BAB VII Simulasi Monte Carlo Powerpoint Templates Page 1 Pendahuluan • Simulasi Monte Carlo dikenal dengan istilah sampling simulation atau Monte Carlo Sampling Technique • Istilah Monte Carlo pertama digunakan selama masa pengembangan bom atom yang merupakan nama kode dari simulasi nuclear fission • Simulasi ini sering digunakan untuk evaluasi dampak perubahan input dan resiko dalam pembuatan keputusan • Simulasi ini menggunakan data sampling yang telah ada (historical data) dan telah diketahui distribusi datanya Powerpoint Templates Page 2 3 Batasan Dasar Simulasi Monte Carlo 1. 2. 3. Apabila suatu persoalan sudah dapat diselesaikan atau dihitung jawabannya secara matematis dengan tuntas, maka hendaknya jangan menggunakan simulasi ini Apabila sebagian persoalan tersebut dapat diselesaikan secara analitis dengan baik, maka penyelesaiannya lebih baik dilakukan secara terpisah. Sebagian secara analitis dan sebagian lagi simulasi Apabila mungkin dapat digunakan simulasi perbandingan. Kadangkala simulasi ini dibutuhkan apabila 2 sistem dgn perbedaan-perbedaan pada parameter, distribusi, cara-cara pelaksanaannya. Powerpoint Templates Page 3 Ilustrasi Penggunaan Simulasi • Sebuah toko sepatu memperkirakan permintaan sepatu per harinya menurut pola distribusi sebagai berikut : No permintaan/hari frekuensi permintaan 1 4 pasang 5 2 5 pasang 10 3 6 pasang 15 4 7 pasang 30 5 8 pasang 25 6 9 pasang 15 Jumlah 100 Powerpoint Templates Page 4 • Dari data masa lalu sudah dapat diperkirakan dengan baik. Kemudian pengusaha toko ini hendak memperkirakan pola permintaan untuk 10 hari bulan berikutnya. Berapa kira-kira permintaan yang muncul? Powerpoint Templates Page 5 Prosedur/langkah penyelesaian 1. 2. Terlebih dahulu dibuat Impirical Data distribusinya, yaitu : fungsi distribusi densitas, seperti pada tabel sebelumnya Distribusi permintaan in diubah dalam bentuk fungsi distribusi komulatif (DFK) No permintaan/hari Distribusi densitas DFK 1 4 pasang 0.05 0.05 2 5 pasang 0.1 0.15 3 6 pasang 0.15 0.3 4 7 pasang 0.3 0.6 5 8 pasang 0.25 0.85 6 9 pasang 0.15 1 Jumlah 1 Powerpoint Templates Page 6 Langkah selanjutnya 3. Setiap permintaan tersebut, diberi angka penunjuk batasan (Tag/Label number), disusun berdasarkan DFK distribusi permintaan No permintaan/hari Distribusi densitas DFK Tag number 1 4 pasang 0.05 0.05 0.00 - 0.05 2 5 pasang 0.1 0.15 0.06 - 0.15 3 6 pasang 0.15 0.3 0.15 - 0.30 4 7 pasang 0.3 0.6 0.31 - 0.60 5 8 pasang 0.25 0.85 0.60 - 0.85 6 9 pasang 0.15 1 0.86 - 1.00 Powerpoint Templates Page 7 Langkah selanjutnya 4. Lakukan penarikan random number, dengan salah satu bentuk RNG, misal diperoleh 10 random number sbb : 1. 0.5751 6. 0.2888 2. 0.1270 7. 0.9518 3. 0.7039 8. 0.7348 4. 0.3853 9. 0.1347 5. 0.9166 10. 0.9014 Dari random number ini diambil 2 angka dibelakang koma dan dicocokkan dengan tag number. Hasilnya adalah kesimpulan permintaan yang dibutuhkan Powerpoint Templates Page 8 Langkah selanjutnya No Hari Permintaan Jumlah Pasangan Penjelasan 1 I 7 pasang 2 II 5 pasang Terdapat : 3 III 8 pasang 7 pasang (2) 4 IV … 5 pasang (2) 5 V … 8 pasang (2) 6 VI … 6 pasang (2) 7 VII … 9 pasang (2) 8 VIII … 9 IX … 10 X … Powerpoint Templates Page 9 Studi Kasus : Produksi Suku Cadang • Dalam suatu pabrik assembling, barang C merupakan perpaduan barang A dan B yang dibeli dari supplier. Dalam proses produksinya, panjang barang A dan B tidaklah sama panjang. Dinyatakan dalam suatu tabel distribusi probabilitas (panjang dalam cm) • Dari data akan dicari dan ditentukan estimasi dari mean (rata-rata panjang) dan varians serta standar deviasi dari panjang part C yang merupakan penjumlahan part A dan part B. Powerpoint Templates Page 