UNIVERSITAS INDONESIA ISOLASI RNA DAN PENGKLONAAN GEN TRIPSIN KATION DARI PANKREAS SAPI KE Escherichia coli DH5α SKRIPSI ANNISA 0806327124 FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM DEPARTEMEN BIOLOGI DEPOK JUNI 2012 Isolasi RNA..., Annisa, FMIPA UI, 2012 UNIVERSITAS INDONESIA ISOLASI RNA DAN PENGKLONAAN GEN TRIPSIN KATION DARI PANKREAS SAPI KE Escherichia coli DH5α SKRIPSI Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Sains ANNISA 0806327124 FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM DEPARTEMEN BIOLOGI DEPOK JUNI 2012 Isolasi RNA..., Annisa, FMIPA UI, 2012 Isolasi RNA..., Annisa, FMIPA UI, 2012 Isolasi RNA..., Annisa, FMIPA UI, 2012 KATA PENGANTAR Alhamdulillahirabbila’lamiin, segala puji dan syukur bagi Allah SWT atas berkah dan rahmat-Nya sehingga penulis dapat menyelesaikan penelitian dan penulisan skripsi ini. Shalawat dan salam senantiasa tercurah untuk Nabi Muhammad SAW, sang rahmat bagi seluruh alam. Penulisan skripsi ini merupakan salah satu syarat untuk mencapai gelar Sarjana Sains Departemen Biologi pada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia (FMIPA UI). Begitu banyak bantuan moril dan material serta bimbingan dari berbagai pihak yang tidak dapat diungkapkan hanya dengan katakata. Walau demikian, penulis ingin mengucapkan terima kasih kepada: 1. Dr. rer.nat. Astutiati Nurhasanah dan Dr. Abinawanto selaku pembimbing I dan II yang telah membimbing dan membantu penulis dalam penelitian dan penulisan skripsi. Terima kasih atas segala bimbingan, doa, dukungan, perhatian, motivasi, dan saran sehingga penulis dapat menyelesaikan skripsi. 2. Dr. Wibowo Mangunwardoyo dan Dr. Anom Bowolaksono selaku penguji I dan II, dan Dra. Titi Soedjiarti, S.U. selaku ketua sidang atas saran dan perbaikan-perbaikan, dukungan, dan doa yang diberikan kepada penulis untuk pembuatan dan perbaikan skripsi. 3. Ariyanti Oetari, Ph.D selaku Pembimbing Akademis atas segala saran-saran bimbingannya dan dukungan yang diberikan. 4. Dr.rer.nat. Mufti Petala Patria, M.Sc. selaku Ketua Departemen Biologi FMIPA UI dan Dra.Nining Betawati Prihantini, M.Sc. selaku Sekretaris Departemen Biologi FMIPA UI, Dra. Titi Soedjiarti, S.U. selaku Koordinator Pendidikan, Dr. Wibowo Mangunwardoyo dan Dra. Setiorini, M.Kes selaku Koordinator Seminar Departemen Biologi FMIPA UI. 5. Seluruh staf pengajar Departemen Biologi FMIPA UI atas ilmu pengetahuan yang telah diberikan kepada penulis selama berada di Biologi FMIPA UI. Terima kasih pula kepada Mbak Asri, Ibu Ida, Pak Taryana dan seluruh karyawan Departemen Biologi FMIPA UI atas semua bantuan yang diberikan. Isolasi RNA..., Annisa, FMIPA UI, 2012 6. Dr. Agus Masduki selaku Direktur Bioindustri BPPT yang telah memberikan izin kepada penulis untuk melakukan penelitian. Terimakasih juga kepada Dr. Is Helianti selaku Kepala Laboratorium Biologi Molekular Non-Virus BPPT dan Dr. Niknik Nurhayati selaku staf Biologi Molekular Non-Virus BPPT yang telah memberikan sambutan hangat dan dukungan kepada penulis. 7. Segenap staf laboratorium Biologi Molekular Non-Virus BPPT, Mbak Mumu, Mbak Lina, Kak Shafa, dan Mbak Keis atas motivasi, bimbingan, ilmu, dan keceriaan yang diberikan selama penelitian. Terimakasih pula kepada seluruh staf, peneliti, dan teman-teman di laboratorium Bioindustri BPPT, atas bantuan dan dukungan yang telah diberikan kepada penulis. 8. Keluarga tercinta, Papa (Ace Aladin), Mama (Isfiandiary) atas doa, cinta, kasih sayang, dukungan, dan semangat yang selalu diberikan kepada penulis. Rasa terimakasih yang sama untuk Kakakku (Tarro, Boninno, Cesar, Daniel, Erick, dan Faisal). 9. Terimakasih kepada Annisa Fauziah, Nur El Fadhila, Rithami Arita, Mien Saviera, Putri Krida, Rininta Dwi, Maya Ulfah, Seyla Fenina, Dessy, Wina, Dyfi, Balqis, Puji, Sintia, Atif, Refvi, dan seluruh teman-teman di Laboratorium Genetika Biologi UI, serta untuk teman-teman BIOSENTRIS 08 yang telah berbagi kenangan indah bersama. Akhir kata, penulis memohon maaf jika terdapat kesalahan dan kekhilafan. Barangsiapa yang berjalan menuntut ilmu, maka Allah akan memudahkan baginya jalan menuju surga. Semoga skripsi ini dapat bermanfaat bagi perkembangan ilmu pengetahuan. Penulis 2012 Isolasi RNA..., Annisa, FMIPA UI, 2012 Isolasi RNA..., Annisa, FMIPA UI, 2012 ABSTRAK Nama : Annisa Program Studi : Biologi S1 Reguler Judul : Isolasi RNA dan Pengklonaan Gen Tripsin Kation dari Pankreas Sapi ke Escherichia coli DH5α Tripsin kation memiliki peran penting dalam teknik kultur sel mamalia adherent. Enzim tersebut berperan sebagai enzim hidrolitik yang berfungsi untuk mendispersi sel yang melekat pada cawan petri atau botol tempat kulturnya sehingga mempermudah proses kultur sel mamalia baik pada proses pemanenan sel maupun subkultur. Penelitian bertujuan untuk mengisolasi dan mengklon gen tripsin kation dari pankreas sapi ke dalam E. coli DH5α dengan vektor pGEM-T Easy. Fragmen gen tripsin kation target berukuran 780 pb diamplifikasi dari cDNA yang berasal dari mRNA sel pankreas sapi dengan primer spesifik gen tripsin kation. Gen tripsin kation target diligasi pada plasmid pGEM-T Easy. Vektor rekombinan ditransformasi dengan metode kejutan panas pada sel E. coli DH5α dan diseleksi menggunakan medium ampisilin. Vektor rekombinan di digesti menggunakan enzim SfoI dan XmaI dan menghasilkan pita DNA berukuran 780 pb pada elektroforesis gel agarosa. Hasil penelitian menunjukkan gen tripsin kation telah berhasil diklon ke dalam plasmid pGEM-T Easy. Kata kunci : cDNA, E. coli DH5α, mRNA, tripsin kation, pGEM-T Easy. xiii + 65 halaman; 14 gambar; 9 lampiran; 7 tabel Daftar referensi : 57 (1939--2012) Isolasi RNA..., Annisa, FMIPA UI, 2012 ABSTRACT Name : Annisa Program Study : S1 Biology Regular Title : RNA Isolation and Gene Cloning of Bovine Pancreatic Trypsin Cation into Escherichia coli DH5α Cationic trypsin has an important role in adherent mammalian cell culture. The enzyme is a hydrolytic enzyme that disperses the cells attached to petri dishes and culture bottle making the harvesting and subculturing procedures easier. This research aims to isolate the RNA and clone the bovine pancreatic cationic trypsin gene into E. coli DH5α. The 780 bp cationic trypsin gene was amplified from cDNA derived from mRNA isolated from bovine pancreas using cationic trypsin gene-specific primers. Cationic trypsin gene was ligated to pGEM-T Easy plasmid. Recombinant vector was transformed by heat shock method into E. coli DH5α cells, which were then selected using amphicillin containing medium. The recombinant vector was digested using enzymes SfoI and XmaI to confirm the presence of the target gene. Agarose gel electrophoresis showed a 780 bp DNA band, confirming that the cationic trypsin gene was successfully cloned into the plasmid pGEM-T Easy. Keywords : cationic trypsin, cDNA, E. coli DH5α, mRNA, pGEM-T Easy. 9 appendices; xiii + 65 pages; 14 pictures; 7 tables Bibliography : 57 (1939--2012) Isolasi RNA..., Annisa, FMIPA UI, 2012 DAFTAR ISI HALAMAN JUDUL........................................................................................ HALAMAN PERNYATAAN ORISINALITAS ............................................. HALAMAN PENGESAHAN.......................................................................... KATA PENGANTAR ..................................................................................... HALAMAN PERSETUJUAN PUBLIKASI KARYA ILMIAH .................... ABSTRAK ....................................................................................................... ABSTRACT ..................................................................................................... DAFTAR ISI .................................................................................................... DAFTAR GAMBAR ....................................................................................... DAFTAR TABEL ............................................................................................ DAFTAR LAMPIRAN .................................................................................... ii iii iv v vii viii ix x xii xiii xiii 1. PENDAHULUAN..................................................................................... 1 2. TINJAUAN PUSTAKA ........................................................................... 2.1 Gen tripsin kation ............................................................................... 2.2 Isolasi RNA ........................................................................................ 2.3 Pengklonaan ....................................................................................... 2.3.1 Pengertian pengklonaan gen .................................................... 2.3.2 Komponen pengklonaan .......................................................... 2.3.2.1 Sumber DNA ............................................................. 2.3.2.2 Vektor pGEM-T Easy................................................ 2.3.2.3 Enzim restriksi ........................................................... 2.3.2.4 Enzim ligase .............................................................. 2.3.2.5 Sel inang E. coli DH5α .............................................. 2.4 Reverse transcription-polymerase chain reaction (RT-PCR) ............ 2.5 Elektroforesis...................................................................................... 2.6 Transformasi DNA rekombinan pada sel inang ................................. 2.7 Screening ............................................................................................ 2.8 Sekuensing DNA dan analisis hasil sekuensing ................................. 3 3 4 6 6 6 6 7 8 8 9 9 12 12 13 13 3. METODOLOGI PENELITIAN ............................................................. 3.1 Lokasi dan waktu penelitian ............................................................... 3.2 Bahan .................................................................................................. 3.2.1 Sampel ..................................................................................... 3.2.2 Vektor ...................................................................................... 3.2.3 Kultur sel inang ....................................................................... 3.2.4 Bahan kimia............................................................................. 3.3 Alat ..................................................................................................... 3.4 Skema kerja penelitian ....................................................................... 3.5 Cara kerja ........................................................................................... 3.5.1 Pembuatan larutan/buffer ........................................................ 3.5.2 Pembuatan medium ................................................................. 3.5.3 Isolasi RNA pankreas sapi ....................................................... 15 15 15 15 15 15 15 16 17 18 18 18 18 Isolasi RNA..., Annisa, FMIPA UI, 2012 3.5.4 Pemisahan fragmen RNA dengan elektroforesis gel agarosa .. 3.5.5 Reverse transcription PCR (RT-PCR) .................................... 3.5.6 Elektroforesis .......................................................................... 3.5.7 Purifikasi produk PCR ............................................................ 3.5.8 Perhitungan kemurnian dan konsentrasi DNA ........................ 3.5.9 A-tailing dan ligasi .................................................................. 3.5.10 Pembuatan sel kompeten E. coli DH5α .................................. 3.5.11 Transformasi DNA rekombinan pada sel inang ...................... 3.5.12 Isolasi plasmid rekombinan ..................................................... 3.5.13 Verifikasi DNA rekombinan dengan digesti ........................... 3.5.14 Purifikasi plasmid rekombinan................................................ 3.5.15 Sekuensing dan analisis hasil sekuensing ............................... 19 20 23 23 24 24 25 25 26 27 27 28 4. HASIL DAN PEMBAHASAN ................................................................ 4.1 Hasil.................................................................................................... 4.1.1 Isolasi RNA pankreas sapi ...................................................... 4.1.2 Reverse transcription PCR (RT-PCR) .................................... 4.1.3 Purifikasi PCR gen tripsin kation ............................................ 4.1.4 A-tailing dan ligasi gen tripsin kation ..................................... 4.1.5 Transformasi vektor rekombinan pada sel E. coli DH5α ........ 4.1.6 Verifikasi plasmid rekombinan dengan digesti ....................... 4.1.7 Purifikasi plasmid rekombinan................................................ 4.1.8 Sekuensing dan analisis hasil sekuensing ............................... 