I. PENDAHULUAN 1.1 Latar Belakang dan Masalah Dalam kehidupan, polusi yang ada di sungai disebabkan oleh limbah dari pabrikpabrik dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk ke dalam sungai dan langsung tercampur dengan air sungai. Sungai merupakan salah satu sumber daya air alami yang harus dijaga dari pengaruh air limbah atau polutan, yang berarti kualitas air sungai harus diamankan dari pencemaran yang berasal dari limbah industri, limbah pertanian dan kotoran manusia atau kotoran binatang. Dan dengan meningkatnya beban air limbah yang dibuang ke sungai yang semakin lama semakin meningkat, maka upaya pengawasan dan monitoring kualitas air sungai juga perlu semakin ditingkatkan. Namun pada kenyataannya, pengawasan dan monitoring kualitas air masih ditemui nilai konsentrasi polutan hasil monitoring masih di atas ambang batas maksimal yang diperbolehkan. Mengingat pentingnya kualitas air yang baik untuk setiap waktu, diperlukan suatu model matematika untuk memprediksi kualitas air pada waktu yang akan datang. Model matematika tersebut bergantung dengan keadaan sungai dan polutan yang masuk di sungai. Salah satunya adalah model matematika polusi air di sungai telah banyak dibahas oleh Beltrami (1997). 2 Oleh karena itu, penulis tertarik untuk mengkaji model matematika dan solusi analitik dari model sistem dinamik polusi air di sungai dengan syarat batas yang ditentukan. Selanjutnya akan dilihat perilaku polutan yang mengalir di sungai saat waktu dengan simulasi komputasi menggunakan metode beda hingga. 1.2 Batasan Masalah Dalam penelitian ini dibatasi pada pembahasan masalah nilai batas model polusi air di sungai dengan syarat batas konsentrasi polutan yang masuk di hulu adalah konstan, ( ) ( ) dengan ( ) dalam hal ini diberikan { . 1.3 Tujuan Penelitian Adapun tujuan dari penelitian ini adalah : 1. mengkaji model matematika dari model sistem dinamik polusi di sungai. 2. menjabarkan solusi analitik dari pemodelan sistem dinamik polusi di sungai dengan syarat batas tertentu. 3. mensimulasikan perilaku model terhadap hingga. menggunakan metode beda 3 1.4 Manfaat Penelitian Manfaat yang diharapkan dari penelitian ini adalah : 1. untuk menambah wawasan mengenai penerapan matematika dalam ilmu biologi. 2. untuk memprediksi perilaku masalah polusi di sungai terhadap waktu dengan simulasi numerik menggunakan metode beda hingga. 4 II. TINJAUAN PUSTAKA 2.1 Persamaan Diferensial Pada umumnya dikenal dua jenis persamaan diferensial yaitu persamaan diferensial biasa (PDB) dan persamaan diferensial parsial (PDP). Definisi 2.1.1 Persamaan Diferensial Sebuah persamaan diferensial adalah sebuah persamaan yang meliputi satu atau lebih turunan-turunan. Persamaan-persamaan diferensial diklasifikasikan menurut macam, orde dan derajat (Weber, 1999). Definisi 2.1.2 Orde dari Persamaan Diferensial Orde dari sebuah persamaan diferensial adalah orde dari turunan orde tertinggi yang terdapat dalam persamaan (Weber, 1999). Definisi 2.1.3 Derajat dari Persamaan Diferensial Derajat dari persamaan diferensial adalah pangkat dari turunan orde tertinggi yang terjadi setelah persamaan diferensial dirasionalkan untuk menghilangkan pangkat pecahan dari turunan-turunan (Weber, 1999). 5 2.2 Persamaan Diferensial Biasa Definisi 2.2.1 Persamaan Diferensial Biasa Jika sebuah persamaan diferensial melibatkan satu atau lebih turunan-turunan sebuah fungsi dengan satu variabel bebas, maka persamaan diferensial itu merupakan persamaan diferensial biasa (Weber, 1999). 2.3 Persamaan Diferensial Parsial Definisi 2.3.1 Persamaan Diferensial Parsial Jika sebuah persamaan diferensial melibatkan satu atau lebih turunan-turunan parsial sebuah fungsi dengan dua atau lebih variabel-variabel bebas, persamaan itu adalah persamaan diferensial parsial (Weber, 1999). 