Jurnal Elektronik Nasional Teknologi dan Ilmu Komputer (JENTIK) KLASIFIKASI FAKTOR PENENTU WANITA BERPOTENSI DIABETES MENGGUNAKAN DECISION TREE CHAID Muhammad Maulana Ramadhan1, Irwan Budiman2, Heru Kartika Chandra3 1,2,3Prodi Ilmu Komputer FMIPA ULM Jl. A. Yani Km 36 Banjarbaru, Kalimantan selatan Email:[email protected] Abstract A diabetic women should have condition that influenced by some factors. Based on the results of data training PIMA Indian Diabetes dataset by UCI process using CHAID found the most influential diabetic wowen determinant factor with the highest significaty value is glucose level and decision tree pattern that classify potentially diabetic women into 6 class. First class, women with ≥ 140 glucose level and > 27 body mass index with 70,05% diabetic positive; second class, women with <140 glucose level, > 27 body mass index dan have > 2 pregnancy with 36,5% diabetic positive; third class is women with ≥ 140 glucose level and 18,5 - 27 body mass index with 45,8% diabetic positive; fourth class, women with with < 140 glucose level and body mass index ≤ 17 27 with 4,2% diabetic; fifth class, women with <140 glucose level, > 27 body mass index, have 0 - 2 pregnancy and 80,1 - 100 diastolic blood pressure with 40% diabetic positive; sixth class is women with < 140 glucose level, > 27 body mass index, have 0 - 2 pregnant and 40 - 80 diastolic blood pressure with 17,5% diabetic positive. Classification rule that was obtained from CHAID algorithm decision tree then compared with data testing from Kelayan Dalam Banjarmasin Medical Center. The result is classification rule of CHAID decision tree got 85,92% compability percentage then the conclution is classification rule is have great enough accuracy when applied to the diabetics women case in Indonesia. Keywords : Decsion tree, Chi-squared Automatic Interaction Detection, Diabetes melitus, Dataset PIMA Indians Diabetes Abstrak Seorang wanita yang menderita diabetes tentu memiliki kondisi yang diperngaruhi faktor tertentu. Berdasarkan hasil pengolahan data training yaitu dataset PIMA Indians Diabetes yang diperoleh dari UCI dengan algoritma CHAID ditemukan bahwa faktor yang paling berpengaruh terhadap wanita berpotensi diabetes dengan nilai signifikansi terbesar adalah kadar glukosa dan didapatkan pola decision tree yang mengklasifikasikan wanita berpotensi diabetes menjadi 6 macam. Pertama, wanita dengan kadar glukosa ≥ 140 dan massa indeks tubuh > 27 dengan persentase 70.05% positif diabetes; kedua wanita dengan kadar glukosa < 140, massa indeks tubuh > 27 dan jumlah kehamilan > 2 dengan persentase 36.5% positif diabetes; ketiga wanita Klasifikasi Faktor Penentu Wanita Diabetes (Muhammad Maulana Ramadhan) | 40 Jurnal Elektronik Nasional Teknologi dan Ilmu Komputer (JENTIK) dengan kadar glukosa ≥ 140 dan massa indeks tubuh 18.5 – 27 dengan persentase 45.8% positif diabetes; keempat Wanita dengan kadar glukosa < 140 dan memiliki massa indeks tubuh 17 – 27 dengan persentase 4.2% positif diabetes; kelima wanita dengan kadar glukosa <140, massa indeks tubuh > 27, jumlah kehamilan 0 – 2 dan tekanan darah diastolic 80.1 – 100 dengan persentase 40% positif diabetes; keenam wanita dengan kadar glukosa <140, massa indeks tubuh > 27, jumlah kehamilan 0 – 2 dan tekanan darah diastolic 40 – 80 dengan persentase 17.5% positif diabetes. Aturan klasifikasi yang dihasilkan tersebut kemudian dibandingkan dengan data testing wanita penderita diabtetes yang diperoleh dari Puskesmas Kelayan Dalam Banjarmasin. Dari