4.1.9 Konstruksi plasmid rekombinan pGEM-T Easy tripsin kation 4.2 Pembahasan ........................................................................................ 4.2.1 Isolasi RNA pankreas sapi ...................................................... 4.2.2 Visualisasi sampel RNA total pada gel agarosa 1% yang mengandung formaldehid 2,2M ............................................. 4.2.3 Reverse transcription PCR (RT-PCR) ................................... 4.2.4 Purifikasi PCR gen tripsin kation............................................ 4.2.5 A-tailing dan ligasi gen tripsin kation ..................................... 4.2.6 Transformasi plasmid rekombinan ke dalam E. coli DH5α.... 4.2.7 Isolasi plasmid rekombinan..................................................... 4.2.8 Verifikasi plasmid DNA rekombinan dengan digesti ............. 4.2.9 Purifikasi plasmid rekombinan ............................................... 4.2.10 Sekuensing dan analisis hasil sekuensing ............................... 29 29 29 30 30 31 31 33 34 35 35 36 36 5. KESIMPULAN DAN SARAN ................................................................ 5.1 Kesimpulan ......................................................................................... 5.2 Saran ................................................................................................... 45 45 45 DAFTAR REFERENSI ................................................................................. 46 Isolasi RNA..., Annisa, FMIPA UI, 2012 37 38 39 40 40 41 42 42 43 DAFTAR GAMBAR Gambar 2.1 Gambar 2.2 Skema pemotongan tripsin ................................................. Pemisahan RNA dari molekul protein dan DNA di bawah kondisi asam ...................................................................... Gambar 2.3.2.2 Vektor pGEM-T Easy ........................................................ Gambar 2.4 Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) .......................................................................... Gambar 3.4 Skema kerja penelitian ....................................................... Gambar 4.1.1 Visualisasi hasil isolasi RNA pankreas sapi ...................... Gambar 4.1.2 Hasil elektroforesis RT-PCR cDNA tripsin kation ............ Gambar 4.1.3 Hasil elektroforesis gen tripsin kation setelah proses purifikasi PCR ................................................................... Gambar 4.1.5(1) Hasil transformasi gen tripsin kation dalam E. coli DH5α . Gambar 4.1.5(2) Hasil isolasi plasmid rekombinan pGEM-T Easy .............. Gambar 4.1.6 Hasil digesti plasmid rekombinan pGEM-T Easy.............. Gambar 4.1.7 Hasil purifikasi plasmid rekombinan klon 1 ...................... Gambar 4.1.9 Konstruksi plasmid rekombinan pGEM-T Easy tripsin kation ................................................................................. Isolasi RNA..., Annisa, FMIPA UI, 2012 3 5 7 11 17 29 30 31 32 33 34 35 36 DAFTAR TABEL Tabel 3.5.5(1) Tabel 3.5.5(2) Tabel 3.5.5(3) Tabel 3.5.5(4) Tabel 3.5.9(1) Tabel 3.5.9(2) Tabel 3.5.13 Komposisi RNA mix .............................................................. Komposisi cDNA synthesis mix ............................................. Komposisi PCR mix ............................................................... Program PCR Touchdown gen tripsin kation ......................... Komposisi A-tailing ............................................................... Komposisi ligasi gen tripsin kation ........................................ Komposisi digesti DNA rekombinan ..................................... 20 20 21 22 24 24 27 DAFTAR LAMPIRAN Lampiran 1 Komposisi dari preparasi larutan yang digunakan dalam penelitian .................................................................................. Lampiran 2 Komposisi dan cara pembuatan medium LB, SOB, dan SOC . Lampiran 3 Pengukuran efisiensi transformasi ............................................ Lampiran 4 Elektroferogram hasil sekuensing gen tripsin kation pada plasmid pGEM-T Easy dengan primer T7 Forward ................ Lampiran 5 Elektroferogram hasil sekuensing gen tripsin kation pada plasmid pGEM-T Easy dengan primer SP6 Reverse................ Lampiran 6 Hasil analisis sekuen gen tripsin kation dengan program BLASTN................................................................................... Lampiran 7 Hasil analisis sekuen gen tripsin kation dengan program BLASTX................................................................................... Lampiran 8 Hasil alignment sampel sekuen gen tripsin kation dengan sekuen yang terdapat pada database Gene Bank ...................... Lampiran 9 Hasil translasi sampel sekuen gen tripsin kation ke dalam asam amino menggunakan program Bioedit versi 7.0.9 .......... Isolasi RNA..., Annisa, FMIPA UI, 2012 51 53 55 56 59 62 63 64 65 BAB 1 PENDAHULUAN Tripsin adalah enzim protease yang dihasilkan oleh sel-sel pankreas yang berfungsi untuk memecah protein menjadi asam amino. Kerja tripsin sangat spesifik yaitu, memotong ikatan peptida pada ujung gugus karboksilat asam amino lisin dan arginin kecuali apabila diikuti oleh prolin pada sisi karboksilnya (Voytek & Gjessing 1970: 513). Tripsin memiliki peranan penting dalam kultur sel mamalia adherent, yaitu sebagai bahan pendispersi sel yang menempel (adhere) pada permukaan cawan atau botol yang digunakan untuk kultur, baik pada proses pemanenan maupun subkultur (passage). Tripsin bekerja dengan cara memotong ikatan peptida sehingga sel terlepas dari permukaan cawan (Phelan 1998: 1.1.1). Kultur sel mamalia banyak digunakan sebagai teknik dasar untuk memproduksi bahan-bahan biologis di dalam dunia kesehatan, salah satu contohnya adalah vaksin. Beberapa vaksin yang diproduksi menggunakan kultur sel mamalia antara lain adalah vaksin polio, vaksin cacar air, vaksin MMR (measles, mumps, rubella) (Lago dkk. 2003: 776; Bankamp dkk. 2008: 129) dan vaksin influenza (Schwarzer dkk. 2009: 4325). Penggunaan kultur sel mamalia yang semakin meluas dalam proses pembuatan vaksin tersebut membuat peran tripsin semakin banyak dibutuhkan (Schwarzer dkk. 2009: 4325). Tripsin yang digunakan pada kultur sel mamalia umumnya diperoleh dari pankreas babi (porcine) dan sapi (bovine). Enzim tersebut dihasilkan secara alami dalam jumlah yang cukup besar dan dapat dipurifikasi secara langsung (Travis & Roberts 1969: 2884). Tripsin yang paling banyak digunakan adalah tripsin yang berasal dari pankreas babi karena paling ekonomis (Yamaya dkk. 2002: 8). Namun, hal tersebut menjadi masalah di Indonesia, karena mayoritas penduduk Indonesia (87,18 %) adalah muslim (Badan Pusat Statistik 2012: 1). Permasalahan lainnya adalah cara memperoleh tripsin. Selama ini, tripsin diperoleh dengan cara isolasi dan purifikasi langsung dari pankreas mamalia. Hal tersebut dapat mempermudah penularan penyakit-penyakit dari hewan terinfeksi kepada manusia melalui produk akhir tripsin yang terkontaminasi, contohnya Isolasi RNA..., Annisa, FMIPA UI, 2012 BAB 2 TINJAUAN PUSTAKA 2.1 Gen tripsin kation Gen tripsin kation merupakan gen yang mengkode ekspresi enzim tripsin kation pada tubuh individu. Tripsin kation merupakan suatu enzim pemecah protein yang dihasilkan oleh sel-sel pankreas dalam bentuk molekul yang tidak aktif yaitu tripsinogen (Kunitz 1939: 447; Maroux dkk. 1971: 5031). Enzim tersebut bekerja secara spesifik dan hanya memotong ikatan peptida protein pada ujung gugus karboksilat (C-terminal) dari asam amino lisin dan arginin kecuali apabila diikuti prolin pada sisi karboksilnya (Gambar 2.1) (Voytek & Gjessing 1970: 513). Gambar 2.1 Skema pemotongan tripsin [Sumber: Berg dkk. 2002: 161 diterjemahkan sesuai aslinya.] Tripsin kation dinamakan berdasarkan muatan yang terkandung dalam enzim tersebut. Tripsin pada umumnya terbagi menjadi dua jenis yaitu, anion dan kation. Kedua jenis tripsin tersebut ditemukan secara bersamaan pada banyak hewan mamalia, salah satunya adalah sapi (bovine). Sapi memiliki persentase tripsin anion yang lebih kecil daripada tripsin kation. Tripsin anion ditemukan sebesar 10% pada pankreas sapi (Voytek & Gjessing 1970: 511). Fungsi kedua jenis tripsin tersebut sama yaitu, memotong ikatan peptida protein pada ujung gugus karboksilat asam amino lisin dan arginin. Perbedaan pada kedua jenis tripsin adalah kecepatan hidrolisis substrat. Tripsin kation lebih cepat dalam menghidrolisis substrat daripada tripsin anion (Voytek & Gjessing 1970: 513). Tripsin kation banyak digunakan sebagai enzim hidrolisis pada proses pembuatan 3 Isolasi RNA..., Annisa, FMIPA UI, 2012 Universitas Indonesia vaksin. Dewasa ini, pembuatan vaksin banyak menggunakan teknik kultur sel mamalia yang membutuhkan tripsin kation sebagai enzim hidrolitik dalam proses pemanenan atau perpindahan sel dari medium lama ke medium baru. Proses tersebut disebut juga sebagai proses subpassage cell. Tripsin kation berfungsi untuk mendispersi sel yang melekat pada media pertumbuhan maupun cawan petri tempat kulturnya sehingga mempermudah proses kultur sel baik proses pemanenan sel maupun subpassage cell (Phelan 1998: 1.1.1.). 2.2 Isolasi RNA Asam ribonukleat atau RNA adalah asam nukleat beruntai tunggal yang tersusun atas monomer-monomer nukleotida dengan gula ribosa. RNA merupakan polimer yang disebut polinukloetida. Setiap polinukleotida tersusun atas monomer-monomer yang disebut nukleotida. Setiap nukleotida tersusun atas tiga bagian, yaitu basa nitrogen, gula pentosa, dan gugus fosfat. Basa nitrogen pada RNA terdiri dari adenin, guanin, sitosin, dan urasil. Urutan basa-basa nitrogen tersebut dapat mengkode informasi genetik (Campbell dkk. 2010: 93). Beberapa molekul RNA pada sel eukariota berperan penting dalam proses sintesis protein, antara lain, yaitu mRNA, tRNA, rRNA, dan snRNA. mRNA (mesengger RNA) berfungsi sebagai pembawa informasi yang menentukan urutan asam amino protein dari DNA ke ribosom. tRNA (transfer RNA) memiliki fungsi untuk mentranslasi kodon-kodon mRNA menjadi asam amino. rRNA (ribosom RNA) mempunyai peran struktural dan katalitik (ribozim) dalam ribosom. SnRNA (small nuclear RNA) mempunyai peran struktural dan katalitik dalam spliosom, yaitu kompleks dari protein dan RNA yang menyambung pra-mRNA dalam nukleus eukariotik (Campbell dkk. 2002: 333). Menurut Sambrook & Russel (2001: 7.2), sel mamalia mengandung RNA sebesar 10-5 µg, 80--85% dari total RNA adalah rRNA (terutama 28S, 18S, 5,8S, dan 5S) dan sisanya 15--20% terdiri dari berbagai RNA dengan berat molekul yang rendah seperti tRNA dan snRNA. Molekul mRNA hanya ditemukan sebesar 1--5% dari total RNA pada sel mamalia dan memiliki ukuran dan urutan basa nukleotida yang bervariasi. Ukuran panjang mRNA dapat berbeda-beda, mulai Isolasi RNA..., Annisa, FMIPA UI, 2012 dari beberapa ratus basa sampai beberapa ribu basa nukleotida. Molekul mRNA pada sel mamalia memiliki poli-A yang cukup panjang pada ujung 3’nya sehingga dapat mempermudah mRNA untuk diisolasi. Molekul komplemen poli-T atau primer oligo(dT) dapat digunakan sebagai ‘pengait’ untuk mengikat poli-A yang terdapat pada ujung mRNA. Dengan begitu, mRNA dapat dipisahkan dengan rRNA dan tRNA yang banyak jumlahnya. Isolasi adalah prosedur yang digunakan untuk memisahkan suatu bagian dari bagian lain dengan tujuan tertentu (Singleton & Sainsbury 2006: 409). Isolasi RNA digunakan untuk memisahkan RNA dari zat lain sehingga dihasilkan RNA murni. Secara umum terdapat tiga dasar persyaratan isolasi RNA, yaitu melisiskan membran sel untuk mengekspos RNA, pemisahan RNA dari zat-zat dan molekul lainnya seperti DNA, lipid, protein, dan karbohidrat, dan pemulihan RNA dalam bentuk murni (Dale & Schantz 2002: 31--33; Nicholl 2002: 27). Salah satu metode isolasi RNA adalah metode guanidine tiosianat. Guanidine tiosianat adalah salah satu senyawa yang paling efektif dalam mendenaturasi protein. Prinsip kerja dari metode guanidine tiosianat adalah melisiskan membran sel dan membuat RNA larut di dalam larutan yang mengandung guanidine tiosianat. Penambahan larutan fenol/kloroform pada larutan guanidine tiosianat dapat membuat pH larutan menjadi asam (pH 4). Di bawah kondisi asam, protein dan fragmen DNA (50 pb--10.000 pb) akan berada pada fase organik. Fragmen DNA yang lebih besar dan beberapa protein akan tetap berada pada fase interfase, sedangkan RNA berada pada fase cair (Gambar 2.2.