2.4 Turunan Berarah Definisi 2.4.1 Turunan Berarah Perhatikan persamaan dengan dan konstan yang tidak nol bersama-sama. Terkait dengan turunan berarah, jika mempunyai fungsi dalam arah ̅ ( ) dengan ‖ ̅‖ ̅ ̅ ( ) ( ) adalah ( ), turunan berarah 6 Turunan berarah ini merupakan bilangan yang digunakan untuk menyatakan kemiringan permukaan ( ), pada satu titik, bila dipotong oleh bidang tegak melalui ̅. Bila dibandingkan turunan berarah dari haruslah . ̅ Jadi ( dengan persaman diferensial di atas, ) bernilai konstan dalam arah ̅ ( kelipatannya. Sedangkan persamaan diferensial berlaku pada bidang sepanjang garis yang lain, yang sejajar dengan ̅, berlaku pula ( ), juga , jadi ) = konstan, dengan konstanta yang berbeda. Garis yang berpadanan dengan konstan tersebut berbentuk = konstan, yang disebut garis karakteristik. Persamaan garis karakteristik diperoleh dari hubungan geometri: untuk setiap titik ( memberikan ( ) , untuk pula. Oleh karena itu, solusinya bentuk , dengan . Secara ) pada garis dengan suatu yang lain akan memberikan nilai ( ) ( , yang lain ) bergantung pada satu fungsi sebarang (L.H. Wiryanto). 2.5 Sistem Dinamik Teori sistem dinamik adalah bidang matematika terapan yang digunakan untuk memberikan kelakuan sistem dinamik kompleks, biasanya dengan menggunakan persamaan diferensial ataupun persamaan beda. Bila digunakan persamaan diferensial, teori tersebut dinamakan sistem dinamik kontinu. Bila digunakan persamaan beda, teori tersebut dinamakan sistem dinamik diskret. Bila variabel 7 waktu berjalan dalam himpunan yang diskret pada beberapa selang dan kontinu pada selang lain, atau himpunan-waktu lain seperti himpunan Cantor, maka kita mendapatkan persamaan dinamik pada skala waktu. Beberapa keadaan juga mungkin dimodelkan oleh operator campuran seperti persamaan diferensial-beda. Sistem dinamik adalah deskripsi perkembangan dari waktu ke waktu terhadap batas di suatu keadaan dari beberapa ruang di suatu keadaan ruang pada sistem (Richard E. Williamson, 2001). 2.6 Syarat Awal dan Syarat Batas Sampai sekarang dalam menentukan solusi persamaan diferensial parsial diperoleh solusi yang memuat fungsi tak diketahui. Untuk mendapatkan jawaban yang lebih khusus maka diperlukan satu atau beberapa syarat. Biasanya syarat yang digunakan terkait dengan keadaan fisis, berupa kondisi awal (berhubungan dengan waktu) atau kondisi batas (berhubungan dengan batas daerah). Contohnya : Persamaan difusi dengan ̅ ( mempunyai kondisi awal ) dan ( ̅ ) ( ̅) menyatakan konsentrasi awal. Persamaan panas, sama seperti persamaan difusi, dengan ( ̅) menyatakan temperatur awal. Persamaan gelombang diselesaikan menggunakan kondisi awal ( ̅ ( ̅ ) dan ( ̅ ) ) ( ̅ ), sebagai simpangan dan kecepatan awal. Juga daerah definisi dawai terbatas pada selang , sehingga batas daerah perlu diterapkan. Untuk membran batas daerah berupa kurva tertutup. 8 Terkait dengan kondisi batas, terdapat 3 macam: nilai tertentu disebut kondisi Direchlet, misal ( ) ( ) untuk dawai. nilai tertentu terkait turunan normal gabungan ̅ ̅, disebut kondisi Neumann. bernilai tertentu, disebut kondisi Robin. Masalah well-posed PDP dengan kondisi awal dan batas harus memenuhi existensi : paling tidak ada satu solusi ketunggalan : paling banyak satu solusi stabil : solusi bergantung pada data dari masalah. Dengan perubahan data yang kecil solusi juga berubah tidak terlalu besar (L.H. Wiryanto). 2.7 Pengelompokan Persamaan Diferensial Parsial Secara umum persamaan diferensial parsial linear dinyatakan sebagai berikut : 1. Orde 1: 2. Orde 2: Terkait dengan koefisien turunan kedua dari PDP orde 2, dapat dikelompokkan dalam 1. Eliptik jika , contoh persamaan jenis ini adalah persamaan Laplace. 2. Hiperbolik jika persamaan getaran dawai. , contoh persamaan jenis ini adalah 9 3. Parabolik jika , contoh persamaan jenis ini adalah persamaan difusi atau panas (L.H. Wiryanto). 