BAB I PENDAHULUAN Perencanaan struktur bangunan tahan gempa bertujuan untuk mencegah terjadinya keruntuhan struktur yang dapat berakibat fatal pada saat terjadi gempa. Kinerja struktur pada waktu menerima beban gempa dapat diklasifikasikan sebagai berikut : 1. Akibat gempa ringan, struktur bangunan tidak boleh mengalami kerusakan baik pada elemen strukturalnya maupun pada elemen non-strukturalnya. 2. Akibat gempa sedang, elemen struktural bangunan tidak boleh rusak tetapi elemen nonstrukturalnya boleh mengalami kerusakan ringan namun struktur bangunan masih dapat digunakan. 3. Akibat gempa besar, baik elemen struktural maupun elemen non-struktural bangunan akan mengalami kerusakan, tetapi struktur bangunan tidak boleh runtuh. Menurut SEAOC Vision 2000 (Fema 451, 2006), gempa sedang ditetapkan sebagai gempa dengan kemeungkinan terlampaui sebesar 50 % dalam rentang umur layan bangunan 50 tahun, yaitu gempa dengan periode ulang 75 tahun atau gempa yang kadang-kadang terjadi. Sedangkan gempa besar ditetapkan sebagai gempa dengan kemungkinan terlampaui sebesar 10 % dalam rentang umur layan bangunan 50 tahun yaitu gempa dengan periode ulang 500 tahun atau gempa yang jarang terjadi. Berdasarkan filosofi desain yang ada (Fema 451, 2006), tingkat kinerja struktur bangunan akibat gempa rencana adalah life safety yaitu walaupun struktur bangunan dapat mengalami tingkat kerusakan yang cukup parah namun keselamatan penghuni dapat terjaga karena struktur bangunan tidak sampai runtuh. Secara umum, respon struktur gedung yang baik terhadap gempa kuat (gempa yang lebih besar dari gempa rencana) ditetapkan sebagai kemampuan suatu struktur gedung untuk mengalami simpangan pasca elastic yang besar secara berulang kali dan bolak-balik akibat beban gempa diatas beban gempa yang mengakibatkan terjadinya pelelehan signifikan pertama. Sambil mempertahankan kekuatan dan kekakuan yang cukup, sehingga struktur gedung tersebut tetap berdiri, walaupun sudah berada dalam kondisi di ambang keruntuhan. Untuk dapat mencapai hal ini, elemen-elemen struktur bangunan yang mengalami respon pasca elastik harus memiliki tingkat daktilitas perpindahan yang memadai. Model yang dianalisis adalah gedung Graha Pena Makasar dengan fungsi bangunan sebagai kampus (ruang kuliah), sedangkan jenis tanah yang di gunakan yaitu tanah lunak. Pemodelan dan analisis struktur menggunakan software CSI ETABS V.13.1.1. 1 BAB II SPESIFIKASI TEKNIS DAN PEMODELAN STRUKTUR 2.1. Data Bangunan Prototipe bangunan yang dianalisis memilik kriteria sebagai berikut : a. Nama banguan : Graha Pena Makasar b. Fungsi bangunan : Gedung perkuliahan (kampus) c. Jenis tanah : Tanah lunak d. Tinggi bangunan Lantai 1 : 5,0 m Lantai 2 – 6 : 4,5 m Lantai 7 – 17 : 4,0 m Spesifikasi struktur beton bertulang yang digunakan yaitu sebagai berikut : a. Beton Mutu beton (f’c) = 30 MPa Modulus elastis (Ec) = 4700 √30 = 25743 Mpa b. Baja tulangan Baja U 24 untuk besi tulangan P ≤ 12, fy = 240 MPa. Baja U 40 untuk besi tulangan D > 13, fy = 400 MPa. 2.2. Standar Peraturan Struktur yang Digunakan Standar peraturan struktur yang digunakan yaitu mengacu pada : a. Tata Cara Perencanaan Pembebanan untuk Rumah dan Gedung (SNI 03-1727-1987). b. Tata Cara Perencanaan Ketahanan Gempa untuk Bangunan Gedung dan Non Gedung (SNI 1726-2012). c. Persyaratan Beton Struktural Untuk Gedung (SNI 2847-2013). Untuk hal-hal yang tidak diatur dalam peraturan dan standar di atas dapat mengacu pada peraturan-peraturan dan standar berikut : a. Building Code Requirements for Structural Concrete (ACI 318-95). b. Uniform Building Code (UBC). 