. ∑
∑*
+
3. ∑
∑[
4. ∑
∑[
5. ∑
(
∑[
]
7. ∑
∑
8. ∑[
]
9. ∑[
)
)
(
]
(
]
)
)
]
6. ∑[
Definisi
(
∑
∑
.
∑[
]
∑[
]
∑
]
∑
(Fungsi Faktorial) Fungsi faktorial adalah fungsi yang didefinisikan
sebagai
yang berisi
faktor.
(Spiegel, hal 5-6, 1971)
Nama faktorial muncul karena dalam sebuah kasus khusus saat
menyebabkan
, yaitu
faktorial. Jika
maka
Untuk bilangan bulat negatif, persamaan
Skripsi
Analisa Solusi Persamaan Beda Linier
menjadi
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
kemudian untuk selain bilangan bulat,
dengan
12
didefinisikan sebagai
. Selain itu, dengan menggunakan operator beda
∫
untuk semua bilangan bulat
, berlaku
[
]
sehingga dapat dituliskan sebagai
2.2
Persamaan Beda Linier
Persamaan beda linier terbentuk dari beberapa fungsi yang membentuk
sebuah persamaan linier yang memiliki bentuk khusus dan dapat memiliki
penyelesaian yang memenuhi persamaan tersebut.
Definisi
(Persamaan Beda Linier Orde Pertama) Diberikan
adalah fungsi dengan
dan
untuk setiap . Persamaan beda linier orde pertama
didefinisikan sebagai
(Kelley dan Peterson, hal 43, 2001)
Persamaan
bernilai saat
dan
dikatakan orde pertama karena terdapat
, seperti pada
operator beda orde pertama. Jika
dapat ditulis sebagai
Skripsi
yang hanya
yang merupakan
untuk setiap , maka persamaan
.
Analisa Solusi Persamaan Beda Linier
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
Definisi
13
(Persamaan Beda Linier) Persamaan beda linier orde
adalah
persamaan beda yang memiliki bentuk
dengan
, dan
fungsi dari
dan
untuk
setiap .
(Kelley dan Peterson, hal 50, 2001)
Persamaan
orde
. Jika
disebut juga persamaan beda linier tak homogen dengan
, maka persamaan
homogen. Dan jika
merupakan persamaan yang
konstanta, maka persamaan
dikatakan sebagai persamaan beda linier tak homogen berorde
dapat
dengan koefisien
konstanta. Persamaan ini dapat juga dituliskan sebagai
[
dengan
2.3
]
.
Kestabilan Solusi
Pengujian kestabilan solusi yang dihasilkan dari sebuah persamaan akan
menentukan perilaku dari sebuah solusi. Titik kesetimbangan, matriks sekawan
serta definisi nilai eigen menjadi bagian penting dalam penentuan kestabilan.
Definisi
(Titik Kesetimbangan) Diberikan persamaan beda orde satu
[
dengan
adalah fungsi dalam
]
. Sebuah titik
di dalam domain dari
dikatakan titik kesetimbangan dari persamaan
titik tetap dari , yaitu titik yang memenuhi [
jika titik tersebut adalah
]
.
(Elaydi, hal 9, 2005)
Skripsi
Analisa Solusi Persamaan Beda Linier
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
Sebagai contoh, diberikan persamaan beda
[
]
[
]
14
, dengan
Untuk mencari titik kesetimbangannya, dimisalkan
atau
. Sehingga dihasilkan titik kesetimbangan
.
Definisi
(Matriks Sekawan) Pandang persamaan
. Persamaan
tersebut akan dibentuk menjadi sebuah sistem persamaan orde satu. Misalkan
Dengan
[
], maka
Dalam notasi vektor, sistem ini dapat dituliskan sebagai
dengan
Skripsi
Analisa Solusi Persamaan Beda Linier
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
(
dengan
15
(
)
adalah matriks sekawan dari persamaan
)
.
(Kelley dan Peterson, hal 125-126, 2001)
Teorema
(Syarat Awal) Untuk setiap
, persamaan
dan setiap
mempunyai solusi tunggal
untuk
, sedemikian hingga
-vektor
yang didefinisikan
.
(Kelley dan Peterson, hal 126, 2001)
Bukti: Pandang persamaan
dari
Misalkan
, akan dilakukan iterasi
.
Secara induksi, dapat ditentukan bahwa
∏
dengan
∏
Dari persamaan
Skripsi
{
terbukti bahwa
.
Analisa Solusi Persamaan Beda Linier
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
Andaikan
bebas terhadap
konstanta) dan
. Solusi
yang memenuhi syarat awal
Definisi
(yaitu semua koefisien dari sistem adalah
dari
, adalah
mempunyai solusi tak trivial
dan
.
(Nilai Eigen dan Vektor Eigen) Misalkan
sekawan yang dibentuk dari koefisien
dari
16
adalah matriks
pada persamaan
untuk beberapa , maka
. Jika
dinamakan nilai eigen
dinamakan vektor eigen yang bersesuaian dengan . Nilai eigen dari
memenuhi persamaan karakteristik
dengan adalah matriks identitas
.
(Kelley dan Peterson, hal 127, 2001)
Definisi
(Spectrum) Spectrum dari
, dinotasikan
, adalah himpunan
nilai eigen dari .
(Kelley dan Peterson, hal 127, 2001)
Definisi
(Jari-jari Spektral) Jari-jari spektral dari
, yaitu
,
didefinisikan sebagai
| |
(Kelley dan Peterson, hal 127, 2001)
Skripsi
Analisa Solusi Persamaan Beda Linier
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
BAB III
METODE PENULISAN
Langkah-langkah yang digunakan dalam menyelesaikan permasalahan
dalam penulisan ini adalah:
1. Mengkaji dan menunjukkan syarat-syarat yang diperlukan agar persamaan
beda memiliki solusi beserta contoh.
2. Mendefinisikan persamaan beda linier dan merumuskan penyelesaian pada
kasus homogen dan tak homogen.
i.
Mendefinisikan konsep bebas linier dan matriks casorati.
ii. Mengkaji metode akar persamaan karakteristik beserta contoh.
iii. Mengkaji metode annihilator beserta contoh.
iv. Mengkaji metode variasi parameter beserta contoh.
3. Mengkaji dan menunjukkan syarat-syarat yang diperlukan untuk
menentukan kestabilan solusi persamaan beda orde satu beserta contoh.
4. Mengkaji kestabilan solusi dari persamaan beda tanpa mencari solusi dari
persamaan beda linier orde lebih dari satu beserta contoh.
5. Mengkaji contoh kasus persamaan beda linier.
17
Skripsi
Analisa Solusi Persamaan Beda Linier
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
BAB IV
PEMBAHASAN
Pada bab ini memuat pembahasan tentang analisa solusi persamaan beda
linier, yaitu bagaimana syarat agar persamaan beda memiliki solusi, bagaimana
menentukan solusinya, serta bagaimana menentukan kestabilan solusinya. Subbab
pertama membahas syarat yang diperlukan agar suatu persamaan beda memiliki
solusi. Kemudian subbab kedua membahas tentang penentuan solusi persamaan
beda linier. Pada subbab ketiga membahas tentang kestabilan solusi persamaan
beda.