2.8 Solusi pada Persamaan Diferensial Parsial Yang dimaksud dengan solusi suatu persamaan diferensial pada suatu daerah R di dalam ruang peubah-peubah bebasnya ialah fungsi yang memiliki turunan parsial yang muncul di dalam persamaan itu, yang didefenisikan pada suatu domain mengandung R dan yang memenuhi persamaan itu dimana-mana di dalam R. Ada kalanya orang hanya menyaratkan bahwa fungsi tersebut kontinu pada batas daerah R, mempunyai turunan-turunan tersebut di dalam interior daerah R, dan memenuhi persamaan itu di dalam interior daerah R (Awang). Solusi yang terdapat dalam penyelesaian persamaan diferensial parsial ada dua solusi, yaitu : 2.8.1 Solusi Analitik Penyelesaian analitik dari suatu model matematika adalah penyelesaian yang didapat dari manipulasi aljabar terhadap persamaan dasar sehingga didapat suatu penyelesaian yang berlaku untuk setiap titik dalam domain yang menjadi perhatian (Djoko Luknanto, 2003). 2.8.2 Solusi Numerik Solusi numerik didapat dari metode numerik. Metode numerik merupakan satusatunya metode yang dapat digunakan untuk menyelesaikan persoalan-persoalan matematis yang solusi analitiknya sulit diperoleh. 10 Ada beberapa metode numerik untuk menghampiri solusi persamaan diferensial parsial, diantaranya : 1. Metode beda hingga Biasanya untuk metode beda hingga dimana persamaannya mengandung diskritisasi terhadap ruang dan waktu, maka skema-skema beda hingga lebih jelas jika dijelaskan dengan kisi beda hingga seperti Gambar 1 berikut : Gambar 1. Kisi beda hingga ruang ( ) dan waktu ( ) Dasar dari setiap skema dari metode beda hingga dapat dirunut dari deret Taylor. Deret Taylor dalam artian fisik dapat diartikan sebagai berikut “suatu besaran tinjauan pada suatu ruang dan waktu tertentu (ruang dan waktu tinjauan) dapat dihitung dari besaran itu sendiri pada ruang dan waktu tertentu yang mempunyai perbedaan kecil dengan ruang dan waktu tinjauan” atau secara matematis dapat dinyatakan sebagai berikut : 11 ( ) ( ( ) ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) a. Skema maju Dengan menggunakan tiga suku pertama dari ruas kanan deret Taylor pada persamaan (2.8.1) diperoleh : ( ) ( ) ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) derajat satu ] ( ) ( ) Dari persamaan (2.8.2), maka skema maju disebut mempunyai kesalahan derajat satu atau ( ) Dengan mengunakan kisi beda hingga maka skema maju biasa ditulis sebagai berikut : | ( ) ( ) atau | dengan . Pada skema maju informasi pada titik hitung pada titik hitung yang berada didepannya. dihubungkan dengan informasi 12 Gambar 2. Kisi skema maju Beda hingga terhadap waktu dapat digunakan salah satu dari diskritisasi di bawah ini : | ( ) ( ) atau | dengan . b. skema mundur ( ) ( ) ] ( ) ( ( ) ( ) ( ) ( ( ) ( ) ) ) ( ) ( ( ) ( ) ) ( ) ( ) derajat satu ] ( ) ( ) ( ) ( ) 13 Dengan mengunakan kisi beda hingga maka skema mundur biasa ditulis sebagai di bawah ini : | ( ) ( ) atau | dengan Pada skema mundur informasi pada titik hitung pada titik hitung dihubungkan dengan informasi yang berada didepannya. Gambar 3. Kisi skema mundur Sedangkan beda hingga terhadap waktu : | ( ) atau | dengan ( (Djoko Luknanto, 2003). ) 14 Tujuan dari metode beda hingga adalah untuk menyelesaikan persamaan diferensial parsial dengan mentransformasikan masalah kalkulus ke dalam masalah aljabar. Langkah-langkah dari metode beda hingga adalah : 1. Mendiskritisasikan kekontinuan domain fisik ke dalam kisi-kisi beda hingga diskrit. 2. Memperkirakan turunan eksak pada nilai awal persamaan diferensial parsial oleh hampiran beda hingga. 3. Substitusikan hampiran beda hingga ke dalam persamaan diferensial parsial untuk memperoleh aljabar persamaan beda hingga. 4. Menyelesaikan persamaan beda hingga tersebut. (Joe D. Hoffman, 2001). 2. Metode elemen hingga Metode elemen hingga adalah teknik umum untuk menyusun hampiran jawaban pada persoalan nilai batas. Metode ini membagi daerah (domain) jawaban ke dalam sejumlah berhingga daerah kecil (subdomain) yang sederhana, yang dinamakan elemen hingga, dan dengan mempergunakan konsep variasional membentuk pendekatan jawaban pada sekumpulan elemen hingga (Becker, Carey, dan Oden, 1985). Metode beda hingga lebih menunjukkan kelebihannya dibandingkan metode elemen hingga. Metode beda hingga dapat digunakan pada permasalahan satu dimensi atau persamaan yang dapat diubah menjadi permasalahan satu dimensi. Selain itu konsep metode beda hingga lebih dahulu dikenal, segala sesuatu yang 15 berhubungan dengan sifat matematisnya telah benar-benar diteliti dan dipahami, sehingga memudahkan pengenalannya (Djoko Luknanto, 2003). 