2.3. Pembebanan Secara umum, beban direncanakan sesuai dengan Tata Cara Perencanaan Pembebanan untuk Rumah dan Gedung (SNI 03-1727-1987). 2 Beban mati pada struktur bangunan (kolom, balok, plat lantai, dan dinding geser) akan dihitung otomatis oleh software CSI ETABS V.13.1, sedangkan beban hidup dan beban mati tambahan yang direncanakan adalah sebagai berikut : a. Beban hidup (LL) Beban hidup yang direncanakan yaitu sebagai berikut : - Lantai 1 – 16 (ruang perkuliahan) = 250 kg/𝑚2 - Lantai atap = 100 kg/𝑚2 b. Beban mati (DL) tambahan Beban mati tambahan yang direncanakan sesuai yaitu sebagai berikut : - Lantai 1 – 16 - Lantai atap Plester = 53 kg/𝑚2 Plester Keramik = 24 kg/𝑚2 Beban WP = Plafon dan Ducting AC = 25 kg/𝑚2 Beban M/E = 25 kg/𝑚2 + 127 kg/𝑚2 Plafon = 53 kg/𝑚2 5 kg/𝑚2 = 25 kg/𝑚2 Beban M/E = 25 kg/𝑚2 + 108 kg/𝑚2 c. Beban dinding Beban dinding pada sisi luar bangunan yang direncanakan yaitu sebagai berikut : - Dinding lantai 1 (5,0 m) = (5,0 – 0,6) x 250 = 1100 kg/𝑚′ - Dinding lantai 2 (4,5 m) = (4,5 – 0,8) x 250 = 925 kg/𝑚′ - Dinding lantai 3-6 (4,5 m) = (4,5 – 0,6) x 250 = 975 kg/𝑚′ - Dinding lantai 7-16 (4,0 m) = (4,0 – 0,6) x 250 = 850 kg/𝑚′ d. Beban tandon air Beban tendon air yang bekerja pada atap bangunan yaitu sebagai berikut : - Berat sendiri Tandon air = 62,7 kg/𝑚2 - Plester = 53 kg/𝑚2 - Keramik = 25 kg/𝑚2 + 139,7 kg/𝑚2 e. Beban lift Beban lift yang bekerja yaitu sebagai berikut : - Berat sendiri mesin lift P1 = 800 kg - Beban hidup (maks 10 orang) = 800 kg + - Beban akibat gaya reaksi lift P = 1600 kg 3 2.4. Pemodelan Struktur Bangunan Pemodelan dan analisis struktur menggunakan software CSI ETABS V.13.1.1. Secara umum model rencana yang digunakan dapat dilihat pada Gambar 1, Gambar 2, Gambar 3, dan Gambar 4 di bawah ini : Gambar 1. Denah lantai 1 Gambar 3. Tampak depan model Gambar 2. Denah lantai atap Gambar 4. Tampak belakang model 4 BAB III ANALISIS 3.1. Penentuan Parameter Gaya Gempa Berdasarkan Tabel 9 SNI 1726 : 2012 untuk parameter struktur penahan gaya gempa Sistem Rangka Beton Bertulang Pemikul Momen Khusus (SRPMK) diperoleh R = 8 ; Ω = 3 ; dan Cd = 5,5. 3.2. Penentuan Prosedur Analisis Gaya Lateral Berdasarkan konsep SNI 1726 : 2012 pasal 6.5., pasal 4.1.2., pasal 7.5.4 dan pasal 7.6 tentang prosedur analisis gaya gempa yang boleh dilakukan dan melihat kategori desain seismik bahwa 0,75 harus ditetapkan sebagai struktur dengan kategori desain seismik E. Struktur yang berkategori risiko IV ( jenis perkuliahan) dengan faktor keutamaan gempa I = 1,5 yang berlokasi dimana parameter respons spektral percepatan terpetakan pada perioda 1 detik S1 = 1,1 lebih besar dari 0,75 dan Ss = 1,3 harus ditetapkan sebagai struktur dengan kategori desain seismik yaitu E. Analisis statik ekivalen (ELF) tidak dijinkan untuk kategori desain seismik E, maka prosedur analisis yang di ijinkan dan digunakan untuk analisis gaya gempa lateral yaitu : a. Analisis Respon Spektrum (RSA), dan b. Analisis Riwayat Waktu (THA) 3.3. Analisis Parameter Percepatan Desain - Data gempa yang diperoleh dari soal yang telah ditentukan : Ss = 1,3 ; dan S1 = 1,1. - Berdasarkan tabel 4 dan tabel 5 SNI 1726 : 2012 diperoleh : SE (tanah lunak) = Ss > 1,25 diperoleh Fa = 0,9 S1 > 0,50 diperoleh Fv = 2,4 - Berdasarkan SNI 1726 : 2012 halaman 21 persamaan (5) dan persamaan (6), maka : SMS = Fa x Ss = 0,9 x 1,3 = 1,17 SM1 = Fv x S1 = 2,4 x 1,1 = 2,64 Sds = 2/3 x SMS = 2/3 x 1,17 = 0,78 Sd1 = 2/3 x SM1 = 2/3 x 2,64 = 1,76 5 Adapun grafik respon spektrum gempa rencana berdasarkan hasil perhitungan yang kemudian di input ke dalam software CSI ETABS V.13.1.1. seperti ditunjukan pada Gambar 5 dibawah ini : Gambar 5. Grafik respon spektrum