4.1
Penentuan Syarat Suatu Persamaan Beda Memiliki Solusi
Berdasarkan bentuk solusi yang dihasilkan dari suatu persamaan beda,
solusi persamaan beda terdiri atas dua macam, yaitu solusi umum dan solusi
khusus. Solusi khusus adalah solusi yang diperoleh dengan mensubstitusikan nilai
awal yang telah ditentukan sebelumnya, sedangkan solusi umum adalah solusi
yang didalamnya terdapat sebarang konstanta, misalkan .
Pada skripsi ini, terlebih dahulu dibahas tentang syarat adanya solusi,
terutama solusi khusus. Tidak semua persamaan beda memiliki solusi umum
maupun khusus, sehingga pemeriksaan syarat perlu ditinjau sebelumnya untuk
mengetahui adanya solusi dari persamaan beda.
Menyelesaikan persamaan beda linier berarti menemukan semua fungsi
yang jika disubstitusikan ke persamaan beda tersebut akan bernilai benar. Fungsi
tersebut disebut sebagai solusi dari persamaan beda. Namun karena beberapa
18
Skripsi
Analisa Solusi Persamaan Beda Linier
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
19
persamaan beda mempunyai banyak solusi dan terkadang tidak mempunyai solusi,
sangat penting untuk mengetahui bahwa untuk persamaan beda linier, selalu dapat
ditemukan paling sedikit satu solusi dan dalam kondisi tertentu, hanya satu solusi.
Kondisi tertentu yang dimaksud adalah kondisi saat persamaan beda memiliki
nilai awal yang telah ditentukan sebelumnya (Goldberg, 1958).
Sebelum membuktikan teorema ketunggalan dan eksistensi solusi khusus
untuk persamaan beda linier dengan orde
, pertama akan dibahas untuk kasus
khusus orde dua. Persamaan beda linier orde dua mempunyai bentuk
( ) (
dengan
)
( ) (
( )
)
( ) ( )
( )
untuk setiap . Untuk
( )
(
)
, persamaan (
)
menjadi
( ) (
)
( ) (
)
( ) ( )
Dengan hanya mengetahui satu nilai dari (
( )
), atau ( ), tidak
), (
dapat digunakan untuk menemukan dua solusi lainnya. Namun jika diketahui dua
nilai berurutan dari tiga solusi di atas, misalkan ( ) dan (
). Sehingga
ditemukan nilai yang lainnya, yaitu (
( ) (
dan karena
)
( )
( ), sehingga diperoleh (
dan (
( ) (
)
, maka kedua ruas pada persamaan (
( )
), maka dapat
( ) ( )
(
) dapat dibagi oleh
) Selanjutnya digunakan pasangan (
) untuk menemukan (
). Dengan
)
)
, persamaan (
)
menjadi
(
) (
)
(
Skripsi
)
(
) (
)
Analisa Solusi Persamaan Beda Linier
(
) (
)
(
)
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
Seperti sebelumnya, dengan pembagian oleh
) yang tunggal. Dengan nilai (
(
) maka didapatkan (
(
) yang telah didapatkan sebelumnya, maka
) juga akan memuat (
orde dua (
20
) dan ( ). Sehingga solusi dari persamaan
) memuat dua nilai (
) dan ( ).
Setiap pasangan lain dari nilai-nilai ( ) yang berurutan penggunaannya
serupa dengan yang dijelaskan sebelumnya untuk menentukan sebuah solusi yang
tunggal. Sehingga, jika (
) dan (
) ditentukan, sebagai contoh, maka
dapat digunakan persamaan beda secara berturut-turut untuk mendapatkan
(
), (
(
),
), (
), dan
), (
( ) begitu juga dengan
),
.
Eksistensi dan ketunggalan solusi khusus orde ke
Teorema
diberikan dalam
berikut ini.
Teorema
Diberikan persamaan beda linier orde
( ) (
Jika
(
)
( ) (
( ) dan
( )
)
( ) ( )
( )
( )
dan
( )
)
, maka untuk
terdapat
+ dan sebarang bilangan
*
(
( ) merupakan fungsi yang terdefinisi untuk
dan untuk setiap ,
sebarang
sebagai berikut
hanya satu ( ) yang memenuhi persamaan (
) untuk
dan (
)
untuk
(Kelley dan Peterson, hal 50, 2001)
Bukti: Diketahui nilai awal
*
Skripsi
+. Diketahui pula
( ) (
( )
)
(
), dengan
( ) dan ( ) merupakan fungsi yang
Analisa Solusi Persamaan Beda Linier
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
terdefinisi untuk
21
dan untuk setiap ,
. Berdasarkan
( )
) diperoleh
persamaan (
(
( )
)
( )
( )
( )
ada dengan tunggal. Kemudian akan dibuktikan bahwa terdapat dengan tunggal
nilai ( ) untuk
dan
.
Pembuktian untuk
untuk setiap
dilakukan dengan induksi matematik, yaitu
, terdapat dengan tunggal (
). Untuk
, misalkan
, maka
(
( )
)
( )
( )
( )
Karena terdapat nilai awal
(
, dan
)
( )
,
) ada dengan tunggal.
maka (
Misalkan untuk
, nilai
dibuktikan bahwa untuk
) ada dengan tunggal. Akan
(
nilainya ada. Misalkan
,
maka
(
)
Karena terdapat nilai awal
maka (
( )
( )
( )
( )
(
, dan
)
,
) ada dengan tunggal.
Kemudian, untuk
, dengan
dengan
bilangan bulat non
negatif. Pembuktian dilakukan dengan menentukan nilai dari (
( ). Untuk
)
(
Skripsi
( )
)
) (
, maka
( )
( )
( )
( )
Analisa Solusi Persamaan Beda Linier
( )
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
Karena terdapat nilai awal
(
22
, dan
)
) ada dengan tunggal. Untuk
(
(
( )
)
, maka
, maka
( )
Karena terdapat nilai awal
( )
( )
( )
(
( )
, dan
)
( )
, maka
) ada dengan tunggal.
(
Dengan cara yang sama, dapat dibuktikan dengan tunggal untuk
( ),
yaitu
( )
( )
( )
Karena terdapat nilai awal
( )
( )
(
( )
, dan
)
( )
, maka
( ) ada dengan tunggal. Dengan demikian, penyelesaian ( ) saat
dapat
ditentukan.