hasil perbandingan aturan klasifikasi pohon keputusan CHAID dan data testing diperoleh kecocokan dengan persentase sebesar 85,92%; dan dapat disimpulkan aturan klasifikasi yang telah didapatkan memiliki akurasi cukup besar saat diterapkan pada kasus diabetes pada wanita Indonesia. Kata kunci : Decsion tree, Chi-squared Automatic Interaction Detection, Diabetes melitus, Dataset PIMA Indians Diabetes 1. PENDAHULUAN Berdasarkan analisis antara jenis kelamin dengan kejadian Diabetes melitus, Kementrian Kesehatan Indonesia dalam InfoDATIN 2014[1] menuliskan bahwa proporsi wanita dengan toleransi gula terganggu (TGT) dan diabetes melitus lebih tinggi daripada laki laki. Berdasarkan penelitian milik Igusti Made Geria Jelantik dan Hj. Erna Haryati menyimpulkan bahwa pada wilayah kerja puskesmas mataram tahun 2013 kasus diabetes melitus lebih banyak dialami oleh perempuan dimana terdapat 32 kejadian diabtes melitus dari 60 responden [2]. Pada penelitian Irawan (2010) menyebutkan, wanita lebih berisiko mengidap diabetes karena secara fisik wanita memiliki peluang peningkatan indeks masa tubuh yang lebih besar [3]. Seorang wanita tentunya memiliki kondisi tertentu saat positif menderita diabetes. Dari beberapa artikel dan penelitian klinis tentang daibetes diakatan gula darah tinggi dan obesitas (MIT berlebihan) merupakan faktor yang paling berpengruh saat seseorang menderita daibetes. Namun tidak menutup kemungkinan ada faktor lain yang berpengaruh saar seseorang wanita positif diabetes, seperti jumlah kehamilan, tekanan darah diastolic, umur dan riwayat diabetes. Di sisi lain, penyakit diabetes merupakan penyakit preventif yang dapat dicegah, sehingga dengan mengetahui faktor apa saja yang berpengaruh akan lebih mudah dilakukan pencegahan. Dalam penelitian ini data mining menggunakan algoritma CHAID diharapkan mampu menemukan hubungan dan pola diantara faktor faktor yang mungkin berpengaruh terhadap diabetes. Hasil yang diperoleh dari poses data mining ini dapat dijadikan refensi untuk melakukan tindakan medis dalam penanganan kasus diabetes kedepannya bahkan dapat menjadi referensi untuk menghindari penyakit diabtese tersebut. Klasifikasi Faktor Penentu Wanita Diabetes (Muhammad Maulana Ramadhan) | 41 Jurnal Elektronik Nasional Teknologi dan Ilmu Komputer (JENTIK) Data training yang digunakan adalah dataset PIMA Indian diabetes yang diperoleh dari UCI untuk menemukan faktor yang paling mempengaruhi diabetes dan pola klasifikasi pohon keputusan faktor yang mempengaruhi tersebut. Data testing yang digunakan adalah data wanita penderita diabetes yang diperoleh dari Puskesmas Kelayan Dalam Banjarmasin tahun 2015 2016, dimana dengan data ini akan dilihat bagaimana kesesuaian pola pohon keputusan yang diperoleh terhadap kasus diabetes aktual yang terjadi. 2. METODE PENELITIAN Pada penelitian ini metode yang digunakan adalah Knowledge Discovery Database (KDD). Berdasarkan buku Jiawei Han, Micheline Kamber dan Jian Pei Terdapat beberapa tahap dalam metode ini yaitu Data cleaning, Data integration, Data selection, Data transformation, Data mining, pattern evaluation dan knowledge presentation [4]. Data yang digunakan sebagai data training yaitu dataset PIMA Indian diabetes yang diperoleh dari UCI sebanyak 769 data dan data yang digunakan sebaagai data testing adalah data wanita penderita diabetes Puskesmas Kelayan Dalam Banjarmasin tahun 2015 - 2016 sebanyak 71 data. Data training akan diuji dengan algoritma CHAID untuk menemukan faktor yang paling berpengaruh terhadap wanita berpotensi diabetes dan pola klasifikasi faktor yang berpengaruh terhadap wanita berpotensi diabetes, kemudian data testing akan diuji dengan pola klasifikasi yang sudah diperoleh agar diketahui kesesuaiannya terhadap kasus diabetes aktual yang terjadi. 