(1)). RNA yang terdapat pada fase cair kemudian dipisahkan untuk dilakukan pencucian dan pemulihan RNA (Ausubel dkk. 2003: 4.2.8). Gambar 2.2 Pemisahan RNA dari molekul protein dan DNA di bawah kondisi asam [Sumber: Dale & Schantz 2002: 33 diterjemahkan sesuai aslinya.] Isolasi RNA..., Annisa, FMIPA UI, 2012 2.3 Pengklonaan 2.3.1 Pengertian pengklonaan gen Pengklonaan gen adalah suatu proses memasukkan DNA asing atau gen asing ke dalam suatu sel inang dengan bantuan vektor (Wong 1997: 4). Tujuan dari pengklonaan gen adalah perbanyakkan gen yang identik. Gen asing yang ingin diperbanyak, disisipkan ke dalam vektor sehingga membentuk suatu DNA rekombinan dan akan mengalami replikasi di dalam sel inang (Griffiths dkk. 1999: 300). Klona merupakan kelompok organisme atau koloni bakteri yang mengandung gen target (Campbell dkk. 2002: 393). Komponen-komponen penting pada pengklonaan gen adalah sumber DNA, vektor, dan sel inang. Pengklonaan gen memiliki empat tahapan utama, antara lain konstruksi DNA rekombinan, transformasi, seleksi sel klona, dan pengisolasian DNA rekombinan yang membawa gen yang diinginkan (Strachan & Read 1999: 119). 2.3.2 Komponen pengklonaan 2.3.2.1 Sumber DNA Sumber DNA merupakan salah satu komponen utama dalam pengklonaan gen. Sumber DNA dapat berupa DNA kromosom ataupun complementary DNA (cDNA) yang diperoleh dari proses penyalinan mRNA dengan bantuan enzim reverse transcriptase (Brown 2002: 155; Campbell dkk. 2002: 393). Complementary DNA dapat digunakan untuk keperluan ekspresi gen eukariot dalam sel prokariot. Complementary DNA diperoleh dari proses penyalinan mRNA yang sudah tidak memiliki daerah intron pada urutan basa nukleotidanya. Daerah intron dapat mencegah ekspresi gen eukariot pada sel prokariot. Sel prokariot tidak memiliki perangkat untuk memotong daerah intron sebagaimana halnya pada eukariot. Oleh karena itu, cDNA banyak dipilih sebagai sumber DNA pada proses pengklonaan maupun ekspresi gen eukariot dalam sel prokariot (Nicholl 2002: 92--94). Isolasi RNA..., Annisa, FMIPA UI, 2012 2.3.2.2 Vektor pGEM-T Easy Vektor pGEM-T Easy adalah vektor plasmid yang dirancang untuk pengklonaan produk PCR. Vektor pGEM-T Easy merupakan vektor linier yang memiliki basa timin tunggal pada kedua ujung 3’nya yang disebut dengan Toverhang (Gambar 2.3.2.2). T-overhang pada bagian sisi penyisipan dapat meningkatkan efisiensi ligasi dari produk PCR dengan mencegah resirkularisasi dari vektor dan menyediakan overhang yang sesuai untuk produk PCR. Vektor pGEM-T Easy meupakan vektor yang memiliki kemampuan penggandaan gen target yang tinggi (high-copy number) yang terdiri dari promoter T7 dan SP6 RNA polimerase (Promega 2010: 1--4). Vektor pGEM-T Easy memiliki promoter T7 dan SP6 RNA polimerase yang mengapit daerah Multiple Cloning Site (MCS) di dalam α-peptida yang mengkode enzim β-galaktosidase. Hal tersebut menjadikan hasil klona dapat diseleksi dengan metode penapisan putih biru. Vektor pGEM-T Easy disertai dengan 2x rapid ligation buffer yang dapat mempercepat proses ligasi. Sistem vektor pGEM T-Easy juga dilengkapi dengan situs ori, multiple cloning site (MCS), dan kodon start. Vektor tersebut membawa gen β-lactamase (bla) yang memberikan resistensi terhadap ampisilin (Promega 2010: 11). Gambar 2.3.2.2 Vektor pGEM T-Easy [Sumber: Promega 2010: 12.] Isolasi RNA..., Annisa, FMIPA UI, 2012 2.3.2.3 Enzim restriksi Enzim restriksi merupakan enzim yang dapat memotong ikatan fosfodiester pada sekuen nukleotida. Enzim restriksi yang umum digunakan dalam teknologi rekayasa genetika adalah endonuklease tipe II. Hal tersebut disebabkan karena endonuklease tipe II dapat mengenali dan memutus ikatan fosfodiester pada situs pengenalan spesifik dari DNA (Wong 1997: 69). Enzim restriksi dibedakan berdasarkan hasil potongan yang dihasilkan. Beberapa enzim memotong kedua untai DNA pada posisi yang sama dan akan menghasilkan ujung potongan blunt end. Contoh enzim tersebut adalah SmaI, HaeIII, dan SfoI. Potongan blunt end dihasilkan jika enzim restriksi memotong DNA tepat pada bagian tengah situs pengenalan. Beberapa enzim memotong untai DNA pada posisi yang berbeda dan menghasilkan potongan kohesif yang disebut sticky end. Contoh enzim tersebut adalah EcoRI, PstI, dan XmaI (Wong 1997: 70; Primorse dkk. 2001: 30). Proses pemotongan fragmen DNA menggunakan enzim restriksi disebut digesti (Lewis 2003: 74). 2.3.2.4 Enzim ligase Enzim ligase adalah enzim yang digunakan untuk menggabungkan fragmen-fragmen DNA. Enzim tersebut mengkatalisis reaksi pembentukan ikatan fosfodiester antara 5’-P dan 3’-OH ujung akhir dua molekul DNA yang berbeda yang saling berdekatan. Enzim ligase digunakan dalam teknik rekayasa genetika karena mampu menyambungkan fragmen DNA baik ujung rata (blunt end) maupun ujung kohesif (sticky end). Enzim ligase yang biasa digunakan dalam teknik rekayasa genetika biasanya dimurnikan dari bakteri E. coli yang telah diinfeksi faga T4. Enzim tersebut dinamakan enzim bakteriofaga T4 DNA ligase (Sambrook & Russell 2001: 1.157-- 1.159). Isolasi RNA..., Annisa, FMIPA UI, 2012 2.3.2.5 Sel inang E. coli DH5α Sel inang dipilih berdasarkan pada tujuan pengklonaan dan sampel DNA yang akan diklonkan (Tamarin 2002: 238). Karakteristik sel inang yang baik dalam pengklonaan antara lain yaitu, memiliki laju pertumbuhan yang cepat, tumbuh dalam jumlah yang banyak, bersifat nonpatogenik, dapat menerima vektor, menjaga stabilitas gen asing, dan dapat mengekspresikan gen asing (Nicholl 2002: 58). Sel inang prokariot yang umum digunakan adalah E. coli karena protokol untuk memanfaatkan sel tersebut telah tersedia, relatif lebih mudah, dan informasi genetik kedua sel tersebut telah diketahui (Talaro 2008: 302). E. coli merupakan bakteri Gram negatif yang dapat tumbuh dengan cepat dalam medium pengayaan, serta memiliki banyak galur yang telah dikarakterisasi (Davis dkk. 1994: 47). E. coli DH5α adalah sel inang yang baik untuk penglonaan DNA karena memiliki efisiensi transformasi yang tinggi hasil dari mutasi endA1, LacZΔM15, hsdR17, dan RecA1. Mutasi endA1 pada E. coli DH5α menyebabkan DNA terjaga dari aktivitas enzim endonuklease I. Mutasi LacZΔM15 berperan dalam seleksi biru-putih terhadap rekombinan. Mutasi hsdR17 menjaga efisiensi DNA agar tidak termetilasi, dan mutasi RecA1 berperan dalam mengurangi terjadinya rekombinasi yang tidak dikehendaki dalam pengklonaan DNA (Karcher 1995: 94). 2.4 Reverse transcription-polymerase chain reaction (RT-PCR) Teknik reverse transcription-polymerase chain reaction (RT-PCR) merupakan metode paling sensitif dalam menyintesis DNA tunggal dari mRNA. Prinsip dasar dari RT-PCR adalah mengubah untai mRNA menjadi DNA dengan bantuan enzim reverse transcriptase dan primer oligo-dT. Primer oligo-dT akan menempel pada ujung 3’ poli-A mRNA dan selanjutnya enzim reverse transcriptase akan membentuk untai DNA awal dengan menyintesis basa-basa nukleotida mRNA dengan basa komplemennya. Setelah untai pertama DNA terbentuk, cetakan mRNA didegradasi dengan bantuan enzim RNase H (Kendall Isolasi RNA..., Annisa, FMIPA UI, 2012 & Rilley 2000: 42). Untai pertama DNA merupakan untai tunggal, sehingga dibutuhkan primer forward untuk membuat komplemen untai tunggal tersebut menjadi DNA untai ganda. DNA untai ganda yang telah terbentuk selanjutnya diamplifikasi dengan teknik PCR standar (Gambar 2.4) (Weaver & Hedrick 1997: 81--82). Teknik Polymerase Chain Reaction (PCR) merupakan teknik molekuler yang dapat memperbanyak sekuen DNA spesifik menjadi jutaan salinan secara in vitro. Teknik PCR menggandakan DNA dengan bantuan enzim Taq DNA polymerase yang tahan akan suhu tinggi dan sepasang primer oligonukleotida yang masing-masing komplementer dengan ujung 3’ dari salah satu untai DNA sasaran (Passarge 2007: 60). Prinsip kerja PCR adalah reaksi enzimatik dari proses polimerisasi DNA untuk memperbanyak bagian-bagian spesifik DNA yang diinisiasi dengan pelekatan primer. Primer tersebut akan mengapit daerah spesifik pada DNA yang akan diperbanyak dan menginisiasi replikasi DNA sehingga menghasilkan salinan DNA yang sama. Primer yang digunakan pada proses PCR adalah primer forward dan reverse (Fairbanks & Andersen 1999: 277; Russell 1994: 401-402). Komponen-komponen yang digunakan pada proses PCR antara lain adalah DNA template yang mengandung sekuen spesifik yang akan diperbanyak, dNTP (deoksinukleotida trifosfat) berperan sebagai sumber monomer nukleotida dalam polimerisasi DNA, PCR buffer berperan dalam mempertahankan kestabilan pH, primer forward dan reverse, kation divalen berperan sebagai kofaktor enzim DNA polimerase. Komponen lain yang digunakan di dalam PCR adalah Taq DNA polymerase yang berperan dalam menghasilkan produk DNA target, dan akuabides berperan sebagai pelarut (Paolella 1998: 182). Siklus PCR terdiri atas tiga tahap, yaitu denaturasi, annealing (pelekatan) dan polimerisasi (pemanjangan primer sehingga membentuk rantai DNA yang diinginkan (Klug & Cummings 1994: 291 & 403). Tahap awal dalam reaksi PCR adalah denaturasi, yaitu proses pemisahan DNA untai ganda menjadi untai tunggal. Suhu proses denaturasi tergantung pada banyaknya basa guanin dan sitosin, serta panjang cetakan DNA. Semakin panjang cetakan DNA dan semakin banyak basa guanin dan sitosin yang Isolasi RNA..., Annisa, FMIPA UI, 2012 dikandung, maka semakin tinggi suhu yang diperlukan, serta semakin lama waktu yang dibutuhkan. Suhu umum yang digunakan untuk denaturasi adalah sekitar 90--96° C. Tahap kedua dalam reaksi PCR adalah annealing yang merupakan proses pelekatan primer pada cetakan DNA. Suhu annealing biasanya berada antara 3°--5° C lebih rendah daripada melting temperature terendah primer. Suhu annealing yang digunakan adalah antara 50°--70° C. Tahap ketiga adalah polimerisasi, yaitu proses pemanjangan primer oligonukleotida dengan bantuan enzim Taq DNA polymerase. Suhu pada tahap polimerisasi harus disesuaikan dengan suhu optimum kerja enzim yang digunakan. Enzim Taq DNA polymerase umumnya menggunakan suhu polimerisasi antara 72°--78° C (Sambrook & Russell 2001: 8.8--8.9). Gambar 2.4 Reverse Transcription-Polymerase Chain Reaction (RT-PCR) [Sumber: Kendall & Rilley 2000: 42.] Isolasi RNA..., Annisa, FMIPA UI, 2012 2.5 Elektroforesis Elektroforesis adalah teknik untuk memisahkan molekul bermuatan berdasarkan perbedaan kecepatan migrasi dalam medan listrik. Prinsip kerja elektroforesis ditujukan terhadap pemisahan molekul-molekul organik seperti DNA, RNA, atau protein berdasarkan ukuran ataupun muatan. Tujuan pemisahan molekul-molekul tersebut adalah untuk mengetahui ukuran atau jumlah basa serta mengetahui ukuran basa nukleotida (Fairbanks & Andersen 1999: 278). Teknik elektroforesis menggunakan matriks gel yang berfungsi sebagai medan listrik tempat terjadinya migrasi dari molekul-molekul organik. Molekul bermuatan negatif (anion) akan bermigrasi ke elektroda positif (anoda), sedangkan molekul bermuatan positif (kation) akan bermigrasi ke elektroda negatif (katoda). Elektroforesis merupakan salah satu cara yang digunakan untuk memvisualisasikan hasil PCR berupa fragmen-fragmen DNA yang telah diamplifikasi (Freifelder 1987: 71). Visualisasi fragmen DNA atau RNA dapat dilihat dengan pewarnaan menggunakan etidium bromida (EtBr) sebagai agen interkalase yang dapat meningkatkan daya fluoresensi DNA di bawah sinar ultraviolet (UV) (Martin 1996: 50). 2.6 Transformasi DNA rekombinan pada sel inang Transformasi adalah salah satu cara untuk memasukkan fragmen DNA sisipan ke dalam sel bakteri (Campbell dkk. 2002: 354). Terdapat beberapa metode transformasi. Pemilihan metode yang digunakan untuk transformasi tergantung pada sel inang yang digunakan. Transformasi pada sel inang bakteri dapat dilakukan dengan teknik kejutan panas (heat shock) dan elektroporasi. Teknik kejutan panas dilakukan dengan mensuspensikan sel bakteri ke dalam larutan yang memiliki kation bivalen seperti CaCl2. Perlakuan CaCl2 menyebabkan membran sel menjadi lebih permeabel dan bermuatan positif, sehingga menarik DNA yang bermuatan negatif masuk ke dalam sel (Seidman dkk. 1997: 1.8.1--1.8.10; Primorse dkk. 2001: 18). Sel bakteri yang sudah kompeten dapat ditransformasi dengan DNA rekombinan dengan cara diberikan Isolasi RNA..., Annisa, FMIPA UI, 2012 kejutan panas pada suhu sekitar 37°--42° C. Metode kejutan panas dapat menghasilkan efisiensi transformasi yang tinggi dengan kisaran 5x105--2x107 cfu/µg (Sambrook & Russell 2001: 1.25 & 1.116). 2.7 Screening Screening adalah tahapan untuk menyeleksi klona pembawa gen target. Salah satu cara untuk menyeleksi klona pembawa gen target adalah dengan seleksi koloni putih biru. Seleksi putih biru atau α-komplementasi adalah metode screening yang melibatkan gen lacZ. Gen lacZ merupakan gen yang memproduksi enzim β-galaktosidase yang dapat menghidrolisis X-gal dan menghasilkan pigmen biru (Raven & Johnson 2002: 396--397). Vektor yang tidak mengandung fragmen gen target akan menghasilkan koloni berwarna biru karena gen lacZ yang terdapat didalam plasmid tetap berfungsi sehingga dapat menghidrolisis X-gal. Sebaliknya, vektor yang mengandung fragmen gen target akan menghasilkan koloni berwarna putih akibat rusaknya gen lacZ, sehingga tidak dapat memproduksi enzim β-galaktosidase dan pada akhirnya X-gal tidak terhidrolisis (Raven & Johnson 2002: 396--397). Kemampuan bakteri untuk menghasilkan β-Galaktosidase yang akan menghidrolisis X-gal disebut αkomplementasi (Davis dkk. 1994: 239--240). 