Contoh
Diberikan persamaan beda
(
)
(
) (
)
( )
(
)
dengan
Misalkan
, dengan
(
Berdasarkan persamaan (
(
)
(
) (
Penyelesaian untuk
nilai dari (
yaitu
dan (
Skripsi
) (
(
)
dan
)
(
untuk
)
) diperoleh
(
)
dilakukan dengan iterasi, yaitu untuk mendapatkan
) dan seterusnya, serta akan dibuktikan nilai untuk
) (
) ( ). Untuk
, dengan
(
)
) ada dengan tunggal, diperoleh nilai
Analisa Solusi Persamaan Beda Linier
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
(
)
(
) (
)
(
)
23
(
ada dengan tunggal. Kemudian untuk
)(
, dengan (
)
) dan (
)
ada dengan tunggal, diperoleh nilai
(
)
(
) (
)
(
),(
)(
(
)
)
ada dengan tunggal. Untuk nilai (
-
(
) (
)
diperoleh dengan tunggal
)
menggunakan cara yang sama seperti yang telah dijelaskan sebelumnya.
Selanjutnya nilai untuk
, yaitu
ada dengan tunggal. Saat
dan , akan dibuktikan
, dengan (
) dan (
) ada dengan
tunggal, diperoleh nilai
(
(
)
)
ada dengan tunggal. Saat
(
) (
, dengan (
)
) dan (
) ada dengan
tunggal, diperoleh nilai
(
)
(
)
(
ada dengan tunggal. Saat
) (
, dengan
)
(
)(
) dan
(
(
)
) ada dengan
tunggal, diperoleh nilai
(
( )
(
)
)
(
(
) (
),(
)
)(
)
-
ada dengan tunggal. Dengan demikian, nilai ( ) untuk setiap ada dan tunggal.
Skripsi
Analisa Solusi Persamaan Beda Linier
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
4.2
24
Penentuan Solusi Persamaan Beda Linier
Sebelumnya, pada subbab pertama telah dibahas syarat suatu persamaan
beda memiliki solusi yang tunggal. Kemudian dari hasil yang didapatkan akan
digunakan untuk menentukan solusinya. Namun, pola/formula solusi khususnya
tidak dapat ditentukan melalui Teorema
. Oleh karena itu, diperlukan metode
khusus untuk menentukan solusi umum dari persamaan beda tersebut. Beberapa
metode dapat digunakan untuk menentukan solusi umum dari persamaan (
),
diantaranya adalah metode akar dari persamaan karakteristik, metode annihilator,
serta metode variasi parameter.
Sebelum membahas masing-masing metode dalam menentukan solusi,
terlebih dahulu dikaji beberapa definisi dan teorema yang digunakan untuk
menunjang metode-metode tersebut. Misalkan persamaan beda linier homogen
orde
didefinisikan sebagai berikut.
( ) (
Teorema
a. Jika
)
( ) (
)
(
c. Jika
(
)
(Sifat Dasar Solusi)
( ) dan
( ) solusi dari persamaan (
juga solusi dengan sebarang konstanta
b. Jika
( ) ( )
( ) solusi dari persamaan (
), maka ( )
( ) dan
), maka
( )
dan .
) dan
( ) solusi dari persamaan
( ) solusi dari persamaan (
( ) solusi dari persamaan (
solusi dari persamaan (
( )
).
), maka
( )
( )
).
(Kelley dan Peterson, hal 51, 2001)
Bukti:
Skripsi
Analisa Solusi Persamaan Beda Linier
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
a.
Misalkan
( ) dan
25
( ) solusi dari persamaan (
), yaitu memenuhi
( )
(
)
( )
(
)
( )
( )
( )
(
)
( )
(
)
( )
( )
dan
Berdasarkan dua persamaan tersebut, diperoleh
( ),
(
)
(
)-
( ),
( )
(
( ),
( )
)
( )
(
( )
( )
Hal ini berarti bahwa
sebarang konstanta
b.
(
Misalkan
(
)-
)
( )
)
( )
(
)
( )
( )
)
,
(
(
( )
( )
)
( )-
( )
,
(
( )
(
)
(
)
( )
( )
(
)
( )-
( ) juga solusi dari persamaan (
( )
( )-
) dengan
dan
( ) dan
( ) berturut-turut solusi dari persamaan (
) dan
), yaitu memenuhi
( ) (
)
( ) (
)
( ) ( )
dan
( ) (
)
( ) (
)
( ) ( )
( )
Berdasarkan dua persamaan tersebut, diperoleh
Skripsi
Analisa Solusi Persamaan Beda Linier
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
( ), (
)
(
)-
( ), (
( ), ( )
( ) (
26
)
(
)-
( ))
( ) (
)
( ) (
( ) (
)
)
( ) ( )
( ) ( )
( ) (
)
( ) (
( ) (
)
)
( ) ( )
( ) (
)
( ) ( )
( )
( )
( ) solusi dari persamaan (
Hal ini berarti bahwa ( )
c.
Misalkan
( ) dan
( ) solusi dari persamaan (
).
), yaitu memenuhi
( ) (
)
( ) (
)
( ) ( )
( )
( ) (
)
( ) (
)
( ) ( )
( )
dan
Berdasarkan dua persamaan tersebut, diperoleh
( ), (
)
(
)-
( ), (
( ), ( )
( ) (
)
(
)-
( ))
( ) (
)
( ) (
( ) (
)
)
( ) ( )
( ) ( )
( ) (
)
,
( ) (
( ) (
)
)
( ) (
( ) ( )
)
( ) ( )-
Skripsi
Analisa Solusi Persamaan Beda Linier
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
( )
Hal ini berarti bahwa
Akibat
27
( )
( )
( ) solusi dari persamaan (
Jika ( ) adalah solusi dari persamaan (
( ) dari persamaan (
).
), maka setiap solusi
) membentuk
( )
( )
( )
dengan ( ) merupakan beberapa solusi dari persamaan (
).
(Kelley dan Peterson, hal 51, 2001)
Bukti: Misalkan ( ) dan ( ) berturut-turut adalah solusi dari persamaan (
dan (
)
), yaitu memenuhi
( ) (
)
( ) (
)
( ) ( )
( )
dan
( ) (
)
( ) (
)
( ) ( )
Berdasarkan dua persamaan tersebut, diperoleh
( ) (
)
( ) (
)
( ), (
)
( ) ( )
(
)-
(
( ) (
)
( ), (
)-
)
( ), ( )
( ) (
)
( ) (
( )-
( ) (
)
)
( ) ( )
( ) ( )
( ) (
)
( ) (
( ) (
)
)
( ) (
( ) ( )
)
( ) ( )
Skripsi
Analisa Solusi Persamaan Beda Linier
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
( )
28
( )
Hal ini berarti bahwa ( )
( ) solusi dari persamaan (
( )
Berdasarkan Akibat
).
permasalahan untuk menemukan semua solusi
) dapat disederhanakan menjadi dua masalah.
dari persamaan (
a. Menemukan semua solusi dari persamaan (
b. Menemukan sebuah solusi dari persamaan (
).
).
Definisi-definisi berikut ini dibutuhkan untuk menyelesaikan masalah pertama.
Definisi
(Bergantung Linier) Himpunan fungsi {
bergantung linier pada himpunan
( )} disebut
( )
jika terdapat konstanta
tidak semuanya nol, sedemikian hingga
( )
untuk
( )
( )
(
)
Jika tidak, maka himpunan tersebut bebas linier.