2.9 Kestabilan Salah satu hal penting dalam solusi numerik adalah analisis kestabilan persamaan beda. Metode yang sering digunakan untuk masalah kestabilan ini adalah Metode von Neumann. Namun analisis kestabilan ini hanya dapat digunakan pada persamaan diferensial parsial linear. Oleh karena itu, untuk persamaan diferensial parsial nonlinear maka harus dilinearisasikan terlebih dahulu. Langkah-langkah dari analisis kestabilan von Neumann pada persamaan beda hingga sebagai berikut : 1. Substitusikan komponen Fourier kompleks dari dan ke dalam persamaan beda hingga. 2. Ekspresikan dengan dan dan tentukan amplikasi faktor, . 3. Analisis ,| | untuk menentukan kriteria kesabilan pada persamaan beda hingga. Sebagai contoh : Diberikan persamaan difusi : ( Persamaan ( ) disubtitusikan komponen Fourier kompleks dari ) dan ke dalam persamaan beda hingga, sehingga diperoleh : ( ) 16 ( ) ( ) ( ) ( ) Persamaan (2.9.2) dan (2.9.3) disubtitusikan ke persamaan (2.9.1) : ( ( ( ) ( ) ( ( ) ( ( ) ) ) ( )( )( ) ) ( ) )( ( ) ( ( ) ) ) Tulis ( ) ( ) Maka persamaan (2.9.4) menjadi ( ) ( ) ( ) ( ) ( ) Solusi eksak pada persamaan (2.9.5) dari langkah tunggal dapat diekspresikan sebagai berikut : ( dimana ) disebut amplikasi faktor, pada umumnya merupakan sebuah kompleks konstan. Solusi dari persamaan beda hingga pada saat adalah sebagai berikut : ( ) 17 ( dimana ) dan ( ). Dari untuk batas | | ( ) Dengan demikian analisis kestabilan direduksi untuk menentukan solusi pada persamaan beda hingga, bahwa Dari persamaan ( ) dapat dilihat bahwa , kecuali pada ( adalah amplikasi faktor. dan tidak hanya disesuaikan pada harus berhubungan dengan ) dapat diselesaikan untuk , jadi persamaan . Dapat diekspresikan oleh ( ) ( ) pada deret Fourier kompleks. Deret Fourier kompleks untuk ( ( ) ( ) ∑ ( Dimana bilangan gelombang ( Misalkan ) dapat ditulis : ) ) ( ) ( ) ( ) ) diberikan : ( ) ( )( ) ( ) ( ) ) Persamaan ( ( ) ), maka : ( ( ( didefinisikan sebagai berikut : ( Lalu ∑ ) berhubungan dengan untuk . Analisis serupa dengan ) maka didapat : ( ) dimana persamaan (2.9.11) dan (2.9.12) dapat ditulis sebagai berikut : ( ) 18 dan Persamaan (2.9.13) dapat diekspresikan dengan dan ( ) ( ) ( ) menjadi dan Dari persamaan (2.9.13) maka dan pada persamaan (2.9.5) dapat ditulis ( ) ( ) dan Persamaan (2.9.16) dan (2.9.17) disubtitusikan ke persamaan (2.9.5), maka diperoleh : ( ) ( ) ( ) ( ) ( Substitusikan persamaan (2.9.14) ke persamaan (2.9.18) sehingga diperoleh : ( ( ) ( )) Dari persamaan (2.9.6) maka amplikasi faktornya ditulis : ( ) ) 19 Kestabilan pada persamaan beda hingga ini adalah sebagai berikut : | ( )| Maka, kestabilan persamaan numerik dari masalah difusi ini adalah ( ) (Joe D. Hoffman, 2001). 20 III. METODOLOGI PENELITIAN 3.1 Tempat Dan Waktu Penelitian Penelitian ini dilakukan di Jurusan Matematika Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Lampung dan waktu penelitian dilaksanakan pada semester genap tahun ajaran 2009/2010. 3.2 Metode Penelitian Penelitian ini menggunakan software MATLAB 6.1 Adapun langkah-langkah yang dilakukan dalam penelitian ini adalah sebagai berikut : 1. Memahami asumsi-asumsi yang terdapat pada model sistem dinamik polusi air sungai. 2. Menjabarkan model matematika untuk polusi di sungai. 3. Menjabarkan solusi analitik dari model sistem dinamik polusi di sungai dengan transformasi tertentu ke persamaan diferensial parsial yang lebih sederhana. 4. Melakukan simulasi numerik dengan metode beda hingga untuk melihat perilaku model sistem polusi di sungai. 