2.8 Sekuensing DNA dan analisis hasil sekuensing Sekuensing DNA adalah proses pengenalan urutan basa nukleotida pada suatu fragmen DNA (Nicholl 2002: 36). Sekuensing DNA digunakan dalam berbagai aplikasi, antara lain di bidang rekayasa genetika sebagai konfirmasi identitas suatu klona, karakterisasi cDNA, verifikasi DNA rekombinan, dan identifikasi polimorfisme (mutasi pada gen tertentu). Metode sekuensing yang umum digunakan adalah metode Maxam-Gilbert dan Sanger. Metode MaxamGilbert merupakan metode sekuensing yang menggunakan bahan kimia spesifik untuk memotong untai fragmen DNA target, sedangkan metode Sanger menggunakan enzim DNA polimerase untuk membentuk salinan komplementer Isolasi RNA..., Annisa, FMIPA UI, 2012 dari fragmen DNA target (Sambrook & Russell 2001: 3.11 & 13.7). Sebagian besar proses sekuensing telah dimodifikasi menjadi suatu program pada komputer, sehingga dikenal sebagai automated DNA sequencing. Proses tersebut merupakan modifikasi dari metode Sanger. Komputerisasi program DNA sekuensing dapat menggunakan beberapa metode yaitu, metode Maxam-Gilbert, metode Sanger, dan metode automated DNA sequencing (Nicholl 2002: 129). Hasil sekuensing dapat dianalisis dengan menggunakan program BLAST (Basic Local Alignment Search Tool) yang dikembangkan oleh National Center for Biotechnology Information (NCBI). Program BLAST bertujuan untuk menelusuri identitas sekuen dari suatu sampel dengan cara membandingkan data sekuen sampel dengan data sekuen yang terdapat pada Gene Bank. Program BLAST menggunakan prinsip algoritma yang digunakan untuk membandingkan data sekuen biologis (sekuen asam amino dan nukleotida) secara cepat. Program BLAST dapat diakses secara online pada situs www.ncbi.nlm.nih.gov/blast. BLAST memiliki variasi program untuk analisis homologi sekuen seperti BLASTN, BLASTP, dan BLASTX. Program BLASTN digunakan untuk mencari tingkat kesamaan sekuen basa nukleotida sampel dengan sekuen basa nukleotida yang terdapat pada Gene Bank. Program BLASTP digunakan untuk mencari tingkat kesamaan sekuen asam amino sampel dengan database protein. Program BLASTX digunakan untuk mencari tingkat kesamaan sekuen basa nukleotida sampel dengan database protein (Cherry 1995: 7.7.12--7.7.13; Ausubel dkk. 2003: 19.3.1--19.3.29). Program lain yang dapat digunakan untuk analisis hasil sekuensing adalah program Bioedit versi 7.0.9. Bioedit adalah program editor sekuen biologis yang dapat digunakan pada Windows 95/98/NT/2000/XP yang bertujuan untuk mengedit, meng-alignment, memanipulasi, dan menganalisis sekuen protein dan basa nukleotida (Hall 2001: 5). Isolasi RNA..., Annisa, FMIPA UI, 2012 BAB 3 METODOLOGI PENELITIAN 3.1 Lokasi dan waktu penelitian Penelitian dilakukan di Laboratorium Biologi Molekular, Laboratorium Pusat Teknologi Bioindustri, Badan Pengkajian dan Penerapan Teknologi (BPPT), Pusat Penelitian Ilmu Pengetahuan dan Teknologi (Puspiptek), Serpong. Penelitian dilakukan selama 8 bulan, terhitung sejak Oktober 2011 hingga Mei 2012. 3.2 Bahan 3.2.1 Sampel Sampel yang digunakan adalah potongan pankreas sapi yang diperoleh dari Rumah Pemotongan Hewan Bubulak, Bogor, Jawa Barat. 3.2.2 Vektor Vektor yang digunakan sebagai pembawa DNA sisipan ke dalam sel inang adalah pGEM T-Easy (3.015 pb) [Promega]. 3.2.3 Kultur sel inang Kultur sel inang yang digunakan adalah E. coli strain DH5α yang ditumbuhkan pada medium Luria Bertani (LB) agar. 3.2.4 Bahan Kimia Bahan-bahan kimia yang digunakan pada penelitian antara lain yaitu, yeast extract [Scharlau], Tripton [Merck], natrium klorida (NaCl) [Merck], kalium Isolasi RNA..., Annisa, FMIPA UI, 2012 klorida (KCl) [Merck], dNTP mix [Promega], agarosa [1st Base], KAPA taq polimerase [Biosystems], GeneJet RNA purification kit [Fermentas], first strand cDNA synthesis [Fermentas], SuperScript™ II reverse transcriptase [Invitrogen], gel/PCR purification kit [GeneAid], buffer 2x Rapid Ligation [Promega], T4 DNA ligase [Promega], T4 DNA ligase buffer [Promega], ampisilin [Merck], IPTG [Invitrogen], X-Gal [Invitrogen], dimetil sulfoksida (DMSO) [Sigma-Aldrich], loading dye 6x [Fermentas], DNA ladder [Fermentas], enzim restriksi SfoI [NEB], enzim restriksi XmaI [NEB], bufferNEB 4 [NEB], Rnase A [Fermentas], etanol 70%, etanol 96%, ddH2O steril, nitrogen cair, proteinase K, enzim HF Phusion [NEB], Polietilenglikol (PEG), diethylpurocarbonate (DEPC) [Merck], βmercaptoetanol, MOPS [Sigma], sodium asetat, etidium bromida (EtBr) [Sigma], EDTA, dan sepasang primer spesifik untuk gen tripsin kation yaitu cat-trypforward (5’- AATTTCGGCGCCATGAAGACCTTCATCTTTCTG-3’) [1st Base] serta cat-tryp-reverse (5’TTGCCCGGGTTAGTGATGGTGATGGT GATGGTTGGAGGCGATGGTTGC-3’) [1st Base]. 3.3 Alat Alat-alat yang digunakan pada penelitian adalah thermal cycler [Eppendorf Master Cycler Personal], Elektroforesis [Mupid], laminar flow cabinet [ESCO], spektrofotometer UV-VIS [Hitachi U-2001], shaker incubator [Koehner], centrifuge [Sorval Fresco], vorteks [Supermixer K], autoklaf [Iwaki], milipore [Simpak 1], pH meter, kamera digital [Kodak], neraca analitik [RAD WAG WAS 220/C/2], thermomixer [Eppendorf Thermomixer Comfort], tabung nitrogen cair [XT 10 Taylor-Wharton], konsentrator [Eppendorf Consentrator 5301], microwave [Sharp], inkubator [Memmert], hot plate with magnetic stirrer [Cimarec-2], pipet mikro berukuran 0,1--2,5 µl, 0,1--10 µl, 10--100 µl, 100--1000 µl [Gibson], nanodrop spectrophotometer [ND-1000], tabung mikrosentrifugasi & tabung PCR [Sorenson], tips mikropipet [Sorenson], tabung falkon [Corning], Lemari pendingin [Sharp], Freezer -74°, cawan petri, tabung reaksi, gelas ukur 25ml [Iwaki pyrex], erlenmeyer 250 ml [Iwaki pyrex], parafilm [Sigma], lemari asam [Esco], Sarung tangan [Sensi gloves], plastic seal [Klin Pak], perangkat Isolasi RNA..., Annisa, FMIPA UI, 2012 dokumentasi gel [kodak], mikroskop, beaker glass 100 ml dan 200 ml [Iwaki pyrex], laptop [Benq], mortar, korek api, ose, pinset, triangle spreader, dan spidol permanen [Faber castle]. 3.4 Skema kerja penelitian Skema kerja penelitian dapat dilihat pada Gambar 3.4. Isolasi RNA dari jaringan pankreas sapi RT-PCR gen tripsin kation Purifikasi PCR gen tripsin kation Ligasi vektor pGEM-T Easy dengan gen tripsin kation Transformasi dengan metode heat shock Screening dengan metode seleksi koloni putih biru Isolasi plasmid rekombinan Digesti plasmid rekombinan dengan enzim SfoI dan XmaI Purifikasi plasmid rekombinan Sekuensing Analisis hasil sekuensing Gambar 3.4 Skema kerja penelitian Isolasi RNA..., Annisa, FMIPA UI, 2012 3.5 Cara kerja 3.5.1 Pembuatan larutan/buffer Pembuatan larutan/buffer dapat dilihat pada Lampiran 1. 3.5.2 Pembuatan medium Pembuatan medium dapat dilihat pada Lampiran 2. 3.5.3 Isolasi RNA pankreas sapi Molekul RNA total pankreas sapi diisolasi dengan menggunakan Gene Jet RNA purification kit (Fermentas 2011: 6--7). Proses isolasi RNA total diawali dengan menggerus pankreas sapi dengan nitrogen cair di dalam mortar, kemudian sebanyak 30 mg sampel dipindahkan ke dalam tabung mikrosentrifugasi 1,5 ml steril. Sampel kemudian dicampur dengan 300 µl lysis buffer yang mengandung β-mercaptoetanol. Campuran selanjutnya dihomogenisasi dengan vorteks selama 10 detik dan ditambahkan larutan Proteinase K yang telah diencerkan di dalam TE buffer sebelumnya (10µl proteinase K dalam 590 µl TE buffer) sebanyak 600 µl, kemudian campuran divorteks. Campuran diinkubasi pada suhu 15--25° C selama 10 menit dan disentrifugasi dengan kecepatan 13000 rpm selama 10 menit pada suhu 4° C. Supernatan yang dihasilkan dipindahkan ke dalam tabung mikrosentrifugasi 1,5 ml steril dan dicampur dengan 450 µl etanol 96%. Campuran supernatan-etanol 96% dimasukkan maksimal sebanyak 700 µl ke dalam kolom purifikasi RNA yang telah dimasukkan ke dalam tabung koleksi. Campuran kemudian disentrifugasi dengan kecepatan 13000 rpm selama 1 menit pada suhu 4° C. Supernatan yang terdapat di dalam tabung koleksi dibuang. Sentrifugasi dilakukan kembali apabila campuran supernatan-etanol 96% lebih dari 700 µl. Sebanyak 700 µl wash buffer 1 ditambahkan ke dalam kolom purifikasi RNA dan disentrifugasi kembali dengan kecepatan 13000 rpm selama 1 menit pada suhu 4° C. Supernatan yang terdapat di dalam tabung koleksi dibuang. Kolom purifikasi RNA kemudian ditambahkan larutan wash buffer 2 Isolasi RNA..., Annisa, FMIPA UI, 2012 sebanyak 600 µl dan disentrifugasi dengan kecepatan 13000 rpm selama 1 menit pada suhu 4° C. Supernatan yang terdapat di dalam tabung koleksi dibuang. Larutan wash buffer 2 sebanyak 250 µl ditambahkan ke dalam kolom purifikasi RNA. Tabung kemudian disentrifugasi dengan kecepatan 13000 rpm selama 2 menit pada suhu 4° C. Supernatan yang dihasilkan di dalam tabung koleksi dibuang. Kolom purifikasi RNA dipindahkan ke dalam tabung mikrosentrifugasi 1,5 ml steril, kemudian nuclease-free water sebanyak 100 µl ditambahkan ke tengah membran kolom purifikasi RNA. Tabung kemudian disentrifugasi dengan kecepatan 13000 rpm selama 1 menit pada suhu 4° C. Supernatan yang tertampung pada tabung mikrosentrifugasi 1,5 ml steril adalah sampel RNA murni. Sampel kemudian disimpan dalam freezer dengan suhu -74° C. 3.5.4 Pemisahan fragmen RNA dengan elektroforesis gel agarosa Fragmen RNA dipisahkan dengan metode elektroforesis gel agarosa berdasarkan modifikasi dari Sambrook & Russell (2001: 7.21--7.34). Gel agarosa dibuat dengan konsentrasi 1% dalam buffer TAE 1x dengan campuran formaldehid 2,2 M. Sampel RNA sebanyak 3 µl ditambahkan ke dalam loading buffer yang terdiri dari 1 µl buffer MOPS 10x dan 2 µl formaldehid 30 M, kemudian campuran dihomogenisasi dan diinkubasi selama 10 menit pada suhu 85° C. Sampel selanjutnya didinginkan di dalam es selama 10 menit dan ditambahkan loading dye 6x, serta dihomogenisasi dengan mikropipet. Campuran dimasukkan ke dalam sumur gel agarosa. Gel agarosa direndam di dalam running buffer MOPS 1x. Menurut Sambrook & Russell (2001: 7.34), sampel yang terdapat didalam sumur gel agarosa yang direndam dalam buffer MOPS 1x membutuhkan tegangan 4--5 V/cm untuk migrasi saat elektroforesis berlangsung. Elektroforesis dilakukan dengan tegangan 25 V selama 95 menit. Gel agarosa dimasukkan ke dalam wadah berisi etidium bromida (EtBr) selama 15 menit. Hasil elektroforesis dapat dilihat di bawah sinar UV dan difoto menggunakan kamera digital. Isolasi RNA..., Annisa, FMIPA UI, 2012 3.5.5 Reverse transcription PCR (RT-PCR) Pembuatan cDNA dari mRNA pankreas sapi dilakukan berdasarkan metode reverse transcription PCR (RT-PCR) menggunakan modifikasi dari dua kit yaitu SuperScript™ II Reverse Transcriptase [Invitrogen] dan First Strand cDNA Synthesis [Fermentas]. Hal tersebut disebabkan karena primer Oligo(dT) yang digunakan merupakan produk dari Fermentas, sedangkan enzim reverse transcriptase merupakan produk dari Invitrogen. Terdapat dua tahapan utama dalam metode tersebut yaitu sintesis cDNA kemudian amplifikasi gen dengan teknik standar PCR (Fermentas 2011: 1--11; Invitrogen 2007: 1--4). Proses sintesis untai pertama cDNA dimulai dengan pembuatan RNA mix, dengan komposisi masing-masing pada Tabel 3.5.5(1). Tabel 3.5.5(1) Komposisi RNA mix. Bahan Volume Oligo(dT) 5 µl Sampel RNA 50 µl TOTAL 55 µl [Sumber: Fermentas 2011: 7.] RNA mix diinkubasi selama 10 menit pada suhu 65° C, kemudian segera didinginkan di dalam es selama 2--3 menit. Persiapan cDNA synthesis mix sesuai dengan komposisi pada Tabel 3.5.5(2). Tabel 3.5.5(2) Komposisi cDNA synthesis mix. Bahan Volume dNTP 10 mM 10 µl Buffer first-strand 5x 20 µl DTT 0,1 M 10 µl TOTAL 50 µl [Sumber: Invitrogen 2007: 2.] Isolasi RNA..., Annisa, FMIPA UI, 2012 Penyampuran 50 µl cDNA synthesis mix ke dalam 55 µl RNA mix dilakukan secara perlahan. Campuran tersebut di inkubasi selama 2 menit pada suhu 42° C, kemudian ditambahkan enzim SuperScript™ II reverse transcriptase sebanyak 5 µl. Campuran kemudian dihomogenisasi dengan pipet secara perlahan dan diinkubasi pada suhu 42° C selama 50 menit. Inkubasi dilanjutkan pada suhu 70° C selama 15 menit. Sampel cDNA yang telah terbentuk dapat disimpan pada suhu -20° C atau dapat langsung digunakan untuk proses PCR selanjutnya. Tahapan untuk amplifikasi fragmen gen tripsin kation menggunakan teknik polymerase chain reaction (PCR). Persiapan pertama dalam tahapan tersebut adalah PCR mix dengan komposisi seperti pada Tabel 3.5.5(3). Tabel 3.5.5(3) Komposisi PCR mix Bahan Sampel Kontrol (-) 16,1 µl 16,6 µl Buffer HF Phusion 5x 5 µl 5 µl Cat-tryp-for 1 µl 1 µl Cat-tryp-rev 1 µl 1 µl dNTP 0,5 µl 0,5 µl DMSO 0,75 µl 0,75 µl Template cDNA 0,5 µl - Enzim HF Phusion Taq DNA polymerase 0,15 µl 0,15 µl 25 µl 25 µl ddH2O TOTAL [Sumber: Finnzymes 2007: 1.] Proses PCR tersebut menggunakan primer yang telah dikonstruksi sebelumnya, yaitu primer cat-tryp-forward (5’- AATTTCGGCGCCATGAAGACCTTCATC TTTCTG-3’) [1st Base] dan primer cat-tryp-reverse (5’TTGCCCGGGTTAGTG