2.1 Penentuan dataset Dataset dalam penelitian kali ini adalah dataset PIMA Indians diabetes. Data ini diperoleh dari UCI yang aslinya dimiliki oleh National Institute of Diabetes and Digestive and Kidney Diseases sebagai dataset yang diberikan secara bebas kepada siapa saja yang ingin melakukan penelitian, adapun variabel yang terdapat pada data training terlihat sepeti pada tabel 1. Tabel 1. Variabel dataset PIMA Indians diabetes Nama Tipe data keterangan Jumlah kehamilan Kontinu Independen Kadar glukosa (mg/dl) Kontinu Independen Tekanan darah diastolic (mm Hg) Kontinu Independen Keletabalan kulit pada trisep (mm) kontinu Independen serum insulin (mu U/ml) kontinu Independen Massa indeks tubuh (kg/ m^2) Kontinu Independen Fungsi riwayat diabetes Kontinu Independen Umur (tahun) kontinu Independen Positif diabetes (0 atau 1) Nominal dependen Sumber : Klasifikasi Faktor Penentu Wanita Berpotensi Diabetes Dengan Decision tree Menggunakan Algoritma Chi-Squared Automatic Interaction Detection (Chaid). 2017 Klasifikasi Faktor Penentu Wanita Diabetes (Muhammad Maulana Ramadhan) | 42 Jurnal Elektronik Nasional Teknologi dan Ilmu Komputer (JENTIK) 2.2 Data cleaning Dalam tahapan ini dilkukan filter terhadap data training untuk menemukan nilai 0 atau null. Pada tahap ini ditemukan hasil filter dan perlakuan terhadap data seperti tedapat pada tabel 2. Tabel 2. Hasil filter nilai 0 pada data training Variabel Jumlah kehamilan Kadar glukosa (mg/dl) Tekanan darah diastolic (mm Hg) Keletabalan kulit pada trisep (mm) serum insulin (mu U/ml) Massa indeks tubuh (kg/ m^2) Fungsi riwayat diabetes Umur (tahun) Positif diabetes (0 atau 1) hasil 111 nilai 0 5 nilai 0 35 nilai 0 227 nilai 0 374 nilai 0 11 nilai 0 Tidak ada Tidak ada - perlakukan Tidak dilakukan apa apa Hapus data dengan nilai 0 Hapus data dengan nilai 0 Variabel tidak dipakai Variabel tidak dipakai Hapus data dengan nilai 0 Tidak dilakukan apa apa Tidak dilakukan apa apa - Sumber : Klasifikasi Faktor Penentu Wanita Berpotensi Diabetes Dengan Decision tree Menggunakan Algoritma Chi-Squared Automatic Interaction Detection (Chaid). 2017 Dari tabel 2 tersebut diperoleh hasil data cleaning yaitu variabel yang dipakai pada penelitian ini adalag jumlah kehamilan, kadar glukosa, tekanan darah diastolic, massa indeks tubuh, fungsi riwayat diabetes dan umur sebagai variabel independen dan positif diabetes sebagai variabel dependen. Ketebalan kulit pada trisep dan serum insulin tidak digunakan karena data dengan nilai 0 atau null terlalu banyak dimana hal ini akan menurunkan kualitas hasil data mining. Jumlah data yang tersisa dari tahap ini yaitu 724 data. 2.3 Data integration Data integration tidak di terapkan, berkaitan dengan bentuk dataset yang digunakan yaitu dataset tunggal. 2.4 Data selection Data yang dipilih untuk dimasukkan ke tahap selanjutnya yaitu seluruh data yang diperoleh dari hasil tahap data cleaning. 