(Kelley dan Peterson, hal 51, 2001)
Kemudian didefinisikan sebuah matriks yang sangat berguna dalam
persamaan linier.
Definisi
(Matriks Casorati) Matriks casorati didefinisikan sebagai
( )
( )
(
(
(
dengan
( )
)
(
( )
)
)
(
(
)
)
)
)
adalah fungsi yang telah diberikan. Determinan dari
( )
(
( )
( )
dinamakan casoratian.
Skripsi
Analisa Solusi Persamaan Beda Linier
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
29
(Kelley dan Peterson, hal 52, 2001)
Teorema
Diketahui
( ) solusi dari persamaan (
( )
Himpunan {
( )} bergantung linier untuk
( )
jika dan hanya jika
) untuk
untuk beberapa .
( )
(Kelley dan Peterson, hal 52, 2001)
Bukti: Misalkan
( ) bergantung linier. Maka terdapat konstanta
( )
, tidak semua nol, sedemikian hingga
( )
(
(
)
)
(
(
untuk
( )
( )
)
(
)
)
(
)
Karena sistem persamaan beda linier homogen ini
mempunyai suatu solusi nontrivial
, determinan dari matriks koefisien
( ) adalah nol untuk
Sebaliknya, misalkan diambil sebarang
,
( )
Teorema
dan
( )
, maka
(
(
Karena
( )
)
(
(
( )
)
(
)(
)
)
(
(
(
)
)
)
maka
( )
Skripsi
), sehingga berlaku
( )
)
)
( )
Berdasarkan
( ).
( )
adalah solusi dari persamaan (
( )
(
( )
+, dengan
*
(
)
(
Analisa Solusi Persamaan Beda Linier
)
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
Berdasarkan Teorema
terdapat konstanta
, maka
30
untuk setiap
( )
. Akibatnya
, tidak semua nol, sedemikian hingga himpunan
+ bergantung linier.
*
Pentingnya himpunan solusi yang bebas linier dari persamaan (
) adalah
konsekuensi dari teorema berikutnya.
Teorema
Misalkan
( ) adalah solusi dari persamaan (
( )
+ bebas linier, maka setiap solusi
*
). Jika
( ) dari persamaan (
)
dapat dituliskan dalam bentuk
( )
( )
( )
dengan beberapa konstanta
( )
(
)
.
(Kelley dan Peterson, hal 53, 2001)
Bukti: Misalkan
solusi dari persamaan (
bebas linier. Berdasarkan Teorema
Akibatnya,
, diperoleh
untuk
( )
( )
(
)
( )
( )
untuk semua .
( )
tunggal. Berdasarkan Teorema
( )
(
)
mempunyai solusi tunggal
(
)
)
( )
(
(
. Karena
)
)
tunggal, maka ( )
, solusi dari persamaan (
ditentukan oleh nilai-nilai pada
Skripsi
+
Sehingga sistem dari persamaan
( )
(
) dan *
) secara tunggal
, sehingga didapatkan
( )
Analisa Solusi Persamaan Beda Linier
( )
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
31
untuk setiap .
Metode Akar Persamaan Karakteristik
4.2.1
Metode akar persamaan karakteristik digunakan untuk menyelesaikan
persamaan beda linier homogen dengan koefisien konstan. Karena
dapat digunakan untuk membagi kedua ruas dari persamaan (
menuliskan kembali persamaan (
(
dengan
)
) dengan
dan
) menjadi
(
)
konstanta dan
Definisi
, maka
( )
(
)
.
(Akar Persamaan Karakteristik)
a. Polinomial
dinamakan polinomial karakteristik
dari persamaan (
).
b. Persamaan
adalah persamaan karakteristik
dari persamaan (
c. Solusi
).
dari persamaan karakteristik adalah akar-akar
karakteristik.
d. Solusi
(
mempunyai kelipatan
, dengan
, jika terdapat faktor
pada persamaan karakteristik dari persamaan (
)
).
(Kelley dan Peterson, hal 54, 2001)
Contoh
(
Diberikan persamaan beda orde tiga
)
(
)
(
)
( )
Pertama akan dibentuk menjadi persamaan (
(
)
) dan diubah menjadi bentuk
operator geser, sehingga
Skripsi
Analisa Solusi Persamaan Beda Linier
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
32
* ( )
(
*(
(
) ( )
Persamaan karakteristiknya adalah
*(
(
dengan
dan
( )
√ . Fungsi
ke persamaan (
(
), yaitu untuk
)
(
)
(
dan untuk
/,
.
(
)
)
( )
*
(
* (
*
(
*
*
(
)
(
)
(√ )
(√ )(
memenuhi persamaan (
)
) sebab jika disubstitusikan
/ , maka
.
(
( √ ) , dan
( )
( √ ) , maka
( )
(
( )
*
(
(
)
(
( )
(√ )
(√ )
√
(
√ )
√ )( √
)
(
(√ )
)
√
). Kemudian untuk
(
Skripsi
( )
√ ) adalah solusi dari persamaan (
(
(
)
( )
(
√ ) , maka
( )
√ )
(
√
Analisa Solusi Persamaan Beda Linier
√ )
(
√ )
)
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
juga memenuhi persamaan (
). Karena
(
*
(√ )
(
*
(√ )
(
√ )
((
*
(√ )
(
√ )
( )
(
33
* (√ )(
(
√ )
)
(√ )
√ )
(
√ )
(
(
* (√ )(
√ ) ( √
(
* (√ )(
√ ) (
berdasarkan Teorema
, *
( )
( )
Diketahui bahwa
| |
dengan
Teorema
(
*
)
)
) adalah
( )
)
(
*
(√ )
(
√ )
), dengan
| |(
dan
√ .
dan
/
√ .
/
sebarang konstanta.
Jika persamaan (
dengan kelipatan
Skripsi
√
√
. Maka ( ) dapat dituliskan sebagai
√
( )
(
√
√
+ bebas linier, sehingga berdasarkan Teorema
solusi umum dari persamaan (
( )
)
) mempunyai akar karakteristik
yang berurutan, maka persamaan (
Analisa Solusi Persamaan Beda Linier
)
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
mempunyai himpunan
34
solusi yang bebas linier *
+.
(Kelley dan Peterson, hal 55, 2001)
Bukti: Persamaan (
) dapat dituliskan dalam bentuk operator geser
(
) ( )
atau
(
dengan
)
(
)
( )
(
dan orde dari faktornya diabaikan. Karena
)
,
maka setiap akar karakteristiknya tidak nol.
Misalkan didefinisikan
(
)
Setiap solusi dari persamaan (
(
(
)
) juga merupakan solusi dari persamaan
).
Jika
, maka persamaan (
mempunyai solusi
( )
solusi dari persamaan (
(
)
( )
) menjadi
. Jika
(
, misalkan
( )
)
( ), yang
( ) merupakan
), maka
∑.
/(
)
∑.
/(
)
∑.