ATGGTGATGGTGATGGTTGGAGGCGATGGTTGC-3’) [1st Base]. Kedua primer tersebut mengamplifikasi gen tripsin kation sebesar 780 pb pada sampel cDNA. Selain mengandung sekuen spesifik untuk amplifikasi gen kation, primer forward juga ditambahkan situs pemotongan untuk enzim restriksi SfoI, sementara pada primer reverse ditambahkan situs pemotongan enzim restriksi XmaI, His-tag Isolasi RNA..., Annisa, FMIPA UI, 2012 dan stop codon. Penambahan situs pemotongan dilakukan agar gen terisolasi dapat disubkloning ke dalam vektor ekspresi lain. His-tag ditambahkan untuk mempermudah proses isolasi protein rekombinan menggunakan kolom Ni-NTA. Tahapan berikutnya, dilakukan pengaturan tertentu pada mesin PCR. Program yang digunakan untuk mengamplifikasi gen tripsin kation adalah program Touchdown. Program Touchdown adalah program PCR yang memiliki prinsip kerja yaitu penurunan suhu annealing setiap satu siklus PCR. Suhu annealing turun 0,5°--4° C setiap satu siklus. Suhu annealing pada siklus pertama menggunakan temperature melting tertinggi dari primer yang digunakan, kemudian siklus-siklus berikutnya terjadi penurunan suhu annealing. Siklus terakhir berhenti setelah proses PCR mencakup temperature melting primer terendah sebagai suhu annealing (Ausubel dkk. 2003: 14.8.5). Program Touchdown untuk mengamplifikasi gen tripsin kation dapat dilihat pada Tabel 3.5.5(4). Hasil RT PCR tersebut kemudian dapat dilihat dengan elektroforesis. Tabel 3.5.5(4) Program PCR Touchdown gen tripsin kation No Tahapan Suhu Waktu Siklus - 1 Pradenaturasi 98° C 30 detik 2 Denaturasi 98° C 10 detik 3 Annealing 78,1° C (-0,5° C ± 00) 15 detik 4 Elongasi 72° C 30 detik 5 GO TO 2 - - 6 Denaturasi 98° C 10 detik 7 Annealing 68,4 ° C 15 detik 8 Elongasi 72° C 30 detik 9 GO TO 6 - - 9x 10 Elongasi akhir 72° C 10 menit - Preservasi 4° C ∞ - Isolasi RNA..., Annisa, FMIPA UI, 2012 19x 3.5.6 Elektroforesis Elektroforesis dilakukan dengan menggunakan media gel agarosa. Gel agarosa dibuat dengan konsentrasi 1% dalam buffer TAE 1x. Sampel DNA ditambahkan dengan loading dye 6x. Campuran kemudian dihomogenisasi menggunakan mikropipet dan campuran dimasukkan ke dalam sumur gel agarosa. Marka 1kb DNA ladders dimasukkan ke dalam sumur gel agarosa lainnya sebagai pembanding ukuran fragmen DNA. Elektroforesis dilakukan dengan tegangan 100 V selama 25--30 menit. Gel agarosa kemudian direndam di dalam larutan etidium bromida (EtBr) selama 10 menit. Pita-pita DNA yang terbentuk pada gel dapat dilihat di bawah sinar UV dan didokumentasikan untuk dianalisis. 3.5.7 Purifikasi produk PCR Proses purifikasi produk PCR dilakukan menggunakan kit “Gel/PCR DNA Fragments Extraction Kit” dari Geneaid (2010: 3). Sampel sebanyak 100 µl ditambahkan larutan DF buffers dengan perbandingan volume 1:5. Sampel kemudian dipindahkan ke dalam kolom DF yang telah dimasukkan ke dalam tabung koleksi 2 ml. Sampel kemudian disentrifugasi dengan kecepatan 13000 rpm selama 30 detik. Supernatan yang tertampung pada tabung koleksi dibuang. Sebanyak 600 µl Wash buffer ditambahkan ke dalam kolom DF kemudian didiamkan selama 1 menit. Tabung disentrifugasi dengan kecepatan 13000 rpm selama 30 detik, supernatan yang berada dalam tabung koleksi dibuang. Tabung disentrifugasi kembali dengan kecepatan 13000 rpm selama 3 menit. Tujuan sentrifugasi tersebut adalah untuk proses pengeringan. Kolom DF yang sudah kering dipindahkan ke dalam tabung mikrosentrifugasi 1,5 ml steril, kemudian ditambahkan 35--50 µl elution buffer dan didiamkan selama 2 menit. Tabung kemudian disentrifugasi dengan kecepatan 13000 rpm selama 3 menit. Supernatan yang tertampung pada tabung mikrosentrifugasi 1,5 ml steril merupakan sampel DNA hasil ekstraksi DNA dari fragmen gel agarosa dan disimpan dalam freezer dengan suhu -20° C. Isolasi RNA..., Annisa, FMIPA UI, 2012 3.5.8 Perhitungan kemurnian dan konsentrasi DNA Kemurnian dan konsentrasi DNA diukur dengan menggunakan mesin Nano Drop Spectrophotometer [ND-1000]. 3.5.9 A-tailing dan ligasi Ligasi dilakukan dengan menggunakan plasmid pGEM-T Easy berdasarkan prosedur panduan ligasi Promega (2010: 1--27). Sampel DNA ditambahkan ujung poli-A atau A-tailing sebelum dilakukan proses ligasi, dengan tujuan untuk mempermudah proses ligasi pada plasmid pGEM-T Easy. Komposisi campuran dalam proses A-tailing dapat dilihat pada Tabel 3.5.9(1). Tabel 3.5.9(1) Komposisi A-tailing Bahan Volume Gen tripsin kation 10 µl dNTP mix 0,1 µl Buffer Taq DNA polymerase 1 µl Enzim Taq DNA polymerase 0,1 µl TOTAL 11,2 µl [Sumber: Promega 2010: 14.] Sampel DNA yang telah ditambahkan ujung poli-A kemudian diligasikan dengan plasmid pGEM-T Easy. Campuran dalam proses ligasi dapat dilihat pada Tabel 3.5.9(2). Campuran kemudian diinkubasi pada suhu 4° C selama 12--18 jam. Tabel 3.5.9(2) Komposisi ligasi gen tripsin kation Bahan Volume 2x ligation buffer 5 µl Sampel DNA 3 µl Plasmid pGEM T-Easy 1 µl T4 DNA ligase 1 µl TOTAL [Sumber: Promega 2010: 4.] Isolasi RNA..., Annisa, FMIPA UI, 2012 10 µl 3.5.10 Pembuatan sel kompeten E. coli DH5α Pembuatan sel kompeten dilakukan berdasarkan metode Inoue (Sambrook & Russell 2001: 1.112--1.115). Bakteri yang digunakan adalah E. coli strain DH5α. Sebanyak 1 ose koloni dari cawan petri biakan diinokulasi ke dalam 50 ml medium SOB cair, kemudian diinkubasi pada inkubator shaker pada suhu 30° C dengan kecepatan 150 rpm sampai nilai OD600 sebesar 0,4-0,8. Kultur bakteri diinkubasi di dalam es setelah nilai OD600 mencapai angka 0,4-0,8, kemudian kultur bakteri disentrifugasi dengan kecepatan 3000 rpm selama 10 menit pada suhu 4° C. Supernatan dibuang secara aseptis dan pelet disuspensi dengan TB buffer dingin sebanyak 16,75 ml. Suspensi diinkubasi di dalam es selama 10 menit dan disentrifugasi dengan kecepatan 3000 rpm selama 10 menit pada suhu 4° C. Supernatan dibuang secara aseptis dan pelet disuspensi kembali dengan ditambah 4 ml TB buffer dingin kemudian diinkubasi di es selama 10 menit. Dimetil Sulfoxida (DMSO) sebanyak 0,3 ml ditambahkan ke dalam suspensi dan diinkubasi di dalam es selama 10 menit. Sebanyak 200 µl suspensi dipindahkan ke dalam beberapa tabung mikrosentrifugasi 1,5 ml steril dan disimpan di dalam tabung nitrogen cair. 3.5.11 Transformasi DNA rekombinan pada sel inang Proses transformasi dilakukan dengan metode heat shock (Sambrook & Russell 2001 : 1.105--1.109). Sel kompeten dicampur dengan hasil ligasi dengan perbandingan 20:1. Campuran diinkubasi di dalam es selama 30 menit. Campuran kemudian diinkubasi di dalam thermomixer dengan suhu 42° C selama 1 menit, kemudian diinkubasi di dalam es selama 2 menit. Campuran kemudian ditambahkan medium SOC cair sebanyak 800 µl dan diinkubasi di dalam inkubator shaker pada suhu 37° C dengan kecepatan 150 rpm selama satu jam. Campuran disentrifugasi dengan kecepatan 6000 rpm selama 5 menit. Supernatan sebanyak 800 µl dibuang dan 200 µl sisa supernatan yang terbentuk digunakan untuk mensuspensikan pelet. Hasil suspensi disebar merata ke dalam medium LB Isolasi RNA..., Annisa, FMIPA UI, 2012 agar yang mengandung antibiotik ampisilin 100 µg/ml, isopropyl β-D-1thiogalactopyranosidase (IPTG) 0,1 M, dan 5-bromo-4-chloro-3-indolyl-beta-Dgalactopyranosidase (X-GAL). Medium seleksi kemudian diinkubasi pada suhu 37° C selama 12--18 jam. 3.5.12 Isolasi plasmid rekombinan Isolasi plasmid dari hasil transformasi dilakukan berdasarkan metode Alkaline Lysis SDS Minipreparation (Sambrook & Russell 2001: 1.32--1.34). Koloni bakteri hasil pengklonaan yang positif (berwarna putih) ditumbuhkan pada medium LB cair yang mengandung ampisilin 100 µg/ml dan diinkubasi di dalam inkubator shaker pada suhu 37° C dengan kecepatan 150 rpm selama 12--18 jam. Medium yang mengandung koloni bakteri yang telah tumbuh kemudian dipindahkan ke dalam tabung mikrosentrifugasi 1,5 ml dan disentrifugasi dengan kecepatan 6000 rpm selama 5 menit pada suhu 4° C. Supernatan yang dihasilkan dibuang dan pelet dicampurkan dengan Alkaline lysis solution I dingin sebanyak 100 µl. Campuran kemudian dihomogenisasi dengan vorteks dan diinkubasi di dalam suhu ruang selama 5 menit. Alkaline lysis solution II sebanyak 200 µl kemudian ditambahkan pada suspensi pelet dan dihomogenisasi dengan cara membolak-balikkan tabung dengan perlahan ke atas dan ke bawah beberapa kali. Campuran kemudian diinkubasi di dalam es selama 5 menit. Alkaline lysis solution III dingin sebanyak 150 µl ditambahkan dengan segera dan dihomogenisasi dengan cara mengguncang tabung dengan kuat ke atas dan ke bawah beberapa kali. Campuran kemudian diinkubasi di es selama 5 menit. Sentrifugasi dilakukan pada campuran yang telah diinkubasi di dalam es dengan kecepatan 13000 rpm selama 20 menit pada suhu 4° C. Supernatan yang terbentuk dipindahkan ke dalam tabung mikrosentrifugasi 1,5 ml steril yang baru, kemudian ditambahkan larutan isopropanol sebanyak 300 µl. Campuran dihomogenisasi dengan cara membolak-balikkan tabung dan diinkubasi di dalam suhu ruang selama 30 menit. Campuran kemudian disentrifugasi dengan kecepatan 13000 rpm selama 30 menit pada suhu 4° C. Supernatan yang dihasilkan dibuang kemudian pelet ditambahkan dengan larutan etanol 70% Isolasi RNA..., Annisa, FMIPA UI, 2012 dingin sebanyak 500 µl. Sentrifugasi selanjutnya dilakukan dengan kecepatan 13000 rpm selama 5 menit pada suhu 4° C dan supernatan yang dihasilkan dibuang. Pelet dikeringkan dan dilarutkan di dalam 50 µl Tris-HCl 10 mM pH 8 + RNase 1 mg/ml. 3.5.13 Verifikasi DNA rekombinan dengan digesti Proses digesti DNA dilakukan dengan menggunakan dua enzim restriksi yaitu SfoI dan XmaI [NEB]. Reaksi digesti DNA rekombinan dibuat dengan mencampur seluruh komponen reaksi (buffer, enzim, DNA template, dan ddH2O) pada tabung mikrosentrifugasi 1,5 ml steril. Komposisi reaksi digesti DNA rekombinan dapat dilihat pada Tabel 3.5.13. Campuran reaksi digesti kemudian diinkubasi pada suhu 37° C selama 3 jam. Hasil digesti divisualisasi dengan elektroforesis gel agarosa 1%. Tabel 3.5.13 Komposisi digesti DNA rekombinan Bahan Volume ddH2O 6,8 µl Buffer NEB 4 1,0 µl Sfo I 0,1 µl Xma I 0,1 µl Plasmid rekombinan 2,0 µl TOTAL 10,0 µl [Sumber: NEB 2012: 1.] 3.5.14 Purifikasi plasmid rekombinan Plasmid yang telah diisolasi dipurifikasi untuk keperluan sekuensing. Proses purifikasi plasmid dilakukan berdasarkan metode Treisman (Sambrook & Russell 2001: 1.59--1.61). Proses purifikasi diawali dengan menambahkan larutan PEG/2,5M NaCl2 20% sebanyak 30 µl. Campuran kemudian dihomogenisasi dengan cara membolak-balik tabung dan diinkubasi di dalam es Isolasi RNA..., Annisa, FMIPA UI, 2012 selama 1 jam. Campuran selanjutnya disentrifugasi dengan kecepatan 13000 rpm selama 10 menit pada suhu 4° C. Campuran kemudian ditambahkan larutan etanol 70% dingin sebanyak 100 µl dan disentrifugasi kembali dengan kecepatan 13000 rpm selama 5 menit pada suhu 4° C. Supernatan yang dihasilkan dibuang dan pelet di keringkan. Setelah kering, pelet dilarutkan dalam 20 µl Tris-HCl 10 mM dengan pH 8. 3.5.15 Sekuensing dan analisis hasil sekuensing Sampel yang digunakan untuk sekuensing adalah plasmid rekombinan pGEM-T Easy Tripsin Kation klon positif yang sudah dipurifikasi dengan PEG/2,5M NaCl2 20%. Sekuensing dilakukan dengan menggunakan jasa Laboratorium 1st Base di Singapura. Proses sekuensing plasmid rekombinan menggunakan primer T7 forward dan SP6 reverse. Hasil sekuensing yang akan diperoleh berupa elektroferogram dan data urutan nukleotida, masing-masing untuk hasil sekuen forward dan reverse. Grafik elektroferogram dan data urutan nukleotida dianalisis dengan menggunakan perangkat lunak Bioedit versi 7.0.9. Elektroferogram dan urutan nukleotida dibuka dengan program Bioedit kemudian dicari sekuen primer forward dan reverse gen tripsin kation. Urutan nukleotida sampel selanjutnya dianalisis dengan program bioinformatik BLASTN dan BLASTX pada situs online http://www.ncbi.nlm.nih.gov/blast. Urutan asam amino pada sampel dapat diketahui dengan program Bioedit versi 7.0.9. Situs enzim restriksi dapat diketahui dengan program pDRAW 32, sedangkan konstruksi plasmid dapat dibuat dengan menggunakan program PLASDRAW. Isolasi RNA..., Annisa, FMIPA UI, 2012 BAB 4 HASIL DAN PEMBAHASAN 4.1 Hasil 4.1.1 Isolasi RNA pankreas sapi Hasil isolasi RNA pankreas sapi yang divisualisasi dengan gel agarosa 1% yang mengandung formaldehid 2,2 M dapat dilihat pada Gambar 4.1.1. 1 2 3 4 28S 18S 4--5S Keterangan Lajur 1--4 : Sampel RNA Gel agarosa 1% dengan 2,2 M formaldehid, 25V, 95 menit Gambar 4.1.1 Visualisasi hasil isolasi RNA pankreas sapi [Sumber: Dokumentasi pribadi.] Gambar 4.1.1 menunjukkan pita RNA 28 S, 18 S dan 4--5 S. Berdasarkan pita RNA yang didapat pada Gambar 4.1.1, maka dilakukan RT-PCR. Isolasi RNA..., Annisa, FMIPA UI, 2012 4.1.2 Reverse transcription PCR (RT-PCR) Proses sintesis cDNA menghasilkan cDNA sebanyak 105 µl dengan konsentrasi 714 ng/µl dan kemurnian sebesar 1,68 (A260/A280). Hasil elektroforesis dari RT-PCR menunjukkan bahwa sampel gen tripsin kation berhasil diamplifikasi dengan munculnya pita DNA sebesar 780 pb, sedangkan kontrol negatif tidak menunjukkan pita DNA (Gambar 4.1.2). M 1 2 3 4 1000 pb 750 pb 780 pb Keterangan M : Marka DNA 1 kb Lajur 1--3 : Gen tripsin kation Lajur 4 : Kontrol negatif Gel agarosa 1%, 100 V, 25--30 menit Gambar 4.1.2 Hasil elektroforesis RT-PCR cDNA tripsin kation [Sumber: Dokumentasi pribadi.] 