2.5 Data transformation Data yang digunakan diubah kebentuk yang paling sesuai untuk algoritma CHAID, yaitu data independen yang berbentuk kontinu dibubah menjadi data berbentuk kategori. Berikut hasil transformasi dari setiap variabel. Klasifikasi Faktor Penentu Wanita Diabetes (Muhammad Maulana Ramadhan) | 43 Jurnal Elektronik Nasional Teknologi dan Ilmu Komputer (JENTIK) Tabel 3. Hasil transformasi data untuk variabel kehamilan berdasarkan ilmu kebidanan Kategori Range banyaknya data Positif Tidak Total Nulligravida 0 32 67 99 Primigravida 1 28 103 131 Secungravida 2 18 78 96 Multigravida >2 171 227 398 Sumber : Klasifikasi Faktor Penentu Wanita Berpotensi Diabetes Dengan Decision tree Menggunakan Algoritma Chi-Squared Automatic Interaction Detection (Chaid). 2017 Tabel 4. Hasil transformasi data untuk variabel kadar glukosa berdasarkan diabetesmealplans.com Kategori Range banyaknya data Positif Tidak Total Normal Tinggi < 140 ≥ 140 121 128 413 62 534 190 Sumber : Klasifikasi Faktor Penentu Wanita Berpotensi Diabetes Dengan Decision tree Menggunakan Algoritma Chi-Squared Automatic Interaction Detection (Chaid). 2017 Tabel 5. Hasil transformasi data untuk variabel tekanan darah diastolic berdasarkan ketetapan WHO Kategori Range banyaknya data Positif Tidak Total Rendah Normal Agak Tinggi Tinggi 40 – 60 60.1 – 80 80.1 – 90 90.1 – 100 23 150 59 17 99 289 67 20 122 439 126 37 Sumber : Klasifikasi Faktor Penentu Wanita Berpotensi Diabetes Dengan Decision tree Menggunakan Algoritma Chi-Squared Automatic Interaction Detection (Chaid). 2017 Tabel 6. Hasil transformasi data untuk variabel massa indeks tubuh berdasarkan ketetapan WHO Kategori Range banyaknya data Positif Tidak Total Kekurangan Normal Berlebihan Sangat berlebihan ≤ 17.0 – 18.4 18.5 – 25.0 25.1 – 27 > 27 0 7 10 232 4 94 51 326 4 101 61 558 Sumber : Klasifikasi Faktor Penentu Wanita Berpotensi Diabetes Dengan Decision tree Menggunakan Algoritma Chi-Squared Automatic Interaction Detection (Chaid). 2017 Klasifikasi Faktor Penentu Wanita Diabetes (Muhammad Maulana Ramadhan) | 44 Jurnal Elektronik Nasional Teknologi dan Ilmu Komputer (JENTIK) Tabel 7. Hasil transformasi data untuk variabel umur berdasarkan ketetapan Dinas Kesehatan Indonesia Kategori Range banyaknya data Positif Tidak Total Produktif Tua 15 – 64 > 64 245 4 465 10 710 14 Sumber : Klasifikasi Faktor Penentu Wanita Berpotensi Diabetes Dengan Decision tree Menggunakan Algoritma Chi-Squared Automatic Interaction Detection (Chaid). 2017 Tabel 8. Hasil transformasi data untuk variabel riwayat diabetes berdasarkan penelitian Jack W. Smith, BS dan kawan – kawan Kategori Range banyaknya data Positif Tidak Total Sangat rendah Rendah Sedang Tinggi Sangat tinggi 0 – 0.244 0.245 – 0.525 0.526 – 0.805 0.806 – 1.11 > 1.11 40 90 60 31 28 91 186 94 70 34 131 276 154 101 62 Sumber : Klasifikasi Faktor Penentu Wanita Berpotensi Diabetes Dengan Decision tree Menggunakan Algoritma Chi-Squared Automatic Interaction Detection (Chaid). 2017 Setelah dilakukan transformasi pada setiap variabel kemudian data dengan bentuk baru ini dimasukkan ke tahap data mining. 2.6 Data mining Algoritma CHAID memiliki tiga tahapan utama dalam setiap iterasinya yaitu penggabungan, pemisahan dan penghentian. Pada setiap iterasi dilakukan uji nilai chi-square menggunakan tabel kontingensi pada setiap variabel untuk mendapatkan nilai chi-square paling signifikan, sehingga dapat diketahui pengaruh setiap variabel independen terhadap variabel dependennya. Tahap penggabungan iterasi pertama menghasilkan nilai chi-square untuk tiap variabel seperti terlihat pada tabel 9. Tabel 9. Hasil uji chi-square setiap variabel tahap penggabungan iterasi pertama Variabel Jumlah Kehamilan Kadar Glukosa Tekanan darah diastolic Massa indeks tubuh Umur Riwayat diabetes Nilai chi-square 28.787846087833 124.14668860267 23.877675738915 57.295071349913 0.21436962506385 2.4752961580203 p value terkoreksi bonferroni 0.0003 0.0001 0.0003 0.0003 0.5244 0.3382 Sumber : Klasifikasi Faktor Penentu Wanita Berpotensi Diabetes Dengan Decision tree Menggunakan Algoritma Chi-Squared Automatic Interaction Detection (Chaid). 