gempa rencana 3.4. Desain Time History Analysis (THA) Nilai respon spektrum tersebut harus dikalikan dengan suatu faktor skala (FS) yang besarnya = g x I/R dengan g = percepatan gravitasi (g = 9,81 m/det2). FS = 9,81 x 1,5/8 = 1,84. Analisis dinamik dilakukan dengan metode superposisi respon spektrum dengan mengambil respon maksimum dari 4 arah gempa yaitu 0°, 45°, 90°, dan 135°. Nilai redaman untuk struktur beton diambil, Damping = 0,05. Digunakan number eigen NE = 3 dengan mass partisipation factor ≥ 90 % dengan kombinasi dinamis (modal combination) CQC dan directional combination SRSS. Dalam analisis ini digunakan rekaman gerakan tanah akibat gempa yang diambil dari akselerogram gempa El-Centro N-S yang direkam pada tanggal 15 Mei 1940 dalam software CSI ETABS V.13.1.1. seperti ditunjukan pada Gambar 6 dibawah ini : Gambar 6. Grafik Respon Time History El-Centro 6 3.5. Asumsi Dalam Analisis Model Struktur Pemodelan struktur selanjutnya dilakukan pada ETABS dengan ketentuan sebagai berikut : 1. Struktur dimodelkan secara 3 Dimensi menggunakan program bantu CSI ETABS V.13.1.1., dengan menganggap semua lantai adalah diafragma kaku terhadap arah lateral dan fleksible terhadap arah tegak lurus bidang (flexible out-of-plane). 2. Struktur beton bertulang memperhitungkan penampang inersia retak sehingga momen inersia kolom sebesar 70%, momen inersia balok 35%, momen inersia pelat 25 %, dan momen inersia dinding geser 70 %. 3. Hubungan balok dan kolom dinggap kaku dengan rigidity factor 0,5. 4. Ujung kolom lantai bawah dimodelkan perletakan jepit sempurnah. 5. Elemen dinding tidak dimodelkan sehingga hanya di asumsikan beban terbagi merata. 3.6. Waktu Getar Alami Hasil Analisis Hasil analisis waktu getar alami struktur dan modal partisipasi massa yang diperoleh dari ETABS selanjutnya di tabelkan sebagai berikut : Tabel 1. Periode Alami dan Partisipasi Massa dalam arah X dan Y Penampang Utuh (Full Dimension) Mode 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Period Sum UX Sum UY sec % 1.403 44.91% 0.22% 1.253 45.15% 47.42% 0.963 45.16% 49.85% 0.565 45.42% 54.59% 0.521 47.42% 54.73% 0.497 47.54% 55.24% 0.487 78.47% 55.93% 0.436 78.47% 55.93% 0.435 78.48% 55.94% 0.429 78.90% 80.04% 0.242 80.49% 80.06% 0.236 84.48% 80.16% 0.21 84.61% 85.35% 0.176 84.62% 85.46% 0.135 89.51% 85.78% 0.129 89.85% 89.82% 0.126 89.85% 90.31% 0.1 91.52% 90.45% 0.099 91.53% 90.54% 0.097 91.53% 90.54% 0.097 91.67% 90.66% 0.096 91.67% 90.72% 0.095 91.94% 92.14% 0.092 91.94% 92.14% 0.092 91.95% 92.17% Mode 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 Period Sum UX Sum UY sec % 0.09 91.96% 92.17% 0.089 91.96% 92.17% 0.089 91.96% 92.17% 0.089 91.96% 92.17% 0.089 91.96% 92.17% 0.088 91.96% 92.17% 0.088 91.96% 92.17% 0.088 91.96% 92.17% 0.088 91.96% 92.17% 0.087 91.97% 92.18% 0.087 91.97% 92.18% 0.087 91.98% 92.18% 0.087 92.01% 92.18% 0.087 92.02% 92.19% 0.087 92.02% 92.19% 0.087 92.02% 92.19% 0.087 92.02% 92.19% 0.086 92.03% 92.20% 0.086 92.03% 92.20% 0.086 92.03% 92.20% 0.086 92.03% 92.20% 0.086 92.03% 92.20% 0.086 92.04% 92.20% 0.086 92.04% 92.20% 0.086 92.04% 92.20% 7 Tabel 2. Periode Alami dan Partisipasi Massa dalam arah X dan Y Penampang Retak (Crack Dimension) Mode 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Period Sum UX Sum UY sec % 1.819 45.81% 0.70% 1.683 46.54% 46.87% 1.208 46.54% 49.20% 0.712 46.79% 53.19% 0.623 56.63% 53.19% 0.604 75.82% 54.22% 0.601 77.93% 54.37% 0.523 78.29% 79.09% 0.437 78.29% 79.09% 0.436 78.29% 79.09% 0.284 83.62% 79.15% 0.278 84.12% 79.28% 0.246 84.24% 85.34% 0.221 84.25% 85.35% 0.16 89.48% 85.53% 0.148 89.63% 90.16% 0.14 89.66% 90.16% 0.123 