/(
(
Skripsi
( )
)
( )
( )
)
( )
( )
Analisa Solusi Persamaan Beda Linier
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
35
( )
Misalkan ( )
, akan dibuktikan bahwa tidak ada fungsi
yang memenuhi
( )
. Jika
, kecuali
dan
( ). Misalkan
,(
Akibatnya persamaan (
berdasarkan definisi
)
)
(
-
(
) mempunyai
dan
solusi
+ bebas
linier. Dengan menerapkan pada setiap faktor dari persamaan (
4.2.2
)
)-
, diperoleh himpunan solusi *
solusi dari persamaan (
dengan
, maka diperoleh
( )
, (
( )
), didapatkan
) yang bebas linier.
Metode Annihilator
Pada subbab 4.2.1, metode akar persamaan karakteristik digunakan untuk
memperoleh solusi dari persamaan (
) yang homogen dengan koefisien
konstan. Pada subbab ini, akan dibahas metode untuk memperoleh solusi dari
persamaan (
) yang tak homogen dengan koefisien konstan. Didefinisikan
persamaan beda orde
(
dengan koefisien konstan
)
(
)
( )
( )
(
)
Persamaan tersebut dapat diselesaikan dengan metode annihilator jika ( ) adalah
sebuah solusi persamaan beda homogen dengan koefisien konstan.
Teorema
(Metode Annihilator) Jika ( ) solusi dari persamaan (
),
yaitu,
(
Skripsi
) ( )
Analisa Solusi Persamaan Beda Linier
( )
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
36
dan ( ) yang memenuhi
(
) ( )
maka ( ) memenuhi
(
)(
) ( )
(
)
(Kelley dan Peterson, hal 57, 2001)
Bukti: Misalkan
( ) solusi dari persamaan (
). Persamaan (
) dapat
dituliskan dalam bentuk operator geser
(
) ( )
( )
Pembuktian dilakukan dengan menerapkan operator geser
pada kedua ruas kepada persamaan (
) yang telah diubah menjadi
operator geser. Sehingga,
(
)(
) ( )
(
) ( )
Karena (
(
).
Contoh
(
Diberikan persamaan beda orde tiga
)
(
Persamaan (
)
(
)
( )
)
* ( )
(
Karena
(
) dapat dituliskan dalam bentuk operator geser,
(
Skripsi
, maka memenuhi persamaan
) ( )
* (
) ( )
memenuhi persamaan homogen
Analisa Solusi Persamaan Beda Linier
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
(
)(
)
(
)
(
maka berdasarkan Teorema
(
(
dan Teorema
(
(Disini (
)
) (
37
* (
)
(
)
)
, ( ) memenuhi
) ( )
) adalah annihilator, yang mengeliminasi fungsi tak nol pada ruas
kanan dari persamaan.)
Berdasarkan definisi
, diperoleh
( )
( *
( *
(
Langkah selanjutnya adalah mensubstitusikan persamaan
persamaan (
. /
)
( ) di atas ke
) untuk menentukan koefisiennya. Diketahui bahwa
) memenuhi bagian homogen dari persamaan (
(
cukup dengan mensubstitusikan ( )
(
)
(
), sehingga
ke persamaan (
(
. /
), yaitu
)
)
(
)
(
)
Kemudian diperoleh
sehingga
Skripsi
dan
. Oleh karena itu,
Analisa Solusi Persamaan Beda Linier
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
( )
( *
adalah solusi dari persamaan (
4.2.3
38
( *
(
)
).
Metode Variasi Parameter
Metode variasi parameter adalah metode umum yang digunakan untuk
menentukan solusi dari persamaan (
persamaan (
Teorema
) dengan mengetahui semua solusi dari
) terlebih dahulu.
(Metode Variasi Parameter) Jika *
solusi yang bebas linier dari persamaan (
( )
( )
( )+ himpunan
), maka
( )
adalah solusi dari persamaan (
( )
( )
( )
), dengan
yang memenuhi sistem
persamaan dari matriks
( )
(
)[
( )
]
( )
[ ( )]
(Kelley dan Peterson, hal 61, 2001)
Bukti: Misalkan *
persamaan (
( )+ himpunan solusi yang bebas linier dari
( )
). Pada subbab 4.2 telah dijelaskan bahwa setelah menemukan
semua solusi dari persamaan (
(
). Misalkan ( ) memiliki bentuk,
( )
dengan
untuk
Skripsi
), akan dicari solusi yang memenuhi persamaan
( )
( )
( )
( )
yang akan ditentukan. Pembuktian dilakukan dengan iterasi
.
Analisa Solusi Persamaan Beda Linier
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
(
)
(
)
( )
(
)
(
(
)
( )
( )
(
)
(
)
(
39
)
)
( )
( )
(
(
)
(
)
)
Kemudian dieliminasi kondisi yang memiliki
(
)
(
)
( )
( ) dari ekspresi
( )
sedemikian hingga
terakhir dengan memilih
( )
(
)
( )
(
)
(
)
Kemudian dilakukan iterasi menggunakan persamaan yang telah diketahui
sebelumnya.
Untuk iterasi kedua, akan digunakan
( )
(
(
)
)
( )
(
( )
)
(
(
(
)
( )
(
)
).
)
(
)
( )
(
( )
(
)
(
(
)
)
( )
(
)
)
Sama seperti sebelumnya, akan dieliminasi beberapa ekspresi terakhir, yaitu
( )
(
)
( )
(
)
(
)
Untuk iterasi ketiga diperoleh
(
)
(
( )
)
(
(
)
(
)
( )
( )
(
)
(
(
)
)
( )
(
)
)
Sama seperti sebelumnya, akan dieliminasi beberapa ekspresi terakhir, yaitu
( )
(
)
( )
Kemudian akan dibuktikan untuk
(
Skripsi
)
(
)
(
)
(
)
(
)
, yaitu
(
Analisa Solusi Persamaan Beda Linier
)
(
)
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
( )
(
)
( )
( )
40
(
(
)
( ), kondisi
( ) (
( ) (
)
( ), ( )
( )
(
(
)
( ), ( )
( ),
( )
(
Karena
( )
(
(
(
)-
)
( )
( )
( )
(
)
)
( )
( )
(
)
( )
( )-
( ),
( )
(
)
( )
( )-
( ),
( )
(
)
( )
( )-
( )
(
)
( )
memenuhi persamaan (
(
)-
( )-
( ),
( ),
) yang
( ) untuk mendapatkan
( )
( )
)
(
( ) ( )
)
( ), ( )
)
)
) dan mengumpulkan kondisi yang meliputi
( ), hingga kondisi yang meliputi
)
(
)
Sekarang akan disubstitusikan ekspresi-ekspresi ( ) (
telah ditentukan ke persamaan (
( )
( )-
(
)-
), selain ekspresi terakhir akan
bernilai nol. Sehingga diperoleh
( ) (
)
( ) (
( ),
Karena
( ) (
)
( )
Skripsi
(
( )
)
(
( ) ( )
)
( ) (
)
)
( )
( )
(
( ) ( )
(
Analisa Solusi Persamaan Beda Linier
)
( )
( )
)( ), maka
(
)
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
Singkatnya, ( )
) jika
(
( )
( )
hingga (
( )
( )
41
( ) adalah solusi dari Persamaan
( ) memenuhi persamaan linier (
( )
). Untuk mendapatkan
maka persamaan linier (
( )
)
( ) yang tunggal,
( )
) hingga (
)(
)(
) dibentuk menjadi sistem
persamaan linier
( )
(
Sehingga
(
( )
)[
( )
]
( )
[ ( )]
( ) memiliki solusi yang tunggal karena matriks
( )
) memiliki determinan tak nol berdasarkan Teorema
Contoh
.