5. Menginterpretasikan hasil dari simulasi numerik tersebut. 21 IV. HASIL DAN PEMBAHASAN 4. 1 Asumsi-asumsi pada Model Sistem Dinamik Polusi Air di Sungai Beberapa asumsi yang digunakan dalam model yang dikaji adalah semua polutan tercampur dengan air sungai secara menyeluruh dan bergerak ke arah muara dengan laju konstan. Konsentrasi polutan di sungai bersifat homogen ke segala arah kecuali ke arah muara, dimana polutan mengalir dari kiri ke kanan sungai. Dengan demikian, polusi air di sungai ini dimodelkan secara adveksi dan polutan di sungai mengalir di satu dimensi. Selanjutnya masalah polusi di sungai yang seharusnya bergerak memutar dan ketidakteraturan yang berliku-liku semua diabaikan. Polutan terurai dan berkurang akibat aksi bakteri. 4.2 Parameter-parameter dan deskripsinya Parameter-parameter yang digunakan dalam model sistem dinamik polusi air di sungai adalah sebagai berikut : Konsentrasi polutan di sungai bersifat yang homogen ke segala arah kecuali ke arah muara. Koefisien laju dari polutan yang tercampur dengan air sungai secara menyeluruh dan bergerak ke arah muara yang bernilai konstan. Konstanta proporsionalitas yang mengukur efisiensi dari aksi bakteri. 22 laju dari kepadatan polutan yang menurun. jumlah diskritisasi terhadap waktu. jumlah diskritisasi terhadap ruang. 4.3 Mengkaji Model Matematika dari Polusi Air di Sungai Pada bagian ini akan mengkaji model matematika dari polusi air di sungai berdasarkan asumsi-asumsi pada sub bab 4.1. Kekekalan massa menyatakan bahwa kemungkinan adanya penambahan atau pengurangan massa eksternal, maka laju pada polutan berubah dalam panjang interval di dalam medium harus sama dengan laju yang bergerak melalui batas dari interval tersebut. ( Ketika ∫ ) merupakan total massa polutan dalam panjang interval pada suatu waktu tertentu, prinsip ini dapat ditulis dalam persamaan matematika : ∫ ( ( ) ) ( ) ( ) Ruas kanan dari persamaan (4.3.1) menunjukkan bahwa aliran masuk ke batas kiri interval pada waktu dikurangi aliran yang keluar pada batas kanan. Selisih ini adalah aliran yang melalui batas dan ( pada suatu waktu tertentu. Jika ( ) negatif, contohnya, seluruh aliran masuk ke ) positif dan persamaan (4.3.1) akan menjadi positif, ini menandakan bahwa massa dalam interval sedang meningkat. 23 Seandainya beberapa kotoran dapat bergerak ke dalam atau ke luar atau keluar dari luar medium yang diberikan. Ini menunjukkan adanya penambahan atau pengurangan sumber (terkadang disebut kotoran). ( Misalkan ) adalah laju dari kepadatan polutan atau kotoran yang sedang mengalami perubahan. Asumsikan bahwa adalah sebuah fungsi licin dan diketahui, dengan diambil untuk mengartikan bahwa polutan bertambah, jika tidak kotoran berkurang. Dalam prakteknya tidak semua polutan atau kotoran tersalurkan dengan lancar. Kemungkinan polutan mengalir mengotori sungai menuju beberapa muara limbah. ( Dalam berbagai kejadian, ∫ ke dalam atau ke luar ) adalah laju dari polutan yang bergerak dari sumber eksternal pada mediumnya. Agar pertahanan massa seimbang, maka kwantitas ini harus ditambahkan ke sisi kanan dari persamaan (4.3.1). Maka laju pada massa dalam yang sedang berubah seharusnya berpengaruh dalam penambahan efek yang bergerak dalam medium itu sendiri : ∫ ( ) ( ) ( Membagi persamaan ini dengan ∫ dimana ( saat ( ) ∫ ) ∫ ( ) . Ketika ( ) ( ) ( ) ( ) menunjukkan bahwa lebih cepat mendekati nol dibandingkan , yang diperoleh dari limitnya : ) , 24 ( ∫ ( ) ( ) ( ) ) ∫ ( ) ) ( ) ( ( ) ( ) ( ( ) ( )) ( ) ( ( ) ( )) ∫ ( ) ∫ ( ( ) ) ( ) ( ) Dengan catatan : ( ∫ ) ( Maka persamaan ( ( ) ) , ) dapat ditulis : ( ( ) ( ) ( ) ( ) ) ( ( ( ( ) ( )) ( ) ( ) ) ) Persamaan (4.3.4) sering disebut persamaan diferensial dasar. Catatan bahwa tanda negatif pada persamaan (4.3.4) sangat memungkinkan. , pernyataan ini menyatakan bahwa kotoran menyatu di ketika konsentrasinya sedang meningkat. Seandainya pada waktu Selanjutnya, laju pada aliran 25 seharusnya berkurang atau mengurai dengan cara