2017 Klasifikasi Faktor Penentu Wanita Diabetes (Muhammad Maulana Ramadhan) | 45 Jurnal Elektronik Nasional Teknologi dan Ilmu Komputer (JENTIK) Kadar glukosa merupakan variabel dengan nilai chi-square paling signifikan sehingga dipilih untuk masuk ke tahap pemisahan. Kadar glukosa dipilih untuk membagi wanita berpotensi diabetes (node 0) menjadi dua yaitu kadar glukosa <140 (node 1) dan kadar glukosa ≥ 140 (node 2). Tahap penggabungan iterasi kedua menghasilkan nilai chi-square untuk tiap variabel seperti pada tabel 10. Tabel 10. Hasil uji chi-square setiap variabel tahap penggabungan iterasi kedua Variabel Nilai chi-square Jumlah Kehamilan Tekanan darah diastolic Massa indeks tubuh Umur Riwayat diabetes 14.272860856253 7.878734812503 37.507791738438 1.7778450363196 3.987867431267 Nilai p value terkoreksi bonferroni 0.0006 0.0149 0.0003 0.1824 0.171 Sumber : Klasifikasi Faktor Penentu Wanita Berpotensi Diabetes Dengan Decision tree Menggunakan Algoritma Chi-Squared Automatic Interaction Detection (Chaid). 2017 Pada iterasi kedua massa indeks tubuh merupakan variabel terpilih dengan nilai chi-square paling signifikan. Variabel massa indeks tubuh dimasukkan ke tahap pemisahan membagi kategori kadar glukosa < 140 (node 1) dengan dua kategori yang didapatkan dari tahap penggabungan yaitu massa indeks tubuh ≤ 17 – 27 (node 3) dan massa indeks tubuh > 27 (node 4). Tahap penggabungan iterasi ketiga menghasilkan nilai chi-square untuk tiap variabel seperti pada tabel 11. Tabel 11. Hasil uji chi-square setiap variabel tahap penggabungan iterasi ketiga Variabel Jumlah Kehamilan Tekanan darah diastolic Massa indeks tubuh Umur Riwayat diabetes Nilai chi-square Nilai p value terkoreksi bonferroni 2.1657878411911 0.1411 0.62011906198243 0.4310 5.7950286529181 0.032 1.1460364232542 0.2844 0.010640681003584 0.9178 Sumber : Klasifikasi Faktor Penentu Wanita Berpotensi Diabetes Dengan Decision tree Menggunakan Algoritma Chi-Squared Automatic Interaction Detection (Chaid). 2017 Pada iterasi ketiga didapatkan massa indeks tubuh juga merupakan variabel dengan nilai chi-square paling signifikan. Massa indeks tubuh dipilij untuk memasuki tahap pemisahan, membagi kategori kadar glukosa ≥ 140 (node 2) menjadi dua kategori yang diperoleh pada saat tahap penggabungan yaitu massa indeks tubuh 18.5 – 27 (node 5) dan massa indeks tubuh > 27 (node 6). Klasifikasi Faktor Penentu Wanita Diabetes (Muhammad Maulana Ramadhan) | 46 Jurnal Elektronik Nasional Teknologi dan Ilmu Komputer (JENTIK) Tahap penggabungan iterasi keempat menghasilkan nilai chi-square untuk tiap variabel seperti pada tabel 12. Tabel 12. Hasil uji chi-square setiap variabel tahap penggabungan iterasi keempat Variabel Nilai chi-square Jumlah Kehamilan Tekanan darah diastolic Riwayat diabetes 10.285934128804 5.4460868799553 7.5714560895403 Nilai p value terkoreksi bonferroni 0.0004 0.058 0.023 Sumber : Klasifikasi Faktor Penentu Wanita Berpotensi Diabetes Dengan Decision tree Menggunakan Algoritma Chi-Squared Automatic Interaction Detection (Chaid). 