4.1.3 Purifikasi PCR gen tripsin kation Hasil purifikasi PCR gen tripsin kation di ukur nilai kemurnian dan konsentrasinya pada panjang gelombang A260/A280 menggunakan mesin nanodrop spectrophotometer [ND-1000]. Nilai kemurnian yang diperoleh adalah 1,88 dengan konsentrasi sebesar 342,4 ng/µl. Hasil elektroforesis dari purifikasi PCR menunjukkan bahwa sampel gen tripsin kation berhasil dipurifikasi dengan kit Gel/PCR DNA Fragments Extraction [Geneaid]. Hasil elektroforesis menunjukkan sampel gen tripsin kation dengan ukuran 780 pb (Gambar 4.1.3). Isolasi RNA..., Annisa, FMIPA UI, 2012 M 1 2 1000 pb 750 pb 780 pb Keterangan M : Marka DNA 1 kb Lajur 1--2 : Gen tripsin kation Gel agarosa 1%, 100 V, 30 menit Gambar 4.1.3. Hasil elektroforesis gen tripsin kation setelah proses purifikasi PCR. [Sumber: Dokumentasi pribadi.] 4.1.4 A-tailing dan ligasi gen tripsin kation Produk hasil A-tailing tidak diverifikasi dengan elektroforesis gel agarosa karena penambahan poli-A pada ujung 3’ gen tripsin kation tidak menunjukkan perbedaan yang signifikan pada ukuran pita DNA gen tripsin kation. Produk hasil A-tailing langsung digunakan untuk reaksi ligasi dengan vektor pGEM-T Easy. Hasil ligasi fragmen gen tripsin kation dengan vektor pGEM-T Easy tidak diverifikasi dengan elektroforesis karena langsung digunakan sebagai sumber DNA pada proses transformasi. 4.1.5 Transformasi vektor rekombinan pada sel E. coli DH5α Hasil dari transformasi setelah inkubasi selama 16 jam (Gambar 4.1.5 (1)) menghasilkan nilai efisiensi transformasi sebesar 2,68 x 103 cfu/µg pada medium seleksi A dan 3,28 x 103 cfu/µg pada medium seleksi B (Lampiran 3). Hasil transformasi vektor rekombinan pGEM-T Easy pada sel kompeten E. coli DH5α Isolasi RNA..., Annisa, FMIPA UI, 2012 menunjukkan bahwa terdapat 1 koloni berwarna putih dan 66 koloni berwarna biru pada medium seleksi putih biru A, sedangkan medium seleksi putih biru B menunjukkan adanya 2 koloni berwarna putih dan 80 koloni berwarna biru. Kontrol transformasi menggunakan plasmid pUC19 dengan konsentrasi 3 ng. Nilai efisiensi transformasi pada kontrol positif sebesar 3,42 x 108 cfu/µg. Perhitungan nilai efisiensi transformasi dapat dilihat pada Lampiran 3. Tiga koloni berwarna putih yang didapat pada kedua medium A dan B berhasil diisolasi plasmid rekombinannya dan divisualisasi dengan elektroforesis untuk dianalisis lebih lanjut. Hasil elektroforesis isolasi plasmid rekombinan menunjukkan pita DNA sebesar 3000 pb (Gambar 4.1.5(2)). B A S2 S1 S3 1 cm 1 cm 1 cm C D 1 cm 1 cm Keterangan A B C D S1 S2 S3 : Hasil transformasi gen tripsin kation ke vektor pGEM-T Easy : Hasil transformasi gen tripsin kation ke vektor pGEM-T Easy : Kontrol transformasi : Kontrol negatif : Koloni sampel 1 : Koloni sampel 2 : Koloni sampel 3 Gambar 4.1.5(1) Hasil transformasi gen tripsin kation dalam E. coli DH5α [Sumber: Dokumentasi pribadi.] Isolasi RNA..., Annisa, FMIPA UI, 2012 M 1 2 3 3000 pb 2500 pb ± 3000 pb Keterangan M : Marka DNA 1 kb Lajur 1--3 : Hasil isolasi plasmid rekombinan Gel agarosa 1%, 100 V, 30 menit Gambar 4.1.5(2) Hasil isolasi plasmid rekombinan pGEM-T Easy [Sumber: Dokumentasi pribadi.] 4.1.6 Verifikasi plasmid rekombinan dengan digesti Plasmid rekombinan diverifikasi dengan metode digesti. Hasil elektroforesis dari plasmid rekombinan yang telah didigesti menunjukkan hasil positif yaitu 2 pita DNA yang terdiri dari pGEM-T Easy berukuran 3015 pb dan gen tripsin kation berukuran 780 pb (Gambar 4.1.6). Isolasi RNA..., Annisa, FMIPA UI, 2012 M 1 2 3 3015 pb 1000 pb 750 pb 780 pb Keterangan M : Marka DNA 1 kb Lajur 1--3 : Hasil digesti plasmid rekombinan Gel agarosa 1%, 100 V, 30 menit Gambar 4.1.6 Hasil digesti plasmid rekombinan pGEM T-Easy [Sumber: Dokumentasi pribadi.] 4.1.7 Purifikasi plasmid rekombinan Hasil elektroforesis purifikasi plasmid rekombinan menunjukkan ukuran pita DNA yang sama saat diisolasi yaitu 3000 pb (Gambar 4.1.7). Hasil purifikasi dihitung nilai kemurnian dan konsentrasinya pada gelombang A260/A280 dengan mesin nanodrop [ND-1000]. Nilai kemurnian yang diperoleh adalah 1,88 (A260/A280) dan konsentrasi sebesar 390,8 ng/µl. Isolasi RNA..., Annisa, FMIPA UI, 2012 M 1 2 3000 pb 2500 pb ± 3000 pb Keterangan M : Marka DNA 1 kb Lajur 1: Vektor pMM 1525 Lajur 2: plasmid rekombinan klon 1 hasil purifikasi Gel agarosa 1%, 100 V, 30 menit Gambar 4.1.7 Hasil purifikasi plasmid rekombinan klon 1 [Sumber: Dokumentasi pribadi.] 4.1.8 Sekuensing dan analisis hasil sekuensing Visualisasi hasil sekuensing yang telah dilakukan oleh perusahaan 1st Base dapat dilihat pada gambar elektroferogram menggunakan perangkat lunak Bioedit versi 7.0.9 pada Lampiran 4 dan 5. Hasil sekuensing yang didapat kemudian dikonfirmasi dengan menggunakan program BLASTN dan BLASTX pada Gene Bank. Hasil program BLASTN dapat dilihat pada Lampiran 6. Hasil program BLASTX dapat dilihat pada Lampiran 7. Hasil analisis sampel pada BLASTN dan BLASTX menunjukkan nilai max ident sebesar 99% dengan sekuen gen tripsin Bos taurus pada database Gene Bank. 4.1.9 Konstruksi plasmid rekombinan pGEM-T Easy tripsin kation Konstruksi plasmid rekombinan pGEM- T Easy tripsin kation dilakukan dengan menggunakan perangkat lunak pDRAW dan PLASDRAW. Konstruksi Isolasi RNA..., Annisa, FMIPA UI, 2012 plasmid rekombinan pGEM- T Easy tripsin kation memiliki ukuran sebesar 3797 pb yang terdiri atas vektor pGEM- T Easy (3015 pb) dan gen tripsin kation (780 pb), serta penambahan T pada ujung 3’ vektor dan A pada ujung 3’gen sisipan. Pembuatan konstruksi plasmid rekombinan pGEM- T Easy tripsin kation (Gambar 4.1.9) bertujuan untuk menggambarkan MCS, situs enzim restriksi yang berfungsi untuk penggunaan plasmid rekombinan tersebut pada tahap selanjutnya. Gambar 4.1.9 Konstruksi plasmid rekombinan pGEM- T Easy tripsin kation [Sumber: Dokumentasi pribadi.] 4.2 Pembahasan 4.2.1 Isolasi RNA pankreas sapi Molekul RNA total dari pankreas sapi berhasil diisolasi dengan menggunakan kit GeneJet RNA purification. Proses isolasi RNA dilakukan dengan mengikuti prosedur Fermentas (2011: 1--17). Prinsip isolasi RNA adalah memisahkan molekul RNA dari molekul-molekul lain yang tidak diinginkan seperti DNA dan protein. Tahap pertama dalam pengisolasian molekul RNA adalah menggunakan larutan lysis buffer untuk melisiskan sel pankreas sapi. Isolasi RNA..., Annisa, FMIPA UI, 2012 Larutan lysis buffer mengandung zat guanidine tiosianat yang berperan sebagai garam chaotropic yang dapat melisiskan sampel sekaligus menonaktifkan RNase (Fermentas 2011: 2). Larutan lysis buffer juga mengandung larutan fenol/kloroform yang dapat membuat larutan bersifat asam atau memiliki pH rendah. Setelah penambahan lysis buffer, sampel ditambahkan dengan etanol 96% dan membentuk 3 lapisan berbeda pada sampel. Lapisan paling atas berwarna bening, lapisan tengah berwarna putih susu, dan lapisan paling bawah berwarna merah muda. Lapisan atas disebut sebagai fase cair yang mengandung RNA, lapisan tengah adalah interfase yang mengandung fragmen DNA berukuran besar dan beberapa protein, sedangkan lapisan paling bawah adalah fase organik yang mengandung fragmen DNA berukuran 50 pb--10.000 pb dan protein (Dale & Schantz 2002: 33). Molekul RNA yang terdapat pada fase cair dipindahkan ke dalam kolom purifikasi yang memiliki membran silika. Garam chaotropic dan etanol menyebabkan RNA terikat pada membran silika (Boom dkk 1989: 1). Zat kontaminan yang tersisa pada membran dibersihkan dengan serangkaian pencucian dan sentrifugasi menggunakan larutan wash buffers. Molekul RNA kemudian dielusi dengan nuclease-free water dibawah kondisi buffer garam rendah (Fermentas 2011: 2). 4.2.2 Visualisasi sampel RNA total pada gel agarosa 1% mengandung formaldehid 2,2 M Molekul RNA divisualisasi dengan memisahkan fragmen RNA total melalui elektroforesis gel agarosa 1% yang mengandung formaldehid 2,2 M berdasarkan modifikasi dari Sambrook & Russell (2001: 7.21--7.34). Gel agarosa yang mengandung formaldehid dapat mempertahankan serta menjaga kondisi molekul RNA yang terdenaturasi pada saat proses pemisahan fragmen, sehingga fragmen RNA dapat divisualisasi pada gel agarosa di bawah sinar UV. Hasil visualisasi RNA dapat dilihat pada Gambar 4.1.1 yang menunjukkan adanya tiga pita RNA yaitu 28S dan 18S rRNA, dan 4--5S RNA yang terdiri atas campuran tRNA dan rRNA (Ausuebel dkk. 2003: 37). Hasil visualisasi pita RNA yang Isolasi RNA..., Annisa, FMIPA UI, 2012 didapat sangat tipis. Hal tersebut dapat disebabkan oleh beberapa kemungkinan, diantaranya adalah degradasi sampel RNA, rendahnya kualitas sampel RNA, dan purifikasi sampel RNA yang kurang sempurna sehingga masih banyak kontaminan yang terdapat pada sampel RNA murni (Fermentas 2011: 16). Walaupun hasil visualisasi pita RNA sangat tipis, namun hasil tersebut dapat menunjukkan bahwa isolasi RNA total pankreas sapi dan pemisahan fragmen RNA dengan gel agarosa formaldehid 2,2 M berhasil dilakukan. Oleh karena itu, dilakukan tahap selanjutnya yaitu mensintesis RNA menjadi cDNA dengan bantuan enzim reverse trancriptase. 4.2.3 Reverse transcription PCR (RT-PCR) Metode RT-PCR menggunakan modifikasi dari dua kit yaitu SuperScript™ II Reverse Transcriptase dan First Strand cDNA Synthesis. Hal tersebut disebabkan karena primer Oligo(dT) yang digunakan adalah primer dari produk Fermentas, sedangkan enzim reverse transcriptase dari Invitrogen. Terdapat dua tahapan utama dalam metode RT-PCR yaitu sintesis cDNA dan amplifikasi gen tripsin kation dengan teknik standar PCR. Tahapan pertama adalah sintesis cDNA dari RNA total menggunakan primer oligo(dT) dan enzim reverse transcriptase (Fermentas 2011: 1--11; Invitrogen 2007: 1--4). Primer oligo(dT) akan menghibridisasi ekor 3’ poli-A yang hanya dimiliki oleh mRNA, sehingga proses sintesis cDNA hanya terjadi pada mRNA. Sebanyak 5 µl oligo(dT) digunakan dan ditambahkan dengan 50 µl total RNA pankreas sapi kemudian diinkubasi. Inkubasi RNA mix pada suhu 65° C selama 10 menit bertujuan untuk denaturasi. Proses annealing terjadi pada suhu 42° C selama 50 menit. Saat primer oligo(dT) melekat pada untai RNA, enzim Superscript II reverse transcriptase akan mulai menyintesis untai pertama cDNA dan mengubah basa urasil menjadi timin. Terminasi reaksi terjadi pada suhu 70° C selama 15 menit (Invitrogen 2003: 1--4). Konsentrasi cDNA yang didapatkan dari proses sintesis mRNA menjadi cDNA diukur menggunakan alat nanodrop spectrophotometer [ND-1000]. Nilai Isolasi RNA..., Annisa, FMIPA UI, 2012 konsentrasi cDNA yang diperoleh adalah 714 ng/µl dengan nilai kemurnian sebesar 1,68 (A260/A280). Nilai konsentrasi cDNA sel pankreas sapi yang didapat cukup besar untuk digunakan pada tahapan berikutnya yaitu amplifikasi gen tripsin kation dengan primer cation-trypsin-forward maupun reverse. Nilai kemurnian yang didapat kurang baik yaitu dibawah nilai standar kemurnian DNA yaitu 1,8--1,9 (A260/A280). Nilai kemurnian yang di bawah nilai standar kemurnian DNA yaitu 1,8--1,9 (A260/A280) menunjukkan bahwa sampel cDNA terkontaminasi oleh protein (Winfrey dkk. 1997: 56). Hasil cDNA kemudian digunakan sebagai template (0,5 µl) untuk tahapan berikutnya yaitu amplifikasi gen tripsin kation dengan primer cation-trypsin-forward maupun reverse pada mesin PCR. Hasil amplifikasi yang divisualisasi dengan elektroforesis menunjukkan 1 pita DNA dengan ukuran sebesar 780 pb. Hal tersebut menunjukkan bahwa gen tripsin kation telah berhasil diamplifikasi (Gambar 4.1.2). 4.2.4 Purifikasi PCR gen tripsin kation Purifikasi PCR gen tripsin kation menggunakan kit Gel/PCR DNA Fragments Extraction [Geneaid] yang dapat mempurifikasi fragmen DNA dengan ukuran 100 pb--10.000 pb. Metode purifikasi DNA dengan kit Gel/PCR DNA Fragments Extraction adalah menggunakan Garam chaotropic yang terdapat pada larutan DF buffer. Garam chaotropic digunakan untuk mendenaturasi enzim. Fragmen DNA yang terdapat didalam garam chaotropic akan terikat oleh matriks serat gelas dari kolom DF. Zat-zat kontaminan dibersihkan dengan larutan Wash buffers yang mengandung etanol. Fragmen DNA dielusi dengan elusi garam rendah atau TE buffer. Garam, enzim, dan nukleotida yang tidak diperlukan dapat dihilangkan dari reaksi campuran pada kit tersebut tanpa perlu melalui ekstraksi fenol atau presipitasi alkohol seperti pada metode purifikasi konvensional (Geneaid 2010: 1). Nilai konsentrasi gen tripsin kation yang didapat adalah 342,4 ng/µl dengan kemurnian sebesar 1,88 (A260/A280). Pengukuran nilai konsentrasi dan kemurnian dilakukan dengan nanodrop [NS-1000]. Nilai kemurnian yang Isolasi RNA..., Annisa, FMIPA UI, 2012 didapat sesuai dengan standar kemurnian DNA yang baik yaitu berkisar antara 1,8--1,9 (A260/A280) (Winfrey dkk. 1997: 56). 