lain, harus negatif. Ini ditunjukkan pada persamaan (4.3.4). Persamaan ( ) dapat mempengaruhi dan yang tidak diketahui, agar dapat digunakan, dibutuhkan bermacam-macam kejadian untuk membuktikan bahwa dapat dinyatakan sebagai fungsi licin dari . Jika ( ) diberikan, maka persamaan menjadi : ( ) ( Terkait dengan persamaan (4.3.5) dapat ditinjau dengan dua kasus. , untuk beberapa ( pertama yang disebut adveksi dimana ) Kasus ). Fungsi memiliki satuan dari jarak per satuan waktu dan dapat diinterpretasikan seperti laju pada kotoran yang bergerak sepanjang sumbu. Satu kasus dari adveksi ⁄ sederhana, yaitu ketika kotoran bergerak dengan laju konstan . Dimana sama dengan laju. Ini dapat juga dilihat dengan cara lain. Pada waktu bergerak dengan jarak ∫ ( , dan menjadi ( ) Menunjukkan semua kotoran berakhir di memisalkan ) selama . Pembagian dengan ) dan menuju nol pada persamaan (4.3.6) harus memberikan laju dimana polutannya berubah pada , yaitu ( ( , polutan ∫ ( ) ). Oleh karena itu, ( ) ( ) 26 Sehingga untuk kasus adveksi dengan mensubstitusikan ke dalam persamaan (4.3.5) akan ditemukan bahwa ( ) ( ) Misalkan ( adalah laju dari kepadatan polutan yang menurun. ) Dengan diasumsikan berbanding lurus dengan kepadatan itu sendiri : ( ) ( Dimana ), adalah konstanta proporsionalitas yang mengukur efisiensi dari aksi bakteri. Ketika model adveksi sudah tepat, dapat dipakai persamaan (4.3.8) untuk , konstan. Persamaannya menjadi ( ) ( ) ( ( Ini ) ) adalah persamaan diferensial parsial linear orde pertama, yang dapat diselesaikan dengan sederhana. 27 Pada kasus kedua, dimana merupakan fungsi dari yang sering disebut difusi. Difusi memberikan penjelasan tentang aliran panas, dimana laju diketahui berbading lurus dengan gradien suhu. Selain itu, aliran panas ini selalu mengalir dari suhu yang lebih tinggi ke suhu yang lebih rendah. Hal ini dapat ditulis ke dalam persamaan matematika sebagai berikut : ( ( ) dengan ) ( ) konstanta proporsional. Tanda negatif memperlihatkan bahwa jika ⁄ maka suhu dapat meningkat pada dan pada saat , kemudian aliran bersih mengalir secara berlawanan arah (dari kanan ke kiri). Perpindahan panas berasal dari gerakan acak molekul yang bertabrakan. Perpindahan karakteristik difusi, yaitu bergerak kesana kemari sepanjang sumbu dan sangat berlawanan dengan adveksi. Subtitusikan persamaan (4.3.11) ke dalam persamaan (4.3.5) menjadi ( ( ⁄ ( ⁄ ) ( ⁄ ) )) ( Dari persamaan ( karena linear. ) dengan ) diketahui sebagai persamaan panas dan 28 4.4 Solusi Analitik dari Polusi Air di Sungai Untuk solusi analitik persamaan model polusi air di sungai, langkah awal yang dilakukan adalah dengan mereduksi persamaan (4.3.10) melalui transformasi : ( ) ( ) atau ; ; Subtitusikan ke persamaan (4.3.10), maka diperoleh : ( ) ( ) Dengan menggunakan teorema aturan hasilkali untuk turunan, maka diperoleh : ( ) ( ) ( ) atau dapat ditulis 29 Solusi persamaan (4.4.2) dapat ditentukan dengan dua pendekatan. Pendekatan pertama, adalah menggunakan turunan berarah. ( Pandang fungsi ) dan vektor arah ̅ ( ) dengan ‖ ̅ ‖ . Maka dalam arah ̅ adalah turunan berarah ̅ ̅ ) ( ( ) Turunan berarah ini merupakan bilangan yang digunakan untuk menyatakan kemiringan permukaan ( ), pada satu titik, bila dipotong oleh bidang tegak melalui ̅ . Bila dibandingkan turunan berarah dari ( dengan persamaan diferensial (4.4.2), ) bernilai konstan dalam arah ( ), juga kelipatannya. Sedangkan persamaan diferensial berlaku pada bidang , jadi haruslah ̅ . Jadi ̅ sepanjang garis yang lain, yang sejajar dengan ̅ , berlaku pula ( ) = konstan, dengan konstan yang berbeda. Garis yang berpadanan dengan konstan tersebut berbentuk = konstan, yang disebut garis karakteristik. Persamaan garis karakteristik diperoleh dari hubungan geometri: untuk setiap titik ( memberikan ( ) , untuk ) pada garis . Secara dengan suatu yang lain akan memberikan nilai , yang lain 30 pula. Oleh karena itu, solusinya ( , dengan ) ( ) bergantung pada satu bentuk