89.77% 90.44% 0.116 90.33% 90.46% 0.113 91.72% 90.59% 0.112 91.73% 90.63% 0.107 91.74% 90.77% 0.107 91.74% 90.78% 0.107 91.75% 90.80% 0.107 91.75% 90.81% Mode 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 Period Sum UX Sum UY sec % 0.106 91.77% 90.99% 0.106 91.81% 92.04% 0.106 91.81% 92.04% 0.106 91.81% 92.04% 0.106 91.81% 92.04% 0.106 91.81% 92.04% 0.106 91.81% 92.04% 0.105 91.81% 92.06% 0.105 91.81% 92.06% 0.105 91.81% 92.06% 0.105 91.88% 92.07% 0.105 91.88% 92.07% 0.105 91.88% 92.07% 0.104 91.88% 92.07% 0.104 91.88% 92.07% 0.104 91.88% 92.07% 0.104 91.88% 92.08% 0.104 91.88% 92.08% 0.104 91.89% 92.14% 0.104 91.89% 92.15% 0.104 91.89% 92.15% 0.103 91.89% 92.17% 0.103 91.89% 92.17% 0.103 91.89% 92.17% 0.103 91.91% 92.21% Tabel 3. Perbandingan Periode Alami Penampang Utuh dan Penampang Retak Metode Perhitungan Periode Alami Etabs 2013 (penampang Utuh) Etabs 2013 (penampang crack) Periode alami (mode 1) sec 1.403 1.819 3.7. Analisis Respon Spektrum (RSA) Hasil simpangan antar tingkat dari ETABS disajikan dalam tabel dan gambar di bawah ini : Gambar 7. Story Displacement arah X 8 Gambar 8. Story Displacement arah Y Tabel 4. Hasil perhitungan drift antar tingkat akibat gempa arah X Lantai story 17 story 16 story 15 story 14 story 13 story 12 story 11 story 10 story 9 story 8 story 7 story 6 story 5 story 4 story 3 story 2 story 1 hi (m) 4 4 4 4 4 4 4 4 4 4 4 4.5 4.5 4.5 4.5 4.5 5 Total Drift (m) 0.0065 0.0062 0.0051 0.0049 0.0042 0.0034 0.0028 0.002 0.0018 0.0015 0.001 0.004 0.0028 0.0011 0.0008 0.0003 0.0001 Stroty Drift Strory Drift * Cd (m) (m) 0.0003 0.00165 0.0011 0.00605 0.0002 0.0011 0.0007 0.00385 0.0008 0.0044 0.0006 0.0033 0.0008 0.0044 0.0002 0.0011 0.0003 0.00165 0.0005 0.00275 -0.003 -0.0165 0.0012 0.0066 0.0017 0.00935 0.0003 0.00165 0.0005 0.00275 0.0002 0.0011 0.0001 0.00055 Drift Ratio (m) 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0169 0.0169 0.0169 0.0169 0.0169 0.0188 Syarat Drift OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK Tabel 5. Hasil perhitungan drift antar tingkat akibat gempa arah Y Lantai story 17 story 16 story 15 story 14 story 13 story 12 story 11 story 10 story 9 story 8 story 7 story 6 story 5 story 4 story 3 story 2 story 1 hi (m) 4 4 4 4 4 4 4 4 4 4 4 4.5 4.5 4.5 4.5 4.5 5 Total Drift (m) 0.022 0.021 0.02 0.018 0.0172 0.0148 0.014 0.0125 0.0115 0.01 0.008 0.024 0.013 0.0095 0.006 0.004 0.002 Stroty Drift Strory Drift * Cd (m) (m) 0.001 0.0055 0.001 0.0055 0.002 0.011 0.0008 0.0044 0.0024 0.0132 0.0008 0.0044 0.0015 0.00825 0.001 0.0055 0.0015 0.00825 0.002 0.011 -0.016 -0.088 0.011 0.0605 0.0035 0.01925 0.0035 0.01925 0.002 0.011 0.002 0.011 0.002 0.011 Drift Ratio (m) 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0169 0.0169 0.0169 0.0169 0.0169 0.0188 Syarat Drift OK OK OK OK OK OK OK OK OK OK OK NO NO NO OK OK OK 9 3.8. Output Gaya – Gaya Dalam Hasil analisis gaya – gaya dalam dari software CSI ETABS V.13.1.1. disajikan dalam tabel di bawah ini : Tabel 6. Gaya – gaya dalam pada balok frame B1 B2 B3 B4 B5 B6 B7 frame PC1 PC2 PC3 PC4 Story LT.6 LT.6 LT.7 LT.6 LT.7 LT.3 LT.7 LT.7 LT.5 LT.6 LT.5 LT.5 LT.11 LT.10 LT.9 LT.11 LT.15 LT.16 LT.15 LT.15 LT.11 LT.6 LT.10 LT.11 LT.10 LT.6 LT.10 LT.10 Beam B1706 B1707 B2219 B1707 B2225 B1974 B2225 B2225 B1976 B2187 B1976 B2156 B2225 B2277 B2225 B2225 B2232 B2269 B2232 B2232 B1725 B1728 B1725 B1725 B2230 B1729 B2230 B2230 Story LT.6 LT.6 LT.6 LT.6 LT.2 LT.5 LT.2 LT.2 LT.7 LT.7 LT.9 LT.9 LT.7 LT.7 LT.9 LT.9 Beam B2063 B2063 B2054 B2054 B2054 B2055 B2054 B2054 B2212 B2210 B2232 B2232 B2229 B2229 B2233 B2233 Load Case/Combo Comb4 Max Comb4 Min Comb3 Min Comb4 Min