Diberikan persamaan beda orde dua tak homogen
(
)
(
)
( )
(
Dua solusi yang diperoleh dari bentuk homogen dari persamaan (
dan
) . Persamaan (
(
)
) adalah
) harus memenuhi sistem persamaan
dari matriks
( )
(
)
( )
( )
(
)
( )
dengan solusi
( )
( *
( )
(
*
Kemudian
( )
Skripsi
∑
( *
∑ ( *
Analisa Solusi Persamaan Beda Linier
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
* (
( )
)( *
*( *
*(
(
*( *
( *
∑
(
*
* (
*(
)( *
∑(
(
*
*(
*
*(
(
*(
*
(
( )(
)
+
)( *(
)( * +
∑ (
*
∑(
(
42
*(
*(
*(
*
+
*(
*+
*
Secara keseluruhan,
( )
( )
* (
*( *
( *
* (
(
4.3
*
*(
+
*
(
(
*
(
)
*
+(
)
(
)
Kestabilan Solusi Persamaan Beda Linier
Setelah mengetahui bagaimana menentukan solusi dari persamaan beda,
pada subbab ini akan dibahas kestabilan solusi persamaan beda linier. Dalam
Skripsi
Analisa Solusi Persamaan Beda Linier
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
43
pembahasannya akan memanfaatkan definisi titik kesetimbangan, matriks
sekawan serta definisi nilai eigen yang telah dibahas pada subbab
.
Dalam penerapan persamaan beda, tidak hanya solusi yang menjadi
kebutuhan utama dari persamaan beda, tetapi juga perilaku dari solusi tersebut di
sekitar titik kesetimbangan. Solusi yang berada di sekitar titik kesetimbangan
menunjukkan bahwa solusi tersebut tidak berubah-ubah seiring dengan waktu
yang lama. Dalam aplikasinya, baik ilmu ekonomi maupun yang lain, perilaku
dari solusi sangat diperlukan untuk mendapatkan informasi pada waktu yang akan
datang.
4.3.1
Kestabilan Solusi Orde Satu
Untuk menentukan kestabilan solusi orde satu, digunakan definisi titik
kesetimbangan pada subbab
Definisi
dan definisi kestabilan berikut ini.
(Kestabilan Solusi Orde Satu)
a. Titik kesetimbangan
( ) stabil jika diberikan
sedemikian hingga | ( )
( )|
b. Titik
| ( )
( )|
terdapat
yang mengakibatkan | ( )
. Jika tidak, maka dikatakan tidak stabil.
( ) dikatakan stabil asimtotik jika terdapat
( )|
yang mengakibatkan
sedemikian hingga
( )
( ).
(Elaydi, hal 11, 2005)
Menentukan kestabilan orde satu dilakukan dengan mencari titik
kesetimbangan dari persamaan beda orde satu dan memeriksa kestabilannya,
apakah stabil atau tidak, dengan definisi yang telah diberikan.
Contoh
Skripsi
Diberikan persamaan beda orde satu
Analisa Solusi Persamaan Beda Linier
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
( )
dengan ( ) terdefinisi untuk
44
( )
(
)
Dengan menggunakan definisi jumlah
tak tentu, solusi dari persamaan (
) adalah
( )
∑ ()
Untuk menentukan kestabilannya, maka akan ditunjukkan bahwa
( )
ada. Oleh karena,
( )
dan agar
[∑ ( )]
( ) ada maka deret ∑
∑ ()
( ) harus konvergen. Dengan
demikian harus diberikan syarat awal bahwa deret ∑
solusi dari persamaan (
4.3.2
( ) harus konvergen agar
) stabil.
Kestabilan Solusi Orde Lebih Satu
Untuk kestabilan solusi dengan orde lebih dari satu, digunakan definisi
matriks sekawan, nilai eigen dan vektor eigen, serta jari-jari spektral yang terdapat
pada subbab
. Selain itu juga digunakan teorema kestabilan orde lebih dari satu
berikut ini.
Teorema
(
(Kestabilan Solusi Orde Lebih Dari Satu) Pandang persamaan
). Jika
( )
sebuah matriks
dengan
( )
maka memenuhi
. Hal ini menyebabkan solusi dari persamaan tersebut stabil
asimtotik.
(Kelley dan Peterson, hal 134, 2001)
Skripsi
Analisa Solusi Persamaan Beda Linier
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
45
Bukti: Pertama, akan dilakukan substitusi nilai
(
pada persamaan
).
(
)
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
Misalkan
/, maka
.
|
|
|
|
( )
( )
Misalkan
dan
( )
√, ( )-
( )
adalah eigen dari A dan
adalah vektor eigen dari A. Maka
(
)
(
(
* dan
(
*
*. Kemudian akan
dicari invers dari .
(
*
(
Skripsi
Analisa Solusi Persamaan Beda Linier
)
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
Dengan
/ adalah baris ke-1 dari
.
/ adalah baris ke-2 dari
.
Diketahui ( )
.
.
∑
(
*(
*
(
Misalkan
*(
*
dan
(
[ (
[(
[(
[(
Skripsi
dan
. Karena banyaknya nilai eigen dari
∑
adalah 2, maka nilai
( )
46
*(
*(
*(
( ), maka
( )
( )
( )
*
( )
( )
( )
( )
( )
( )
( ) )
*(
(
*
*
(
(
(
( )
*(
*(
( )
( )
( )
( )
( )
( )
( )
( )
( ) )]
( )
( )
( )
( )
Analisa Solusi Persamaan Beda Linier
*
*]
*]
)]
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
(
*
(
[
(
*(
( )
( )
( )
( ))]
*
(
[
(
( )
( )
( )
( ))]
*
*(
(
[
(
*
(
*
( )
( )
( )
( ))]
47
( )
Kemudian akan ditentukan apakah
( )
Karena | |
| ( )|
|
|∑
|
∑| |
|∑
maka
( )
.
|
|∑
( )
|
|∑
|
|
.
Adapun langkah yang harus dilakukan yaitu membentuk persamaan beda
linier menjadi sistem persamaan beda linier terlebih dahulu dan mencari nilai
eigen dari sistem persamaan beda tersebut. Selanjutnya diperiksa apakah nilai
Skripsi
Analisa Solusi Persamaan Beda Linier
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
48
eigennya memenuhi definisi jari-jari spektral. Setelah itu, berdasarkan Teorema
yang menjelaskan bahwa jika jari-jari spektral kurang dari satu, maka solusi
dari persamaan beda tersebut stabil asimtotik.