fungsi sebarang. Pendekatan kedua untuk mendapatkan solusi (4.4.2) menggunakan persamaan transformasi. Ketika persamaan (4.4.1) tidak mengandung polutan atau suatu kotoran yang dapat menduga bahwa kepadatan pada awalnya didistribusikan ke dalam sungai, distribusi ini sama dan akan tetap berlangsung kecuali, ditranslasikan ke kanan secara kontinu untuk nilai dari pergerakan di sungai. Asumsikan bahwa ( ) dapat ditulis dengan variabel tunggal ( yaitu translasi pada posisi dengan jumlah Definisikan sebuah fungsi ( ( ) ( ) ( ) dengan ) dimana . Dan ( ) ( ) Dengan aturan rantai diperoleh : Berdasarkan persamaan (4.4.2), maka : . ) 31 Oleh karena itu, ( ) tidak bergantung dengan : ( ) ( ( ) ) untuk beberapa fungsi Saat ( sembarang. maka : ) ( ) Ini menunjukkan bahwa ( ) ( adalah distribusi awal dari kepadatan yaitu nilai awal ( ). Ketika persamaan (4.4.4) benar untuk semua bilangan riil dari ) dengan memasukkan nilai , maka solusinya menjadi ( ) ( ) ( ) ( ( ) ( ) ) ( ) ( ) Persamaan ini disebut solusi perambatan gelombang untuk persamaan (4.4.1) karena distribusi awal dari kepadatan itu menyebar ke arah muara dengan gelombang. Ketika bernilai konstan untuk setiap titik ( ) pada garis lurus , maka memiliki nilai yang sama untuk , sebuah nilai beda untuk setiap . Kumpulan garis lurus disebut garis karakteristik. Jika garis karakteristik diketahui, dan memiliki sebuah solusi eksplisit dari persamaan untuk setiap titik ( ) yang diberikan, nilai diketahui pada saat . Pada waktu awal, nilai 32 diseluruh garis karakteristiknya harus sama pada sumbu . Dengan pendekatan yang terkait dengan turunan berarah dan pendekatan persamaan transport di atas menunjukkan bahwa solusi persamaannya sama dengan nol. Kembali ke persamaan asli (4.3.10) : Jika diberikan asumsi bahwa ( ) ( ) dan ketika ( maka ( ) ( ) ( ) ( ) ( ) ( ) karena ( ) ( ) maka dapat ditulis : ( ) ( ) ( ) ( ) ( ) Disubstitusikan ke persamaan transformasinya : ( ) ( ) ( ) ( ) karena ( maka ) ( ) ) ( ) , 33 ( ) ( ) ( ) ( ) dimana perambatan gelombang tersebut merupakan arus yang sedang meningkat selama untuk kepadatan polutan yang berkurang sampai akhir waktu. Misalkan model dari polusi air di sungai ini dimodifikasi untuk situasi yang sederhana, dimana polutan pada beberapa titik di sungai, yang di ambil untuk . Suatu sumber polutan yang berasal dari limbah pabrik memiliki muara di sungai. Sebelum pabrik mulai beroperasi pada , sungai dinyatakan bersih. Akan dilihat kepadatan polutan yang mengurai di sungai sampai waktu yang akan datang. Polutan ditambahkan ke sungai dengan laju dari pembuangannya. Didefinisikan dengan ( ) { Kemudian dapat ditentukan syarat batasnya : ( ) ( ) ( ) Ketika polutan ini hanya ada pada satu tempat, maka tidak ada polutan yang lain mengalir. Masalah ini menggunakan syarat batas. Untuk menemukan ( ) maka harus diubah solusi perambatan gelombangnya. Ini disebabkan karena tidak adanya distribusi awal dari kepadatan yang tersedia. Sebagai gantinya, persamaan (4.4.6) menyediakan distribusi kepadatan untuk setiap waktu pada titik tunggal. Maka waktu ini didefinisikan dengan variabel dari 34 Dan fungsinya ( ) ( ( ) ) Dengan demikian, solusi perambatan gelombang untuk persamaan (4.3.9) adalah ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Karena maka, ( ) ( ) ( ) ( ) Dan dengan demikian diperoleh solusi analitiknya sebagai berikut : ( ) ( ) ( ) ( ) ( ) ) ( ) ( ( ) ( ) diperoleh dari penjabaran sebagai berikut : 35 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ( ) ) ( ) ( ) ( ) Solusi analitik (4.4.8) menunjukkan bahwa jika dimana ketika polutan menuju muara , kemudian diperlukan waktu ( ) . Faktor , eksponensial menunjukkan bahwa kepadatan polutan berkurang disebabkan oleh aksi bakteri pengurai yang menguraikan polutan selama mengalir di sungai. 