Comb4 Min Comb3 Min Comb6 Max Comb4 Min Comb4 Min Comb3 Min Comb4 Max Comb4 Min Comb4 Min Comb4 Min Comb6 Max Comb4 Min Comb4 Max Comb4 Max SPEX Y Max Comb4 Min Comb4 Min Comb3 Max SPEX Y Max Comb4 Min Comb4 Max Comb3 Max SPEX Y Max Comb4 Min V2 (sendi) V2 (luar sendi) N N (212,152.40) (202,254.80) (210,618.90) (188,747.86) (324,177.29) (308,145.91) (579,503.30) (556,937.22) 657,481.23 (543,528.28) (67,120.32) (66,050.83) 88,172.63 (75,044.08) - T (maks) N-mm (9,125,547.51) (8,908,717.55) (21,226,395.00) (96,612,631.00) 88,748,639.29 12,876,909.92 19,715,951.50 - M3 (maks) N-mm 263,816,692.00 347,952,536.00 391,097,169.00 1,152,355,238.00 1,462,017,923.00 104,290,326.00 228,173,340.00 - M3 (min) N-mm (204,397,488.00) (436,068,820.00) (492,652,587.00) (1,361,321,179.00) (1,730,752,514.00) (131,421,785.00) (276,060,624.00) Load Case/Combo Comb3 Max Comb4 Min Comb3 Max Comb5 Min Comb3 Min Comb4 Max Comb3 Max Comb5 Min Comb4 Min Comb3 Max Comb6 Max Comb4 Min Comb3 Max Comb4 Min Comb5 Max Comb3 Min V2 (sendi) V2 (luar sendi) N N 1,382,838.98 1,332,941.78 (787,182.18) (658,929.42) (835,915.13) (803,515.77) 533,191.34 167,631.28 - T (maks) N-mm (172,407,172.00) 195,243,712.00 187,730,718.00 (347,171,318.00) - M3 (maks) N-mm 2,625,147,761.00 1,615,605,110.00 1,994,938,976.00 802,667,857.00 - M3 (min) N-mm (1,501,721,621.00) (1,147,953,532.00) (2,116,474,477.00) (871,029,744.00) Tabel 7. Gaya – gaya dalam pada kolom frame K1 K2 frame K4 K5 Story Beam BASEMENTC216 LT.6 C216 LT.6 C216 BASEMENTC96 LT.4 C59 LT.6 C55 LT.16 C282 LT.6 C55 Story LT.7 LT.7 LT.7 LT.7 LT.7 LT.9 LT.9 LT.9 Beam C291 C290 C291 C290 C215 C17 C282 C17 Load Case/Combo Comb3 Min Comb3 Max Comb3 Max Comb4 Min Comb4 Min Comb3 Max Comb4 Max Comb3 Max P (maks) N (9,292,100.51) (2,752,587.04) - V2 (maks) N 681,391.81 606,105.73 - Load Case/Combo Comb3 Min Comb3 Max Comb4 Min Comb3 Max Comb4 Min Comb3 Min Comb4 Max Comb3 Min P (maks) N (940,328.20) (9,285,232.70) - V2 (maks) N 380,698.22 (639,301.06) - M2 (maks) N-mm (1,152,447,173.00) 1,079,629,625.00 M2 (maks) N-mm (455,695,169.00) 1,894,429,376.00 M3 (maks) N-mm 1,450,116,372.00 1,297,374,428.00 M3 (maks) N-mm 880,023,037.00 (1,376,944,475.00) 10 Tabel 8. Gaya – gaya dalam pada dinding geser frame SW Story Pear BASEMENTP11 ATAP P23 ATAP P23 Load Case/Combo Comb4 Max Comb5 Max Comb3 Min P (maks) KN (19,541.16) - V2 (maks) KN (8,789.81) - M3 (maks) KN-m 21,409.88 3.9. Perencanaan Struktur Perencanaan struktur beton bertulang mengacu pada Tata Cara Perencanaan Ketahanan Gempa Untuk Bangunan Gedung dan Non Gedung (SNI 1726-2012). Mutu bahan yang digunakan yaitu : a. Mutu beton (f’c) = 30 MPa. b. Baja U 24 untuk besi tulangan P ≤ 12, fy = 240 MPa dan Baja U 40 untuk besi tulangan D > 13, fy = 400 MPa. Detail perencanaan struktur beton bertulang untuk masing – masing elemen struktur gedung Graha Pena ditampilkan pada LAMPIRAN IV, sehingga pada masing – masing sub bab dibawah ini hanya merupakan resume dari hasil perencanaan tersebut. 3.9.1. Perencanaan Plat Lantai Pada struktur gedung Garaha Pena terdapat 10 tipe pelat lantai sesuai dengan denah struktur dan dimensinya yang disimbolkan dengan S1, S2, S3, S4, S5, S6, S7, S8, S9, dan S10. Resume dari hasil perencanaan struktur masing – masing tipe plat lantai tersebut dapat dilihat pada Tabel 9 dibawah ini : Tabel 9. Resume hasil perencanaan plat lantai Tipe Ukuran Tebal Momen Ultimit (kNm) Penulangan Pelat (m) (m) Mu lx Mu ly Mu tx Mu ty Tul. lx Tul. ly Tul. tx Tul. ty S1 4x4 0,12 2,786 2,786 5,683 5.683 P 10 – 150 P 10 – 150 P 10 – 100 P 10 – 100 S2 4x4 0,12 2,786 2,786 5,683 5.683 P 10 – 150 P 10 – 150 P 10 – 100 P 10 – 100 S3 8x8 0,40 24,045 24,045 49,051 49.051 P 10 – 150 P 10 – 150 P 10 – 75 P 10 – 75 S4 4x4 0,50 7,163 7,163 14,613 14.613 P 10 – 150 P 10 – 150 P 10 – 100 P 10 – 100 S5 3x4 0,15 2,795 1,339 4,932 3.898 P 10 – 150 P 10 – 150 P 10 – 100 P 10 – 100 S6 2x4 0,20 2,150 0,556 3,040 1,965 P 10 – 150 P 10 – 150 P 10 – 100 P 10 – 100 S7 5,5 x 6 0,15 6,986 5,565 13,497 12,432 P 10 – 150 P 10 – 150 P 10 – 100 P 10 – 100 S8 4 x 10 0,50 17,765 4,011 23,782 14,613 P 10 – 150 P 10 – 150 P 10 – 100 P 10 – 100 S9 4x8 0,40 13,946 3,607 19,717 12,744 P 10 – 150 P 10 – 150 P 10 – 100 P 10 – 100 S10 4x4 0,12 2,786 2,786 5,683 5.683 P 10 – 150 P 10 – 150 P 10 – 100 P 10 – 100 11 3.9.2. Perencanaan Balok Pada struktur gedung Garaha Pena terdapat 11 tipe balok sesuai dengan denah struktur dan dimensinya yang disimbolkan dengan B1, B2, B3, B4, B5, B6, B7, PC1, PC2, PC3, dan PC4. Resume dari hasil perencanaan struktur masing – masing tipe balok tersebut dapat dilihat pada Tabel 10 dibawah ini : Tabel 10. Resume hasil perencanaan balok Gaya – Gaya Dalam Tipe Balok Momen lentur (kNm) Ukuran b/h (m) Tumpuan Penulangan Gaya geser (kN) Lapangan Mu Mn Mu Mn Tumpuan Lentur Lapangan Vu Vn Vu Vn 202,26 Torsi Tumpuan Geser Lapangan (kNm) Atas Bawah Atas Bawah Tumpuan Lapangan Torsi B1 0,3/0,4 204,39 358,32 263,82 358,32 212,15 316,06 277,42 9,13 8 D 22 4 D 22 4 D 22 8 D 22 4 P10 - 100 4 P10 - 120 2 D 13 B2 0,25/0,6 436,07 501,66 347,95 501,66 210,62 412,52 188,75 306,97 8,91 8 D 22 4 D 22 4 D 22 8 D 22 4 P10 - 100 4 P10 - 150 2 D 13 B3 0,3/0,7 492,65 601,60 391,09 601,60 324,18 508,78 308,15 384,38 21,23 8 D 22 4 D 22 4 D 22 8 D 22 4 P10 - 100 4 P10 - 150 2 D 13 B4 0,4/0,8 1.361,32 1.555,04 1.152,36 1.555,04 579,50 611,89 556,94 652,68 96,61 18 D 22 10 D 22 10 D 22 18 D 22 4 P10 - 100 4 P10 - 150 4 D 16 B5 0,8/1,0 1.730,75 1.795,26 1.462,02 1.795,26 657,48 797,25 543,53 706,77 88,75 16 D 22 8 D 22 8 D 22 16 D 22 P10 - 100 P10 - 150 4 D 13 B6 0,2/0,4 131,42 156,87 104,29 156,87 67,12 151,08 66,05 117,15 12,87 4 D 22 2 D 22 2 D 22 4 D 22 P10 - 100 P10 - 150 4 D 13 B7 0,15/0,6 276,06 378,14 228,17 378,14 88,17 215,85 75,05 163,07 19,72 6 D 22 4 D 22 4 D 22 6 D 22 P10 - 100 P10 - 150 4 D 13 PC1 0,5/1,0 1.501,72 3.0875,5 2.625,51 3.0875,5 1.082,8 1.110,4 932,94 1.045,4 172,41 28 D 22 14 D 22 14 D 22 28 D 22 4 P12 - 100 4 P12 - 120 4 D 16 PC2 0,6/0,8 1.147,95 1.914,31 1.615,61 1.914,31 787,18 1.002,9 658,93 821,99 195,24 22 D 22 12 D 22 12 D 22 22 D 22 4 P10 - 100 P10 - 150 4 D 13 PC3 0,7/0,8 2.116,48 2.425,37 1.994,94 2.425,37 835,92 983,11 803,52 879,96 187,73 28 D 22 14 D 22 14 D 22 28 D 22 4 P12 - 100 4 P12 - 120 4 D 13 PC4 0,4/0,8 871,03 1.045,84 802,67 1.045,84 533,19 637,91 167,63 351,39 871,03 12 D 22 6 D 22 6 D 22 12 D 22 4 P10 - 100 P10 - 150 4 D 13 12 3.9.3. Perencanaan Kolom Pada struktur gedung Graha Pena terdapat 4 tipe kolom sesuai dengan denah struktur dan dimensinya yang disimbolkan dengan K1, K2, K4, dan K5. Resume dari hasil perencanaan struktur masing – masing tipe kolom tersebut dapat dilihat pada Tabel 11 dibawah ini : Tabel 11. Resume hasil perencanaan kolom Tipe kolom Ukuran b x h (m) K1 K2 K4 K5 1,2 x 1,2 0,8 x 0,8 0,9 x 0,9 1,2 x 1,2 Pu (kN) 9.292,10 2.752,59 940,33 9.285,23 Gaya – gaya dalam Mu Vu (kNm) (kN) 1.450,12 681,39 1.297,37 606,11 880,02 380,69 1.894,43 693,30 Gambar 9. Diagram iteraksi Kolom K1 Nu (kN) -9.292,10 -2.752,59 -940,33 -9.285,23 Lentur 8 D 22 8 D 22 8 D 22 8 D 22 Penulangan Geser Tumpuan Lapangan P12 - 100 P12 - 150 4 P12 - 100 4 P12 - 150 P12 - 100 P12 - 150 P12 - 100 P12 - 150 Gambar 10. Diagram iteraksi Kolom K2 13 Gambar 11. Diagram iteraksi Kolom K4 