Contoh
Diberikan persamaan beda orde tiga
(
)
(
)
(
)
( )
(
)
Dari persamaan tersebut dapat dibentuk menjadi sistem persamaan beda sebagai
berikut, misalkan
(
)
( )
(
)
(
)
( )
(
)
(
)
dan
Akibatnya,
(
)
(
)
( )
( )
( )
sehingga,
Dari persamaan (
(
( (
(
dengan
)
))
)
( )
( )
) dan (
),(
( )
) diperoleh
( )
( )
(
( )
( )
( ( ) ) dan
( )
( )
)
( )
(
( )
( )
) ( ( ))
( )
). Sehingga dapat dituliskan
(
menjadi
(
Skripsi
)
( )
Analisa Solusi Persamaan Beda Linier
(
)
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
49
Nilai eigen λ adalah nilai yang bersesuaian dengan matriks . Dengan kata lain,
nilai eigen dari
diperoleh jika terdapat vektor tak nol ( )
( )
( ( ))
( )
( )
( )
( ( ))
( )
( )
Jika
( )
( ( ) ) dengan
( )
( )
( )
), maka
(
( )
) ( ( ))
( )
(
( )
( ( ))
( )
Matriks di atas dapat ditulis dalam bentuk sistem persamaan beda sebagai berikut:
( )
( )
( )
( )
{
( )
( )
( )
( )
atau
( )
( )
{
( )
( )
( )
( )
* ( )
(
Dengan substitusi didapat
[
Skripsi
( )]
( )
( )
( )
( )
[
( )]
(
Analisa Solusi Persamaan Beda Linier
* ( )
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
50
* ( )
(
Berdasarkan definisi nilai eigen yang menyatakan bahwa vektor
maka nilai ( )
, sehingga .
/
( ) tak nol,
. Sehingga didapat
(
Misalkan
( )
dan
*| |
adalah akar dari persamaaan (
*
)
). Diketahui bahwa jika
, maka solusi dari persamaan beda (
++
)
stabil asimtotik. Dalam hal ini, penentuan nilai ( ) terbagi dalam dua kasus,yaitu
a. Nilai eigen
, yang di dalamnya terdapat nilai yang sama atau
semua berbeda. Jika
memenuhi
( )
| | maka syarat yang diperlukan agar
adalah | |
( )
atau
. Jika
| |, maka syarat yang diperlukan adalah | |
Dengan cara yang sama, jika ( )
adalah | |
atau
b. Nilai eigen
| |, maka syarat yang diperlukan
. Jika
( )
dengan
| |
√
. Diketahui | |
maka syarat yang diperlukan
adalah √
atau
| | maka syarat yang diperlukan adalah √
. Dengan cara yang sama, jika ( )
diperlukan adalah √
Skripsi
.
, yang didalamnya juga terdapat nilai yang sama
agar memenuhi ( )
( )
atau
.
atau berbeda. Misalkan
√
( )
atau
Analisa Solusi Persamaan Beda Linier
. Jika
atau
| |, maka syarat yang
.
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
Dengan demikian, agar solusi persamaan (
51
) stabil asimtotik, maka
syarat yang diperlukan adalah
dan
Contoh
.
Diberikan sistem persamaan beda linier tak homogen
(
(
)
)
( )
( )
( )
( )
(
Sebelum menentukan kestabilan solusi dari sistem persamaan (
dahulu akan diselesaikan secara homogen. Misalkan
)
), terlebih
, maka sistem
tersebut menjadi
(
)
( )
( )
(
)
( )
( )
Kemudian akan dibentuk sebuah matriks yang didefinisikan sebagai
(
dengan (
)
.
(
(
)
/
)
)
( )
dicari nilai eigen dari . Jika
.
/(
(
dan
.
/. Selanjutnya akan
/, maka
( )
)
( )
( )
( )
{
{
( )
/
( )
.
.
( )
(
( )
)
( )
()
()
( )
( )
) ( )
( ) (
( )
) ( )
Dengan substitusi, didapat
( )
Skripsi
(
)
( )
Analisa Solusi Persamaan Beda Linier
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
[
(
[
Karena ( )
Jika
( )
, maka 0
(
(
)
) ( )
)] ( )
(
)1
. Sehingga diperoleh
√(
)
(
)
)
√(
|
(
(
( )]
)
52
(
)
)
|, maka syarat yang dipenuhi agar
solusi yang dihasilkan stabil asimtotik adalah
√(
|
Sedangkan untuk ( )
)
)
(
)
√(
)
(
)
)
√(
|
)
|
√(
√(
|
(
(
)
)
|, syaratnya adalah
(
)
|
√(
)
(
)
√(
)
(
)
Dengan demikian, agar solusi sistem persamaan (
maka
syarat
√(
√(
Skripsi
)
(
yang
)
(
)
diperlukan
)
) stabil asimtotik,
adalah
dan
.
Analisa Solusi Persamaan Beda Linier
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
53
Selanjutnya, untuk sistem persamaan beda linier tak homogen, tahap
pengerjaannya adalah menghomogenkan terlebih dahulu kemudian menentukan
kestabilan menggunakan cara yang telah dijelaskan sebelumnya.
(
)
( )
( )
(
)
( )
( )
Sehingga menjadi
( )
( )
( )
( )
Kemudian dicari solusinya menggunakan metode cramer.
( )
( )
|
|
|
|
|
|
|
|
Misalkan
( )
( )
(
*
( )
( )
(
*
( )
( )
(
*
( )
( )
(
*
dan
maka,
Skripsi
Analisa Solusi Persamaan Beda Linier
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
54
[ ( )
(
*]
[ ( )
(
*]
[ ( )
(
*]
[ ( )
(
*]
dan
Kemudian disederhanakan menjadi
( )
( )
(
*
(
*
( )
( )
(
*
(
*
dan
Setelah itu menggunakan cara yang telah dijelaskan sebelumnya. Dengan
demikian, solusi sistem persamaan (
) dapat ditentukan kestabilan
asimtotiknya.
Solusi dikatakan stabil atau tidak stabil menunjukkan bagaimana solusi di
sekitar titik kesetimbangan. Sehingga setelah solusi dikatakan stabil atau tidak
stabil, secara tidak langsung, solusi yang dihasilkan dapat diprediksi apakah
berada di sekitar atau menjauhi titik kesetimbangan pada waktu yang akan datang.
4.4
Contoh Kasus Persamaan Beda Linier
Saat ini, banyak perusahaan yang kurang transparan terhadap pegawainya
dalam hal pemberian gaji bulanan. Walaupun ada yang acuh tak acuh terhadap
jumlah gaji yang mereka terima, namun tidak sedikit yang ingin mengetahui
rincian dari gaji yang mereka peroleh. Beberapa hal yang menjadi poin penting
dalam menentukan jumlah gaji yang diterima yaitu gaji pokok yang sesuai dengan
Skripsi
Analisa Solusi Persamaan Beda Linier
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
55
jabatan mereka, tunjangan untuk keluarga, serta upah tambahan yang berasal dari
kerja lembur.