4.5 Simulasi Numerik Model Sistem Dinamik Polusi Air di Sungai Selanjutnya untuk simulasi numerik dari perilaku model sistem dinamik polusi air di sungai, akan digunakan hampiran beda hingga. Tinjau persamaan dasar model sistem dinamik polusi air di sungai sebagai berikut: Tulis persamaan dasar dari model tersebut dengan : 36 Sehingga persamaan dasarnya dapat ditulis sebagai berikut : ( ) ( ) ( ) ( ) Diskritisasi yang digunakan adalah : Dan Persamaan (4.5.2), (4.5.3), dan (4.5.4) disubstitusikan ke persamaan (4.3.8) : ( ) ( ) ( ) ( ) ( ( ) ) Tulis maka persamaan (4.5.5) menjadi ( ( ) ( misalkan ) ) ( ) 37 maka : ( ) Dari persamaan (2.9.9) maka ( ) ( ) dapat ditulis : Subtitusikan persamaan (4.5.7) ke persamaan (4.5.6), sehingga persamaan (4.5.6) menjadi : ( ( ) ( ) ( ) ( ) misalkan dan substitusikan ke persamaan (4.8.8) : karena ( ( ( ( ( ( ) ( ) )) ) ) ) ) 38 maka, persamaan menjadi ( ( ) ) ( ) ( ) karena Jadi, dari analisis kestabilan von Neumann amplifikasi faktornya adalah sebagai berikut : ( ) ( ) ) (( ( ) ( ) ) Kestabilan pada persamaan beda hingga ini adalah sebagai berikut : | | √(( ) ( )) ( ) Maka, kestabilan persamaan numerik dari masalah polusi air di sungai ini adalah (( ) ( )) . Setelah didapat persamaan numerik dengan menggunakan metode beda hingga, maka dapat diberikan simulasi numerik dari persamaan (4.5.6) untuk menggambarkan perilaku polusi air di sungai yang mengalir terhadap waktu. Adapun nilai-nilai parameter yang digunakan pada simulasi numerik masalah polusi air di sungai ini yaitu sebagai berikut : 39 No. Parameter Nilai 1 0.25 2 0.50 3 0.75 4 5 5 500 6 500 Dengan menggunakan software Matlab 6.1 diperoleh gambar berikut : Gambar 4. Kasus dari perilaku kepadatan polutan yang mengalir terhadap koordinat panjang sungai dengan , , , dan 40 Gambar 4 memperlihatkan bagaimana perilaku kepadatan polutan yang mengalir terhadap koordinat panjang sungai dengan laju alir polutan biru), (warna merah), (warna hijau), dan (warna . Dari gambar tersebut terlihat kepadatan polutan pada laju alir yang lebih rendah, kepadatan polutan lebih cepat menuju nol (habis). Hal ini dimungkinkan karena semakin lambat laju alir polutan, maka waktu bakteri pada polutan semakin lama. Sehingga polutan lebih banyak yang terurai. Dengan demikian sebelum mencapai ujung sungai polutan sudah habis. 41 V. PENUTUP 5.1 Kesimpulan Hasil penelitian simulasi model sistem dinamik polusi air di sungai menggunakan metode beda hingga ini dapat diambil kesimpulan sebagai berikut : 1. Pada model matematika polusi air di sungai didapat persamaan dasar sebagai berikut : 2. Dengan menjabarkan persamaan dasar maka didapat solusi analitik dari polusi air di sungai sebagai berikut : ( ) ( ) Memperlihatkan faktor eksponensial ini menunjukkan bahwa kepadatan polutan berkurang disebabkan oleh aksi bakteri pengurai yang menguraikan polutan selama mengalir di sungai. 3. Perilaku polutan yang mengalir di sungai dapat dilihat dengan simulasi numerik. Simulasi numerik didapat dengan mendiskritisasikan model matematikanya dengan menggunakan metode beda hingga. numerik ini memakai nilai yang beragam. Dengan Simulasi yang berbeda-beda, dapat dilihat lama atau cepat kepadatan polutan terurai. Dengan demikian, terlihat bahwa kepadatan polutan pada laju alir yang lebih rendah, 42 kepadatan polutan lebih cepat menuju nol (habis). Hal ini dimungkinkan karena semakin lambat laju alir polutan, maka waktu bakteri pada polutan semakin lama. Sehingga polutan lebih banyak yang terurai. Dengan demikian, sebelum mencapai ujung sungai polutan sudah habis. Ketika polutan sudah habis maka sungai menjadi bersih. 5.2 Saran Penelitian polusi air di sungai ini dapat dilanjutkan dengan memisalkan model yang lain pada kajian model matematika polusi air di sungai yang terdapat pada buku Beltrami (1997). Model ini memisalkan polutan memerlukan oksigen dalam penguraiannya. Ketika polutan berkurang, oksigen habis. Misalkan ( kepadatan untuk menghancurkan oksigen di dalam sungai. maksimum, yang bergantung dengan suhu mengetahui perbaikan kuantitas. ( ) adalah ) adalah nilai . Asumsi tersebut digunakan untuk