4.2.5 A-tailing dan ligasi gen tripsin kation Hasil purifikasi gen tripsin kation ditambahkan poli-A pada ujung 3’nya sebelum dilakukan proses ligasi. Penambahan poli-A pada ujung 3’ gen tripsin kation bertujuan untuk mempermudah proses ligasi dengan vektor pGEM-T Easy. Hal tersebut disebabkan karena pGEM-T Easy merupakan vektor yang memiliki T-overhang pada kedua ujung 3’nya. Proses A-tailing yang terpenting adalah penambahan basa A pada ujung 3’ gen tripsin kation dengan dNTP mix. Vektor pGEM-T Easy yang memiliki T-overhang akan berikatan dengan A-overhang pada gen tripsin kation pada proses ligasi (Promega 2010: 10). Gen tripsin kation dari hasil A-tailing telah digunakan sebagai DNA template dalam proses ligasi. Gen tripsin kation diligasikan dengan vektor pGEM-T Easy di tengah gen lacZ. Proses ligasi yang dilakukan menggunakan enzim T4 DNA ligase. Menurut Cranenburgh (2004: 200), T4 DNA ligase mengkatalisis reaksi pengikatan ujung-ujung molekul DNA yang saling berkomplemen. Ligasi dilakukan pada suhu 4˚C selama 16 jam karena pada suhu dan lama waktu tersebut dapat meningkatkan jumlah maksimum dari rekombinan (Promega 2010: 10--15). 4.2.6 Transformasi plasmid rekombinan ke dalam E. coli DH5α Hasil ligasi gen tripsin kation dengan vektor pGEM-T Easy ditransformasikan ke dalam sel kompeten E. coli DH5α. Sel E. coli DH5α tersebut telah dibuat kompeten terlebih dahulu agar mampu menyerap DNA asing ke dalam sel. Kontrol positif yang digunakan adalah hasil transformasi plasmid pUC19 dengan metode heatshock. Kontrol positif berfungsi untuk mengetahui kualitas sel kompeten yang digunakan. Kontrol negatif berfungsi untuk mengetahui kemungkinan munculnya kontaminasi. Kontrol positif menggunakan pUC19 menunjukkan nilai efisiensi yaitu 3,42 x 108 cfu/µg. Nilai efisiensi Isolasi RNA..., Annisa, FMIPA UI, 2012 transformasi tersebut termasuk nilai yang cukup baik yaitu diantara 107--109 cfu/µg. Kontrol negatif untuk menguji apakah sel kompeten terkontaminasi tidak menunjukkan adanya koloni yang tumbuh pada medium pertumbuhannya (Gambar 4.1.5(1)). Hasil tersebut menunjukkan bahwa sel kompeten termasuk ke dalam kualitas baik (Sambrook & Russell 2001: 1.25--1.26). Hasil ligasi gen tripsin kation dengan vektor pGEM-T Easy ditransformasikan ke dalam sel kompeten E. coli DH5α dan di seleksi menggunakan medium seleksi LB agar yang mengandung ampisilin, X-gal, dan IPTG. Hasil selesksi koloni putih biru dapat dilihat pada Gambar 4.1.5(1). Hasil tersebut menunjukkan adanya koloni E. coli DH5α yang tumbuh pada medium seleksi. Koloni E. coli yang tumbuh pada medium seleksi adalah koloni yang mengadung plasmid karena memiliki gen resistan terhadap ampisilin yang terdapat pada vektor plasmid sehingga dapat tumbuh pada medium seleksi (Promega 2010: 11). Terdapat dua macam warna koloni E. coli yang tumbuh pada medium seleksi, yaitu putih dan biru. Koloni berwarna putih pada medium seleksi adalah koloni yang mengandung plasmid rekombinan, sedangkan koloni yang berwarna biru adalah koloni yang mengandung plasmid non-rekombinan. Gen lacZ menyandi β-galaktosidase yang mengubah substrat X-gal yang tidak berwarna menjadi berwarna biru. Apabila fragmen gen tripsin kation menyisip di dalam gen lacZ , maka gen lacZ tidak dapat diekspresikan sehingga koloni E. coli menjadi berwarna putih. Sebaliknya, apabila tidak ada penyisipan pada gen lacZ, maka koloni yang terbentuk berwarna biru (Nicholl 2002: 133--136). 4.2.7 Isolasi plasmid rekombinan Hasil isolasi plasmid divisualisasi dengan menggunakan elektroforesis gel agarosa. Hasil visualisasi dapat dilihat pada Gambar 4.1.5(2). Hasil visualisasi isolasi plasmid rekombinan yang positif ditunjukkan dengan adanya pita DNA dengan ukuran sebesar 3795 pb. Ukuran DNA tersebut didapat dari gabungan antara jumlah basa pada vektor pGEM-T Easy (3015 pb) dan fragmen gen tripsin kation (780 pb). Namun, Gambar 4.1.5(2) tidak menunjukkan ukuran DNA yang sebenarnya yaitu 3795, melainkan ukuran DNA sebesar ± 3000 pb. Salah satu Isolasi RNA..., Annisa, FMIPA UI, 2012 penyebab hasil visualisasi isolasi plasmid tidak menunjukkan ukuran DNA plasmid yang sebenarnya adalah karena molekul DNA plasmid berbentuk sirkular. Molekul DNA yang memiliki bentuk sirkular lebih cepat bermigrasi daripada molekul DNA yang memiliki bentuk linier. DNA plasmid yang di running bersama dengan marka (DNA linier) memiliki perbedaan dalam kecepatan migrasi. Hal tersebut menyebabkan pita DNA pada plasmid tidak dapat dilihat ukuran sebenarnya pada marka DNA. Ukuran DNA plasmid yang sebenarnya dapat diketahui setelah melakukan digesti oleh enzim restriksi yang situsnya berada pada daerah MCS (Martin 1996: 11). 4.2.8 Verifikasi plasmid DNA rekombinan dengan digesti Hasil isolasi plasmid rekombinan diverifikasi melalui proses digesti. Proses digesti dilakukan dengan menggunakan enzim restriksi SfoI dan XmaI. Enzim tersebut digunakan karena fragmen gen tripsin kation memiliki situs pemotongan enzim tersebut masing-masing pada ujung fragmen gen tripsin kation. Hasil positif dari proses digesti adalah 2 pita DNA, yaitu pita DNA dari plasmid pGEM-T Easy yang berukuran 3015 pb dan pita DNA dari fragmen gen tripsin kation yang berukuran 780 pb (Promega 2010: 8). Hasil digesti gen tripsin kation dalam plasmid pGEM-T Easy dapat dilihat pada Gambar 4.1.6. 4.2.9 Purifikasi plasmid rekombinan Purifikasi plasmid rekombinan dilakukan sebagai tahap persiapan sampel untuk sekuensing. Purifikasi plasmid rekombinan dilakukan pada klon 1. Proses purifikasi plasmid bertujuan untuk menghilangkan sisa kontaminan yang didapat selama proses isolasi, sehingga tidak mengganggu proses sekuensing. Purifikasi plasmid rekombinan dilakukan dengan menggunakan metode Sambrook & Russell (2001: 1.59--1.61). Metode purifikasi menggunakan larutan PEG/2,5 NaCl2. Prinsip kerja dari metode purifikasi yang digunakan adalah presipitasi DNA plasmid dengan penambahan larutan PEG/2,5 NaCl2 dan sentrifugasi. Penambahan larutan PEG/2,5 NaCl2 dan sentrifugasi akan memisahkan DNA Isolasi RNA..., Annisa, FMIPA UI, 2012 plasmid dengan fragmen DNA dan RNA. DNA plasmid akan terpresipitasi menjadi pelet, sedangkan molekul-molekul seperti DNA dan RNA akan terpisah dan berada pada supernatan. Hasil purifikasi dihitung nilai kemurnian dan konsentrasinya pada gelombang A260/A280 dengan mesin nanodrop [ND-1000]. Nilai kemurnian yang diperoleh adalah 1,88 (A260/A280) dan konsentrasi sebesar 390,8 ng/µl. Nilai kemurnian yang didapat sesuai dengan standar kemurnian DNA yang baik yaitu berkisar antara 1,8--1,9 (A260/A280) (Winfrey dkk. 1997: 56). 4.2.10 Sekuensing dan analisis hasil sekuensing Koloni yang menunjukkan adanya DNA sisipan ditunjukkan dengan fragmen DNA berukuran 780 pb saat verifikasi dengan teknik digesti. Verifikasi lebih lanjut dilakukan dengan metode sekuensing. Koloni yang dipilih untuk sekuensing adalah koloni klon 1. Verifikasi dengan sekuensing bertujuan untuk mengetahui kemungkinan apakah terjadi perubahan basa nukleotida atau mutasi pada DNA sisipan selama proses isolasi dan pengklonaan berlangsung. Selain bertujuan untuk mengetahui apakah terjadi perubahan pada DNA sisipan, sekuensing plasmid DNA rekombinan juga bertujuan untuk memastikan bahwa ujung-5’ maupun ujung-3’ DNA sisipan telah terhubung (fusi) dengan tepat pada fragmen vektor pGEM-T Easy. Hasil sekuensing berupa elektroferogram dapat dilihat pada Lampiran 4 dan 5. Elektroferogram memperlihatkan puncak sinyal yang cukup baik. Salah satu indikasi hasil elektroferogram yang baik ditunjukkan dengan tajamnya puncak sinyal dan tidak adanya puncak sinyal yang bertumpuk (Applied Biosystem 2002: 7--11). Hasil sekuensing yang didapat kemudian dikoreksi basa nukleotidanya baik elektroferogram forward maupun reverse. Basa nukleotida forward dan reverse yang telah dikoreksi kemudian di alignment menggunakan program Bioedit. Hasil alignment dikonfirmasi menggunakan program BLASTN dan BLASTX pada Gene Bank. Hasil konfirmasi BLASTN gen tripsin kation menunjukkan max ident sebesar 99% dengan gen tripsin kation pada Bos taurus (Lampiran 6), sedangkan Isolasi RNA..., Annisa, FMIPA UI, 2012 hasil konfirmasi BLASTX menunjukkan max ident sebesar 99% dengan protein tripsin kation Bos taurus (Lampiran 7). Max ident sebesar 99% menunjukkan bahwa 99% urutan basa nukleotida pada sampel identik dengan urutan basa nukleotida gen tripsin kation pada Bos taurus (Claverie & Notradame 2007: 416). Hasil tersebut merupakan hasil konfirmasi yang dapat dipercaya, karena memiliki nilai kesamaan sebesar 99%. Berdasarkan hasil tersebut, telah dapat dipastikan bahwa fragmen gen tripsin kation telah berhasil diklon ke dalam vektor pGEM-T Easy. Isolasi RNA..., Annisa, FMIPA UI, 2012 BAB 5 KESIMPULAN DAN SARAN 5.1 Kesimpulan Fragmen gen tripsin kation berhasil diisolasi dari pankreas sapi dan diklon ke dalam vektor pGEM-T Easy dan vektor rekombinan yang terbentuk berhasil ditransformasi ke dalam E. coli DH5α. 5.2 Saran Perlu dilakukan subkloning gen tripsin kation ke dalam sistem ekspresi ekstraselular bakteri Gram positif dan uji aktivitas tripsin kation. Isolasi RNA..., Annisa, FMIPA UI, 2012 DAFTAR REFERENSI Applied Biosystem. 2002. Automated DNA sequencing: Chemistry guide. Applera Corporation, Foster City: iii + 1-1--7-65 + A-14 + B-1 + C-3 +D-5 + E-10 + Index-6. Ausubel, F.M., R. Brent, R.E. Kingston, D.D. Moore, J.G. Seidman, J.A. Smith & K. Struhl. 2003. Current protocols in molecular biology. Volume I. John Wiley & Sons, Inc., New York: xxxviii + 12.10 + A1.29 + 17 hlm. Badan Pusat Statistik. 2012. Hasil sensus penduduk 2010. 1 hlm. http://dds.bps.go.id/eng/aboutus.php?sp=0. 3 Juni 2012, pk. 12.04. Bankamp, B., J.M. Fontana, W.J. Bellini, & P.A. Rota. 2008. Adaptation to cell culture induces functional differences in measles virus proteins. Virology Journal 5: 129--141. Berg, J.M., J.L. Tymockzo, & L. Stryer. 2002. Biochemistry. W.H. Freeman and Company, San Fransisco: viii + 1514 hlm. Boom, R., C.J.A. Sol, M.M.M. Salimans, C.L. Jansen, & P.M.E. Werthem. 1989. Rapid and simple method for purification of nucleic acids. Journal of Clinical Microbiology 28(3): 495--503. Brown, T.A. 2002. Genomes. 2nd ed. Wiley-Liss, Oxford: x + 471 hlm. Campbell, N.A., J.B. Reece, & L.G. Mitchell. 2002. Biologi. Ed. ke-5. Terj. Dari Biology. 5th ed, oleh Lestari, R., E.I.M. Adil, N. Anita, Andri, W.F. Erlangga, Jakarta: xxi + 438 hlm. Campbell, N.A., J.B. Reece, & L.G. Mitchell. 2010. Biologi. Ed. ke-8. Terj. Dari Biology. 8th ed, oleh Wulandari. Erlangga: xii + 571 hlm. Cherry, J.M. 1995. Computer manipulation of DNA and protein sequences. Dalam: Ausubel, F.M., R. Brent., R.E. Kingston., D.D. Moore, J.G. Seidman, J.A. Smith, & K. Struhl. 2003. Current protocols in molecular biology. John Wiley & Sons, Inc., California: 7.7.1-7.7.23. Claverie, J.M. & C. Notradame. 2007. Bioinformatics for dummies. 1st ed. John Wiley & Sons, Inc., New York: xx + 452 hlm. Isolasi RNA..., Annisa, FMIPA UI, 2012 Cranenburgh, R.M. 2004. An equation for calculating the volumetric ratios required in a ligation reaction. Applied Genetics and Molecular Biotechnology 65: 200--202. Dale, J.W. & M.V.Schantz. From genes to genomes. 2002. John Wiley & Sons, Inc., Canada: xi + 360. Davis, L.G., W.M. Kuehl & J.F. Battey. 1994. Basic methods in molecular biology. 2nd ed. Appleton & Lange, Norwlk: xiii + 763 hlm. Fairbanks, D. J. & W. R. Andersen. 1999. Genetics the continuity of life. Brooksdole Publishing Company, New York: xix + 820 hlm. Fermentas. 2011. GeneJet RNA purification kit. Fermentas Inc., New York: 17 hlm. Finnzymes. 2007. Phusion™ high fidelity DNA polymerase. New England Biolabs Inc., United States: 4 hlm. Freifelder, D. 1987. Molecular biology. Jones and Barlett Publisher, Boston: xxiv + 834 hlm. Geneaid. 2010. Gel/PCR DNA fragments extraction kit protocols. Geneaid Biotech Ltd., Taipei: 3 hlm. Griffiths, A.J.F., W.M. Gelbart, J.H. Miller & R.C. Lewontin. 1999. Modern genetic analysis. W.H. Freeman Company, New York: xvi + 675 hlm. Hall, T. 2001. Bioedit version 5.0.6. North Carolina State University Press, New York: 190 hlm. Hanquier, J., Y. Sorlet, D. Desplancq, L. Baroche, M. Ebtinger, J.F. Lefevre, F. Pattus, C.L. Hershberger, & A.A. Vertes. 2002. A single mutation in the activation site of bovine trypsinogen enhances its accumulation in the fermentation broth of the yeast Pichia pastoris. Applied and Environmental Microbiology 69(2): 1108--1113. Invitrogen. 2003. Superscript II reverse transcriptase. Invitrogen, Inc., USA: 4 hlm. Invitrogen. 2007. SuperScript™ first-strand synthesis system for RT-PCR. Invitrogen, Inc., USA: 4 hlm. Karcher, S.J. 1995. Molecular biology: A project approach. Academic Press, San diego: xxi + 280 hlm. Isolasi RNA..., Annisa, FMIPA UI, 2012 Kendall, L.V & L.K. Riley. 