Gambar 12. Diagram iteraksi Kolom K5 3.9.4. Perencanaan Dinding Geser Dinding geser direncanakan untuk menahan geser bidang horizontal dan vertikal serta momen lentur akibat gempa. Resume dari hasil perencanaan struktur dinding geser tersebut dapat dilihat pada Tabel 9 dibawah ini : Tabel 12. Resume hasil perencanaan dinding geser Tebal 0,45 Dimensi (m) P total P badan 5 6 h total 76 Gaya – Gaya Dalam Mu (kNm) Pu (kN) Vu (kN) 21.409,88 19.541,16 8.789,81 Penulangan Horisontal Vertikal D22 – 150 D22 – 150 14 BAB IV PEMBAHASAN Model yang dianalisis adalah gedung Graha Pena Makasar dengan fungsi bangunan sebagai kampus (ruang kuliah), sedangkan jenis tanah yang di gunakan yaitu tanah lunak. Secara umum struktur bangunan tersebut memiliki 17 lantai dan 1 lantai basement dengan bentuk geometri bangunan tidak beraturan serta manggunakan material beton bertulang sebagai rangka utama strukturnya. Gedung tersebut direncanakan dan dibangun diatas tanah lunak dengan fungsi utama bangunan sebagai gedung perkuliahan. Spesifikasi bahan yang digunakan yaitu mutu beton (f’c) = 30 MPa, sedangkan untuk baja tulangan menggunakan Baja U 24 untuk besi tulangan P ≤ 12, fy = 240 MPa. Baja U 40 untuk besi tulangan D > 13, fy = 400 MPa. Struktur gedung Graha Pena memiliki denah struktur yang tidak beraturan serta memiliki tingkat lantai yang lebih dari 10 lantai dan berkategori resiko IV ( jenis perkuliahan) dengan faktor keutamaan gempa I = 1,5 yang berlokasi dimana parameter respons spektral percepatan terpetakan pada perioda 1 detik S1 = 1,1 lebih besar dari 0,75 dan Ss = 1,3 harus ditetapkan sebagai struktur dengan kategori desain seismik yaitu E. Oleh sebab itu, Analisis statik ekivalen (ELF) tidak dijinkan untuk kategori desain seismik E, maka prosedur analisis yang diijinkan dan digunakan untuk analisis gaya gempa lateral yaitu analisis dinamik Response Spectrum Analysis dan Time History Analysis. Analisis dinamik linier riwayat waktu (time history) sangat cocok digunakan untuk analisis struktur yang tidak beraturan terhadap pengaruh gempa rencana. Mengingat gerakan tanah akibat gempa di suatu lokasi sulit diperkirakan dengan tepat, maka sebagai input gempa dapat didekati dengan gerakan tanah yang disimulasikan. Dalam analisis ini digunakan hasil rekaman akselerogram gempa sebagai input data percepatan gerakan tanah akibat gempa. Rekaman gerakan tanah akibat gempa diambil dari akselerogram gempa El-Centro N-S yang direkam pada tanggal 15 Mei 1940. Pada gedung-gedung bertingkat, perilaku struktur akibat beban-beban yang bekerja mengakibatkan terjadinya distribusi gaya. Konsep perancangan konstruksi didasarkan pada analisis kekuatan batas (ultimate-strength) yang mempunyai daktilitas cukup untuk menyerap energi gempa sesuai dengan peraturan yang berlaku. Prosedur perhitungan struktur bangunan diasumsikan bahwa masing – masing elemen struktur tertentu pada bangunan portal memiliki persamaan gaya – gaya dalam sehingga cara perhitungannya juga sama dengan menggunakan nilai maksimum gaya – gaya dalam pada masing – masing elemen struktur tersebut. 15 Pemodelan dan analisis struktur menggunakan software CSI ETABS V.13.1.1, sedangkan untuk perhitungan tulangan menggunakan Microsoft excel 2010 untuk mempermudah perhitungan. Hasil dari analisis software CSI ETABS V.13.1.1 menunjukan bahwa struktur telah mencapai mass partisipation factor ≥ 90 % dengan kombinasi dinamis (modal combination) CQC dan directional combination SRSS, baik dari penampang utuh (full dimension) maupun penampang retak (crack dimension). Sedangkan perbandingan periode alami penampang utuh (full dimension) dan penampang retak (crack dimension) pada modal 1 berturut – turut yaitu 1,403 detik dan 1,819 detik. Hasil dari analisis struktur menunjukan bahwa pada masing – masing elemen struktur (plat lantai, balok, kolom, dan dinding geser) membutuhkan dimensi yang cukup besar serta tulangan yang cukup banyak baik pada tulangan lentur, tulangan geser, maupun tulangan torsinya (hasil perhitungan dan gambar detail terlampir). Hal ini disebabkan oleh besarnya beban yang didukung oleh struktur, sebab struktur memiliki dimensi yang cukup besar serta bentuk denah struktur yang tidak beraturan, yang kemudian menyebabkan beban mati (DL), beban hidup (LL), beban gempa (E), dan beban angin (W) akan semakin besar pula. Selain itu, juga dipengaruhi oleh fungsi bangunan yang harus didukung oleh stuktur yaitu sebagai gedung perkuliahan dengan besar beban hidup (LL) 250 kg/𝑚2 dengan faktor keutamaan bangunan (I) = 1,5. Hal lain yang kemudian sangat berpengaruh adalah jenis tanah yang merupakan pendukung utama terhadap struktur yang dibangun diatasnya merupakan tanah lunak yang kemudian akan menyebabkan energi gempa yang diterima oleh struktur akan semakin besar pula. 16 BAB V KESIMPULAN DAN SARAN 4.1. Kesimpulan 1. Struktur direncanakan sebagai Sistem Rangka Beton Bertulang Pemikul Momen Khusus (SRPMK), sehingga diperoleh R = 8 ; Ω = 3 ; dan Cd = 5,5. 2. Struktur gedung Graha Pena memiliki denah struktur yang tidak beraturan serta memiliki tingkat lantai yang lebih dari 10 lantai dan berkategori risiko IV ( jenis perkuliahan) dengan faktor keutamaan gempa I = 1,5 dan ditetapkan sebagai struktur dengan kategori desain seismik yaitu E. Oleh sebab itu, Analisis statik ekivalen (ELF) tidak dijinkan untuk kategori desain seismik E, maka prosedur analisis yang diijinkan dan digunakan untuk analisis gaya gempa lateral yaitu analisis dinamik Response Spectrum Analysis dan Time History Analysis. 3. Hasil dari analisis software CSI ETABS V.13.1.1 menunjukan bahwa struktur telah mencapai mass partisipation factor ≥ 90 % dengan kombinasi dinamis (modal combination) CQC dan directional combination SRSS, baik dari penampang utuh (full dimension) maupun penampang retak (crack dimension). 4. Periode alami penampang utuh (full dimension) dan penampang retak (crack dimension) pada modal 1 berturut – turut yaitu 1,403 detik dan 1,819 detik. 5. Oleh karena besarnya beban yang harus didukung, maka pada bentangan balok yang terlalu panjang (16 m), diperpendek bentangannya dengan cara menambahkan kolom pada tengah bentangnya. 4.2. Saran Struktur gedung Graha Pena yang semula dibangun di daerah Makassar Sulawesi Selatan dengan tingkat resiko gempa yang kecil dan fungsi bangunan sebagai perkantoran, jika akan dibangun di daerah gempa besar dengan jenis tanah lunak dan fungsi bangunannya diubah menjadi gedung perkuliahan maka perlu diredisain kembali denah struktur maupun dimensi strukturnya. 17 DAFTAR PUSTAKA Anonim, 1987, Pedoman Perencanaan Pembebanan untuk Rumah dan Gedung, SKBI1.3.53.1987 , Departemen Pekerjaan Umum, Jakarta. Anonim, 2013, Persyaratan Beton Struktural Untuk Gedung SNI 2847-2013, Departemen Pekerjaan Umum, Jakarta. Anonim, 2012, Tata Cara Perencanaan Ketahanan Gempa untuk Bangunan Gedung dan Non Gedung SNI 1726-2012, Departemen Pekerjaan Umum, Jakarta. Dipohusodo, Istimawan, 1994, Struktur Beton Bertulang, Gramedia Pustaka Utama, Jakarta. Ilham, M. N, Analisis Struktur Gedung Bertingkat dengan Software ETABS 9.2.0. Rastandi, J. I (2006), Dampak Pembatasan Waktu Getar Alami pada Gedung Bertingkat Rendah, Seminar HAKI. Vis, W.C., Kusuma Gedeon, 1993, Grafik dan Tabel Perhitungan Beton Bertulang, Erlangga, Jakarta. 18