10 Tabel Distribusinya : Panjang A Panjang B Panjang Probabilitas Panjang Probabilitas 10 0.25 17 0.07 11 0.25 18 0.14 12 0.25 19 0.23 13 0.25 20 0.38 21 0.12 22 0.06 Powerpoint Templates Page 11 Penyelesaian menggunakan monte carlo • Cari DFK masing-masing dan tag number masing-masing. • Cari random number menggunakan RNG multiplier. Untuk barang A: m = 23, a = 13, c = 29, Zo = 12357 Untuk barang B: m = 31, a = 23, c = 93, Zo = 13579 • Sesuaikan dengan tag number, cari kemungkinan munculnya panjang A dan B. • Cari total panjang barang C untuk masing-masing kemungkinan. • Cari nilai-nilai yang dibutuhkan u/ mencari mean dan varians. Powerpoint Templates Page 12 Studi Keuntungan Simulasi disini digunakan untuk mengetahui profit dlm kehidupan perdagangan, atau lainnya Misal seorang pedagang menerima suplai barang dari grosir setiap hari. Jumlah suplai tsb bervariasi (Random variable), sama seperti kebutuhan pedagang eceran atas barang tsb setiap harinya. Jadi kita bisa buat dist prob untuk sejumlah barang suplai pd pedagang eceran dari pedagang grosir. Penerapannya ad/ sbb: Powerpoint Templates Page 13 Distribusi Probabilitas untuk Sejumlah Barang Suplai kepada Pedagang Eceran dari pedagang grosir tsb adalah: Suplai Pedagang Grosir Distribusi Probabilitas 1 0,08 2 0,17 3 0,20 4 0,25 5 0,17 6 0,13 Powerpoint Templates Page 14 Sedangkan distribusi probabilitas dari kebutuhan pelanggan kepada pedagang eceran adalah: Kebutuhan Pelanggan dari Pedagang Eceran Distribusi Probabilitas 1 0,07 2 0,14 3 0,22 4 0,30 5 0,18 6 0,09 Powerpoint Templates Page 15 • Pedagang eceran ini membeli dari grosir dengan harga $10/unit dan menjualnya pada pelanggan $20/unit. • Apabila unit-unit barang belum laku terjual maka dapat dikembalikan, namun apabila pedagang eceran ini tidak dapat memenuhi keinginan pelanggan sesuai kebutuhannya maka ada perkiraan biaya yang harus dikeluarkan (cost) sebesar $5/unit. • Hari kerja dalam 1 tahun adalah 289 hari. Powerpoint Templates Page 16 • Pertanyaan : 1. Simulasikan 10 hari berikutnya perdagangan tersebut dan estimasikan rata-rata keuntungan setiap harinya. Tunjukkan juga point estimasi dari ekspektasi keuntungan tahunan. 2. Dari hasil simulasi ini, estimasikan standar deviasi dari keuntungan setiap hari. 3. Perhitungkan juga suatu Confidence Interval dari 95% untuk keuntungan tahunan. Diketahui : Random number yang ditarik selama 10 hari untuk pedagang eceran (sebagai supplier) dan juga 10 hari (kali) random number untuk kebutuhan dari pelanggan (demand), yaitu: Supplier 07 71 92 84 28 91 18 21 20 26 Demand 83 88 92 37 28 34 48 63 75 18 Powerpoint Templates Random number dapat diganti sesuai kebutuhan Page 17 Investasi Melalui NPV Simulasi yg dilakukan ad/ simulasi investasi kapital dgn meninjau NPV (Net Present Value) dgn fokus pada mean and variance. Keuntungan simulasi disini kita dapat tahu gambaran kerugian atau keuntungan investasi tersebut dgn cepat, dan kita bisa mengambil keputusan yang baik akan investasi tsb. Penerapannya ad/ sbb: Powerpoint Templates Page 18 • Soal Latihan : Suatu proyek dengan investasi $50.000 dengan discount rate 10% berlaku selama 4 tahun. Risiko yang berlaku hanya dalam pengembalian (return) setiap tahun. Ternyata penelitian menunjukkan adanya distribusi probabilitas dan pengembalian dalam bentuk dollar sebagaimana yang tercantum dalam tabel berikut. Powerpoint Templates Page 19 Distribusi Probabilitas dan Pengembalian Probabilitas (P) Return (R) 0.10 9000 0.25 12000 0.35 18000 0.25 24000 0.05 36000 Powerpoint Templates Page 20 Pengelompokan Random Number Tahun I II III IV t1 03 53 23 06 t2 58 81 29 14 t3 57 93 96 94 t4 93 88 79 67 Powerpoint Templates Page 21