2000. Reverse transcriptase polymerase chain reaction (RT-PCR). Contemporary topics 39(1): 42. Kim, N.S., H.Y. Yu, N.D. Chung, Y.J. Shin, T.H. Kwon, & M.S. Yang. 2010. Production of functional recombinant bovine trypsin in transgenic rice cell suspension cultures. Protein Expression & Purification 76(1): 121--126. Klug, W.S. & M.R. Cummings. 1994. Concepts of genetics. 4th ed. Prentice-Hall Englewood, New Jersey: xvi + 773 hlm. Kunitz, M. 1939. Purification and concentration of enterokinase. The Journal of General Physiology: 447--450. Lago, P.M., H.E. Gary Jr, L.S. Perez, V.Caceres, J.B. Olivera, R.P. Puentes, M.B. Corredor, P. Jimenez, M.A. Pallansch, & R.G. Cruz. 2003. Poliovirus detection in wastewater and stools following an immunization campaign in Havana, Cuba. International Journal of Epidemiology 2003 32: 772--777. Lewis, R. 2003. Human genetic: Concepts and applications. 5th ed. The McGraw-Hills Company Inc., Boston: xviii + 454 hlm. Maroux, S., J. Barrati, & P. Desnuelle. 1971. Purification and specificity of porcine enterokinase. The Journal of Biological Chemistry 246(16): 5031-5039. Martin, R. 1996. Gel electrophoresis: Nucleic acid. Bios Scientific Publisher, Ltd, Oxford: xiii + 175 hlm. NEB. 2012. Double digest finder. 1 hlm. http://www.neb.com/nebecomm/DoubleDigestCalculator.asp. 2 Juni 2012, pk.12.14. Nicholl, D.S.T. 2002. An introduction to genetic engineering. 2nd ed. Cambridge University Press, New York: xi + 292 hlm. Paolella, P. 1998. Introduction to molecular biology. WCB McGraw- Hill Companies, Inc., Massachussets: xiii + 241 hlm. Passarge, E. 2007. Color atlas of genetics. 3rd ed. Thieme Sturgart, New York: x + 486 hlm. Phelan, M.C. 1998. Current protocols in cell biology. John Wiley & Sons, Inc. New York: 1.1.1--1.1.10. Primorse S.B., R.M. Twyman, & R.W Old. Principles of gene manipulation. Isolasi RNA..., Annisa, FMIPA UI, 2012 2001. 6th ed. Blackwell Science Ltd., Maklen: vii + 319 hlm. Promega. 2010. pGEM-T Easy and pGEM-T Easy vector system. Promega Corporation, New York: 27 hlm. Raven, P. H. & G. B. Johnson. 2002. Biology. McGraw-Hill Companies, Inc., New York: xxix + 1238 hlm Russell, P. J. 1994. Fundamental of genetics. Harper Collins College Publishers, New York: xvi + 528 hlm. Sambrook, J. & D. W. Russell. 2001. Molecular cloning: A laboratory manual vol 2. 3rd ed. Cold Spring Harbour Laboratory Press, New York: xvii + 3.4-14.53 + 1.44. Schwarzer, J., E. Rapp, R. Henning, Y. Genzel, I. Jordan, V. Sandig, & U. Reichl. 2009. Glycan analysis in cell culture-based influenza vaccine production: Influence of host cell line and virus strain on the glycosylation pattern of viral hemagglutinin. Vaccine 27: 4325--4336. Seidman, C.E., K. Struhl, J. Sheen, & T. Jessen. 1997. Escherichia coli, plasmids, and bacteriophages. Current Protocols in Molecular Biology : 1.8.1-1.8.10. Singleton, P. & Sainsbury, D. 2006. Dictionary of microbiology and molecular microbiology. 3rd ed. John Wiley & Sons, Inc., New York: xi + 895 hlm. Snustad, D.P. & M.J. Simmons. 2003. Principles of genetics. 3rd ed. John Wiley & Sons, Inc., New York: xix + 840 hlm. Strachan, T. & A.P. Read. 1999. Human molecular genetics 2. 2nd ed. John Wiley & Sons, Inc., New York: xxiii + 576 hlm. Talaro, K.P. 2008. Foundations in microbiology. 6th ed. The McGraw-Hill Companies, Inc., Boston: xxi + 834 hlm. Tamarin, R.H. 2002. Principles of genetics. 7th ed. McGraw-Hill Companies, Inc., Boston: xvi + 609 hlm. Travis, J. & R.C. Roberts. 1969. Human trypsin. Isolation and physical-chemical characterization. Biochemistry 8(7): 2884--2889. Voytek, P. & E.C. Gjessing. 1970. Studies of an anionic trypsinogen and its active enzyme from porcine pancreas. The Journal of Biological Chemistry 246: 508--516. Isolasi RNA..., Annisa, FMIPA UI, 2012 Weaver, R.F. & P.W. Hedrick. 1997. Genetics. 3rd Ed. Wm.C.Brown Publishers, Dubuque: xvii + 638 hlm. Winfrey, M.R., M.A. Rott, & A.T. Wortman. 1997. Unraveling DNA: molecular biology for the laboratory. Prentice-Hall, Inc., New Jersey: xxviii + 369 hlm. Wong, D.W.S. 1997. The ABC of gene cloning. International Thomson Publishing, New York: xiv + 213 hlm. Yamaya, M., M. Hosoda, T. Suzuki, N. Yamada, & H. Sasaki. 2002. Human airway cell culture. Methods in Molecular Biology 188: 1--11. Zhiming Tu, Guangyuan He, Kexiu X. Li, Mingjie J. Chen, Junii Chang, Ling Chen, Qing Yao, Dongping P. Liu, Huan Ye, Jiantao Dhi, & Xuqian Wu. 2005. An improved system for competent cell preparation and high efficiency plasmid tranformation using different Escherichia coli strains. Electronic Journal of Biotechnology 8(1): 113--120. Isolasi RNA..., Annisa, FMIPA UI, 2012 Lampiran 1 Komposisi dari preparasi larutan yang digunakan dalam penelitian Reagen Komposisi dan cara pembutan Proteinase K (25 mg/ml) Bubuk proteinase K dilarutkan dengan 1 ml mili-Q water. Gel agarosa 1% dengan 2,2 12,05 ml TAE 1x dan 0,95 ml 2,2M M formaldehid formaldehid dicampur dengan 0,13 g bubuk agarosa, lalu dipanaskan dalam microwave hingga mendidih. Loading buffer 1 µl 10x MOPS buffer, 2 µl formaldehid, dan 3 µl sampel RNA dicampur dan diinkubasi pada suhu 85° C selama 10 menit. Loading dye 6x 0,6 ml Gliserol 30 %, 0,005 g brom fenol biru, dan 0,005 g sian xilenol dilarutkan dalam 2 ml mili-Q water. Buffer MOPS 10x 41,8 g MOPS dalam 700 ml DEPC water dengan pH 7, 20 ml sodium asetat 1M, dan 20 ml EDTA (pH8) 0,5M dilarutkan dalam 1 L DEPC water dan disterilisasi dengan filter Alkaline Lysis Solution I 50mM glukosa, 25mM Tris-Cl (pH 8), dan 10 mM EDTA (pH 8) dilarutkan dalam 100mL mili-Q water. Alkaline Lysis Solution II 0,2N NaOH dan 1% (w/v) SDS dilarutkan dalam 1,2 ml mili-Q water Alkaline Lysis Solution III 60 ml potasium asetat 5M dan 11,5 ml larutan asam asetat glasial dicampurkan dengan 28,5 ml mili-Q water. Rnase A (Dnase free), Rnase A (Dnase free), Boehringer 1 mg/ml Boehringer dalam 50 mM Tris HCl (pH 7,5) Tris HCl 1 M pH 8 12,1 g tris-base ditambahkan HCl hingga Isolasi RNA..., Annisa, FMIPA UI, 2012 Lanjutan volume 100 ml, disterilisasi menggunakan filter. Antibiotik ampisilin 100 100 mg ampisilin dilarutkan dalam 1 ml mili-Q mg/ml water Etidium bromida 50 µl stok EtBr dicampur dengan 500 ml mili-Q water. TB Buffer 1,5 g PIPES, 1,1 g CaCl2. 2 H2O, dan 9,3 g KCl dilarutkan dalam mili-Q water sebanyak 450 ml, pH 6,7. MnCl2. 4H2O sebanyak 5,45 g dilarutkan dalam mili-Q water hingga volume 500 ml. Larutan disterilisasi menggunakan filter. Gel agarosa 1% 0.25 g bubuk agarosa dilarutkan dengan 25 ml TAE lalu dipanaskan dalam microwave hingga mendidih. Marka 1 kb Ladder Sebanyak 10 μl loading dye 6x dicampurkan dengan 12 μl stock marka DNA, kemudian ditambahkan ddH2O steril hingga volume mencapai 60 μl IPTG 23,8 mg IPTG dilarutkan dalam mili-Q water sebanyak 1 ml kemudian tabung dilapisi dengan alumunium foil. X-Gal 40 mg X-gal dilarutkan dalam DMSO sebanyak 1 ml kemudian tabung dilapisi dengan alumunium foil. [Sumber: Sambrook & Russel 2001: A1.1--A2.12] Isolasi RNA..., Annisa, FMIPA UI, 2012 Lampiran 2 Komposisi dan cara pembuatan medium LB, SOB, dan SOC Komposisi: Tripton Yeast Extract NaCl KCl 250 mM Glukosa 1M pH 7 Cara pembuatan medium LB cair : Satu liter medium LB dibuat dengan melarutkan 10 g tripton, 5 g yeast extract, dan 10 g NaCl dengan mili-Q water. Campuran dihomogenisasi dengan magnetic stirrer. Tingkat keasaman (pH) larutan diatur hingga mencapai pH 7 dengan menambahkan NaOH 5M. Larutan LB cair kemudian disterilisasi pada suhu 121° C dengan tekanan 2 atm selama 15 menit. Medium disimpan pada suhu ruang atau 4° C. Cara pembuatan medium LB agar: Medium LB agar dibuat seperti cara di atas, tetapi ditambahkan 15g/L bubuk agar sebelum diautoklaf. Larutan disterilisasi dengan autoklaf selama 15 menit pada suhu 121° C dengan tekanan 2 atm. Medium disimpan pada suhu ruang atau 4° C. Cara pembuatan SOB cair: Satu liter medium SOB cair dibuat dengan melarutkan 20 g tripton, 5 g yeast extract, dan 0,585 g NaCl, dan 0,186 g KCl dengan mili-Q water. Campuran dihomogenisasi dengan magnetic stirrer. Larutan SOB cair kemudian disterilisasi pada suhu 121° C dengan tekanan 2 atm selama 15 menit. Medium disimpan pada suhu ruang atau 4° C. Isolasi RNA..., Annisa, FMIPA UI, 2012 Lanjutan Cara Pembuatan SOC cair: Medium SOC memiliki komposisi yang hampir sama dengan medium SOB. Sebanyak 10 ml/L larutan glukosa 1M steril ditambahkan pada medium SOB yang sudah diautoklaf dan sudah memiliki suhu sekitar 60° C. Medium disimpan pada suhu ruang atau 4° C. [Sumber: Sambrook & Russel 2001: A1.1--A2.12] Isolasi RNA..., Annisa, FMIPA UI, 2012 Lampiran 3 Pengukuran efisiensi transformasi Efisiensi transformasi=Jumlah koloni x rasio pengenceran x volume transformasi Volume kultur x Konsentrasi DNA 1. Efisiensi transformasi sel kompeten dengan vektor PUC 19 = 513 x 1 x 200 100 x 3 x 10-6 = 3,42 x 108 cfu/µg 2. Efisiensi transformasi gen tripsin kation pada pGEM-T Easy di medium seleksi A = 67 x 1 x 200 µl 100 µl x 5.10-2 µg = 2,68 x 103 cfu/µg 3. Efisiensi transformasi gen tripsin kation pada pGEM-T Easy di medium seleksi B = 82 x 1 x 200 µl 100 µl x 5.10-2 µg = 3,28 x 103 cfu/µg [Sumber: Zhimming tu dkk. 2005: 117] Isolasi RNA..., Annisa, FMIPA UI, 2012 Lampiran 4 Elektroferogram hasil sekuensing gen tripsin kation pada plasmid pGEM T-Easy dengan primer T7 Forward Universitas Indonesia 56 Isolasi RNA..., Annisa, FMIPA UI, 2012 57 Universitas Indonesia Isolasi RNA..., Annisa, FMIPA UI, 2012 58 Universitas Indonesia Isolasi RNA..., Annisa, FMIPA UI, 2012 Lampiran 5 Elektroferogram hasil sekuensing gen tripsin kation pada plasmid pGEM T-Easy dengan primer SP6 Reverse 59 Universitas Indonesia Isolasi RNA..., Annisa, FMIPA UI, 2012 60 Universitas Indonesia Isolasi RNA..., Annisa, FMIPA UI, 2012 61 Universitas Indonesia Isolasi RNA..., Annisa, FMIPA UI, 2012 Lampiran 6 Hasil analisis sekuen gen tripsin kation dengan program BLASTN 62 Universitas Indonesia Isolasi RNA..., Annisa, FMIPA UI, 2012 Lampiran 7 Hasil analisis sekuen gen tripsin kation dengan program BLASTX 63 Universitas Indonesia Isolasi RNA..., Annisa, FMIPA UI, 2012 Lampiran 8 Hasil alignment sampel sekuen gen tripsin kation dengan sekuen yang terdapat pada database Gene Bank Isolasi RNA..., Annisa, FMIPA UI, 2012 Lampiran 9 Hasil translasi sampel sekuen gen tripsin kation ke dalam asam amino menggunakan program Bioedit versi 7.0.9 >pGEM-T Easy Tripsin kation 1 1 AAT TTC GGC GCC ATG AAG ACC TTC ATC TTT CTG GCT CTC TTG GGA Asn Phe Gly Ala Met Lys Thr Phe Ile Phe Leu Ala Leu Leu Gly 45 15 46 16 GCC GCT GTT GCT TTC CCC GTG GAC GAT GAT GAC AAG GTC GTG GGC Ala Ala Val Ala Phe Pro Val Asp Asp Asp Asp Lys Val Val Gly 90 30 91 31 GGC TAC ACC TGT GGG GCA AAT ACT GTC CCC TAC CAA GTG TCC CTG Gly Tyr Thr Cys Gly Ala Asn Thr Val Pro Tyr Gln Val Ser Leu 135 45 136 46 AAC TCT GGC TAC CAC TTC TGC GGG GGC TCC CTC ATC AAC AGC CAG Asn Ser Gly Tyr His Phe Cys Gly Gly Ser Leu Ile Asn Ser Gln 180 60 181 61 TGG GTG GTG TCT GCG GCT CAC TGC TAC AAG TCC GGA ATC CAA GTG Trp Val Val Ser Ala Ala His Cys Tyr Lys Ser Gly Ile Gln Val 225 75 226 76 CGT CTG GGA GAA GAC AAC ATT AAT GTC GTT GAG GGC AAT GAG CAA Arg Leu Gly Glu Asp Asn Ile Asn Val Val Glu Gly Asn Glu Gln 270 90 271 91 TTC ATC AGC GCA TCC AAG AGC ATC GTC CAT CCC AGC TAC AAC TCA Phe Ile Ser Ala Ser Lys Ser Ile Val His Pro Ser Tyr Asn Ser 315 105 316 106 AAC ACC TTA AAC AAC GAC GTC ATG CTG ATT AAA CTG AAA TCA GCT Asn Thr Leu Asn Asn Asp Val Met Leu Ile Lys Leu Lys Ser Ala 360 120 361 121 GCC AGT CTC AAC AGC CGA GTA GCC TCT ATC TCT CTG CCA ACA TCC Ala Ser Leu Asn Ser Arg Val Ala Ser Ile Ser Leu Pro Thr Ser 405 135 406 136 TGT GCC TCT GCT GGC ACC CAG TGT CTC ATC TCT GGC TGG GGC AAC Cys Ala Ser Ala Gly Thr Gln Cys Leu Ile Ser Gly Trp Gly Asn 450 150 451 151 ACC AAA AGC AGT GGC ACC AGC TAC CCT GAT GTC CTG AAG TGT CTG Thr Lys Ser Ser Gly Thr Ser Tyr Pro Asp Val Leu Lys Cys Leu 495 165 496 166 AAG GCT CCC ATC CTA TCA GAC AGC TCT TGC AAA AGT GCC TAC CCA Lys Ala Pro Ile Leu Ser Asp Ser Ser Cys Lys Ser Ala Tyr Pro 540 180 541 181 GGC CAG ATC ACC AGC AAC ATG TTC TGT GCG GGC TAC CTG GAG GGC Gly Gln Ile Thr Ser Asn Met Phe Cys Ala Gly Tyr Leu Glu Gly 585 195 586 196 GGA AAG GAC TCC TGC CAG GGT GAC TCC GGT GGC CCT GTG GTC TGC Gly Lys Asp Ser Cys Gln Gly Asp Ser Gly Gly Pro Val Val Cys 630 210 631 211 AGT GGA AAG CTC CAG GGC ATT GTC TCC TGG GGC TCT GGC TGC GCT Ser Gly Lys Leu Gln Gly Ile Val Ser Trp Gly Ser Gly Cys Ala 675 225 676 226 CAG AAA AAC AAG CCT GGT GTC TAC ACC AAG GTC TGC AAC TAC GTG Gln Lys Asn Lys Pro Gly Val Tyr Thr Lys Val Cys Asn Tyr Val 720 240 721 241 AGC TGG ATT AAG CAG ACC ATC GCC TCC AAC CAT CAC CAT CAC CAT Ser Trp Ile Lys Gln Thr Ile Ala Ser Asn His His His His His 765 255 766 256 CAC TAA CCC GGG CAA His End Pro Gly Gln 780 Isolasi RNA..., Annisa, FMIPA UI, 2012