2017 Pada iterasi ke empat didapatkan variabel jumlah kehamilan memiliki nilai chi-square paling signifikan. Variabel ini dipilih untuk masuk ke tahap pemisahan, membagi kategori massa indeks tubuh > 27 (node 4) menjadi dua kategori yang diperoleh selama tahap penggabungan yaitu kategori kehamilan 0 – 2 (node 7) dan kehamilan > 2 (node 8). Tahap penggabungan iterasi kelima menghasilkan nilai chi-square untuk tiap variabel seperti pada tabel 13. Tabel 13. Hasil uji chi-square setiap variabel tahap penggabungan iterasi kelima Variabel Jumlah Kehamilan Tekanan darah diastolic Riwayat diabetes Nilai chi-square Nilai p value terkoreksi bonferroni 3.56036120742 0.0592 0.060682036639819 0.8054 1.9473972430041 0.1629 Sumber : Klasifikasi Faktor Penentu Wanita Berpotensi Diabetes Dengan Decision tree Menggunakan Algoritma Chi-Squared Automatic Interaction Detection (Chaid). 2017 Pada iterasi kelima tidak ada variabel dengan nilai chi-square signifikan. Maka tidak ada yang dapat membagi kategori massa indeks tubuh ≤ 17 – 27 (node 3), sehingga node 3 masuk ketahap penghentian dan disebut node terminal. Tahap penggabungan iterasi keenam menghasilkan nilai chi-square untuk tiap variabel seperti pada tabel 14. Tabel 14. Hasil uji chi-square setiap variabel tahap penggabungan iterasi keenam Variabel Jumlah Kehamilan Tekanan darah diastolic Riwayat diabetes Nilai chi-square Nilai p value terkoreksi bonferroni 3.9616853734501 0.0465 0.086566065513434 0.7686 0.16783216783217 0.6820 Klasifikasi Faktor Penentu Wanita Diabetes (Muhammad Maulana Ramadhan) | 47 Jurnal Elektronik Nasional Teknologi dan Ilmu Komputer (JENTIK) Sumber : Klasifikasi Faktor Penentu Wanita Berpotensi Diabetes Dengan Decision tree Menggunakan Algoritma Chi-Squared Automatic Interaction Detection (Chaid). 2017 Pada iterasi keenam tidak ada variabel dengan nilai chi-square signifikan. Maka tidak ada yang dapat membagi kategori massa indeks tubuh 18.5 – 27 (node 5), sehingga node 5 masuk ketahap penghentian dan disebut node terminal. Tahap penggabungan iterasi ketujuh menghasilkan nilai chi-square untuk tiap variabel seperti pada tabel 15. Tabel 15. Hasil uji chi-square setiap variabel tahap penggabungan iterasi ketujuh Variabel Jumlah Kehamilan Tekanan darah diastolic Umur Riwayat diabetes Nilai chi-square Nilai p value terkoreksi bonferroni 0.040005915912323 0.8415 0.28126841356749 0.5959 0.22448351214988 0.6356 1.0349209452461 0.3090 Sumber : Klasifikasi Faktor Penentu Wanita Berpotensi Diabetes Dengan Decision tree Menggunakan Algoritma Chi-Squared Automatic Interaction Detection (Chaid). 2017 Pada iterasi ketujuh tidak ada variabel dengan nilai chi-square signifikan. Maka tidak ada yang dapat membagi kategori massa indeks tubuh > 27 (node 6), sehingga node 6 masuk ketahap penghentian dan disebut node terminal. Tahap penggabungan iterasi kedelapan menghasilkan nilai chi-square untuk tiap variabel seperti pada tabel 16. Tabel 16. Hasil uji chi-square setiap variabel tahap penggabungan iterasi kedelapan Variabel Nilai chi-square Tekanan darah diastolic Riwayat diabetes 8.4745325702643 4.9804750076415 Nilai p value terkoreksi bonferroni 0.018 0.0985 Sumber : Klasifikasi Faktor Penentu Wanita Berpotensi Diabetes Dengan Decision tree Menggunakan Algoritma Chi-Squared Automatic Interaction Detection (Chaid). 