Berdasarkan ketentuan tentang waktu kerja lembur dan upah kerja lembur
diatur dalam Undang –Undang no.13 tahun 2003 tentang ketenagakerjaan pasal 78
ayat (2), (4), pasal 85 dan lebih lengkapnya diatur dalam kepmenakertrans
no.102/MEN/VI/2004 mengenai waktu dan upah kerja lembur, diasumsikan
seorang pegawai mempunyai sistem penggajian bulanan
( ) berdasarkan gaji
pokok, upah kerja lembur, serta tunjangan keluarga, yang dapat ditulis sebagai
( )
dengan
( )
diukur dalam bulan dan
( )
( )
dalam rupiah. Sedangkan
dan
didefinisikan sebagai
( )
Gaji pokok,
( )
Upah kerja lembur,
( )
Tunjangan keluarga.
Asumsi yang sesuai dengan model di atas adalah sebagai berikut
a. Gaji pokok ( ) sebanding dengan gaji yang diterima bulan lalu (
saat
bulan sebelumnya, sehingga
( )
dengan
)
(
)
adalah prosentase gaji pokok yang diterima.
b. Upah lembur ( ) sebanding dengan lama waktu lembur yang dikerjakan
dan gaji yang diterima bulan lalu, sehingga
( )
dengan
Skripsi
(
)
adalah lama waktu lembur dalam jam.
Analisa Solusi Persamaan Beda Linier
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
56
c. Tunjangan keluarga ( ) sebanding dengan gaji yang diterima bulan lalu,
sehingga
( )
dengan
(
)
adalah prosentase tunjangan yang diterima.
Dari asumsi yang telah dijelaskan, dihasilkan persamaan beda linier orde satu
(
)
(
)
( )
( )
( )
* ( )
(
Untuk mendapatkan solusi dari persamaan (
(
)
), metode yang digunakan adalah
metode akar persamaan karakteristik yang telah dijelaskan pada subbab
Persamaan (
.
) diubah dalam bentuk operator geser menjadi
[
(
*] ( )
Persamaan karakteristik dari persamaan di atas adalah
(
*
sehingga
(
*
adalah akar persamaan karakteristik dari persamaan (
.
persamaan (
Skripsi
/ adalah solusi dari persamaan (
). Fungsi
( )
), sebab jika disubstitusikan ke
), yaitu
Analisa Solusi Persamaan Beda Linier
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
(
)
(
*
(
( )
berdasarkan Teorema
( )
Skripsi
(
*(
*
). Karena
(
*
, * + bebas linier, sehingga berdasarkan Teorema
solusi umum dari persamaan (
dengan
( )
*
maka memenuhi persamaan (
57
) adalah
( )
(
*
sebarang konstanta.
Analisa Solusi Persamaan Beda Linier
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
BAB V
KESIMPULAN DAN SARAN
5.1
Kesimpulan
Berdasarkan pembahasan pada Bab IV diperoleh kesimpulan sebagai
berikut:
1.
Persamaan beda linier mempunyai solusi khusus jika memenuhi persamaan
beda linier dengan nilai awal yang telah ditentukan.
2.
Penyelesaian persamaan beda linier dengan koefisien konstan dapat
dilakukan dengan tiga metode. Metode pertama adalah metode akar
persamaan karakteristik yang digunakan untuk persamaan beda linier
homogen. Metode kedua adalah metode annihilator untuk persamaan beda
linier tak homogen. Metode ketiga adalah metode variasi parameter sebagai
metode untuk menyelesaikan bentuk umum persamaan beda linier.
3.
Solusi persamaan beda linier dikatakan stabil jika limit tak hingga dari
solusinya ada. Sedangkan solusi dikatakan stabil asimtotik jika limit tak
hingga dari solusinya menuju ke titik kesetimbangannya.
4.
Menentukan kestabilan solusi persamaan beda linier orde lebih dari satu
dapat dilakukan tanpa mencari solusinya terlebih dahulu, yaitu dengan
mengubah persamaan beda linier tersebut menjadi sebuah sistem persamaan
beda linier. Kemudian mencari nilai eigen dari sistem persamaan beda
tersebut dan memeriksa jari-jari spektralnya. Jika jari-jari spektralnya
kurang dari satu, maka solusi dari persamaan beda tersebut stabil asimtotik.
58
Skripsi
Analisa Solusi Persamaan Beda Linier
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
5.
59
Berdasarkan asumsi gaji pokok, upah kerja lembur, serta tunjangan
keluarga, model sistem penggajian pegawai adalah
(
)
) ( )
(
Solusi persamaan beda linier tersebut adalah
( )
dengan
(
)
adalah prosentase gaji pokok yang diterima,
lama waktu lembur dalam jam, dan
adalah
adalah prosentase tunjangan yang
diterima.
5.2
Saran
Mengingat bahwa pada skripsi ini, persamaan beda linier yang dibahas
adalah persamaan beda linier dengan koefisien konstan, penulis menyarankan
mengembangkan pembahasan untuk metode penyelesaian persamaan beda linier
homogen dan tak homogen dengan koefisien variabel. Selain itu, tidak menutup
kemungkinan untuk menindak-lanjuti analisa kestabilan untuk persamaan beda tak
linier beserta penerapan dalam kehidupan sehari-hari.
Skripsi
Analisa Solusi Persamaan Beda Linier
Varian Luthfan
ADLN Perpustakaan Universitas Airlangga
DAFTAR PUSTAKA
1. Elaydi, Saber., 2005, An Introduction to Difference Equations, Springer
Science+Business Media, Inc., USA hal 9-11
2. Goldberg, Samuel., 1958, Introduction to Difference Equations, John
Wiley & Sons, Inc., USA hal 60
3. Kelley, Walter G. dan Peterson, Allan C., 2001, Difference Equations,
Academic Press, San Diego hal 13-15, 20-22, 43, 50-61, 125-127, 134
4. Kwakernaak, Huibert. dan Sivan, Raphael., 1972, Linear Optimal Control
Systems, John Wiley & Sons, Inc., USA
5. Lakshmikantham, V. dan Trigiante, Donato., 2002, Theory of Difference
Equations:Numerical Methods and Applications, Marcel Dekker,Inc.,
USA hal iii, 36
6. Penna, Michael., 2005, Differential vs. Difference Equations,
Brooks/Cole:A division of Thomson Learning, Inc., Indianapolis hal 1
7. Spiegel, Murray R. Ph.D., 1971, Calculus of Finite Differences and
Difference Equations, McGraw-Hill, Inc., USA hal 5-6
8. http://www.gajimu.com/main/pekerjaan-yanglayak/upah-kerja.
tanggal: 23 Juli 2012
Diakses
9. http://www.gajimu.com/main/pekerjaan-yanglayak/upah-lembur. Diakses
tanggal: 23 Juli 2012
60
Skripsi
Analisa Solusi Persamaan Beda Linier
Varian Luthfan
Download