2017 Pada iterasi kedelapan ditemukan variabel tekanan darah diastolic memiliki nilai chi-square paling signifikan. Variabel tekanan darah diastolic dipilih untuk dimasukkan ke tahap pemisahan, untuk membagi kategori kehamilan 0 -2 (node 7) dengan dua kategori yang diperoleh saat tahap penggabungan yaitu kategori tekanan darah diastolic 40 – 80 (node 9) dan kategori tekanan darah diastolic 80.1 – 100 (node 10). Tahap penggabungan iterasi kesembilan menghasilkan nilai chi-square untuk tiap variabel seperti pada tabel 17. Klasifikasi Faktor Penentu Wanita Diabetes (Muhammad Maulana Ramadhan) | 48 Jurnal Elektronik Nasional Teknologi dan Ilmu Komputer (JENTIK) Tabel 17. Hasil uji chi-square setiap variabel tahap penggabungan iterasi kesembilan Variabel Nilai chi-square Tekanan darah diastolic Riwayat diabetes 0.7589834956996 2.3684944057463 Nilai p value terkoreksi bonferroni 0.3836 0.1238 Sumber : Klasifikasi Faktor Penentu Wanita Berpotensi Diabetes Dengan Decision tree Menggunakan Algoritma Chi-Squared Automatic Interaction Detection (Chaid). 2017 Pada iterasi kesembilan tidak ada variabel dengan nilai chi-square signifikan. Maka tidak ada yang dapat membagi kategori kehamilan > 2 (node 8), sehingga node 8 masuk ketahap penghentian dan disebut node terminal. Tahap penggabungan iterasi kesepuluh menghasilkan nilai chi-square untuk tiap variabel seperti pada tabel 18. Tabel 18. Hasil uji chi-square setiap variabel tahap penggabungan iterasi kesepuluh Variabel Riwayat diabetes Nilai chi-square 4.7880688604857 Nilai p value terkoreksi bonferroni 0.11 Sumber : Klasifikasi Faktor Penentu Wanita Berpotensi Diabetes Dengan Decision tree Menggunakan Algoritma Chi-Squared Automatic Interaction Detection (Chaid). 2017 Pada iterasi kesepuluh variabel riwayat diabetes memiliki nilai chisquare signifikan namun nilai p value terkoreksi bonferroni nya > 0,5. Maka tidak ada yang dapat membagi kategori tekanan darah diastolic 40 – 80 (node 9), sehingga node 9 masuk ketahap penghentian dan disebut node terminal. Tahap penggabungan iterasi kesebelas menghasilkan nilai chi-square untuk tiap variabel seperti pada tabel 19. Tabel 19. Hasil uji chi-square setiap variabel tahap penggabungan iterasi kesebelas Variabel Riwayat diabetes Nilai chi-square 2.5573671497585 Nilai p value terkoreksi bonferroni 0.1098 Sumber : Klasifikasi Faktor Penentu Wanita Berpotensi Diabetes Dengan Decision tree Menggunakan Algoritma Chi-Squared Automatic Interaction Detection (Chaid). 2017 Pada iterasi kesebelas tidak ada variabel dengan nilai chi-square signifikan. Maka tidak ada yang dapat membagi kategori tekanan darah diastolic 80.1 – 100 (node 10), sehingga node 10 masuk ketahap penghentian dan disebut node terminal. Klasifikasi Faktor Penentu Wanita Diabetes (Muhammad Maulana Ramadhan) | 49 Jurnal Elektronik Nasional Teknologi dan Ilmu Komputer (JENTIK) 3. HASIL DAN PEMBAHASAN 3.1 Pattern evaluation Gambar 1. Pohon keputusan algoritma CHAID Sumber : Klasifikasi Faktor Penentu Wanita Berpotensi Diabetes Dengan Decision tree Menggunakan Algoritma Chi-Squared Automatic Interaction Detection (Chaid). 2017 Klasifikasi Faktor Penentu Wanita Diabetes (Muhammad Maulana Ramadhan) | 50 Jurnal Elektronik Nasional Teknologi dan Ilmu Komputer (JENTIK) Pada tahap sebelumnya data training yaitu dataset PIMA Indians diabetes telah dimasukkan ke dalam tahap data mining. Pada tahap tersebut dataset melalui sub tahapan sehingga diperoleh nilai uji chi-square setiap variabel independen terhadap variabel dependennya. Dari tahap tersebut juga diketahui pengaruh setiap variabel berdasarkan nilai chi-square nya, sehingga dapat dibuat pohon keputusan seperti pada gambar 1. Pada pohon keputusan tersebut dapat dilihat bahwa faktor yang paling mempengaruhi wanita berpotensi diabetes node 0 pada dataset yang digunakan dalam penelitian ini adalah kadar glukosa, dengan nilai chi-square sebesar 124,147. faktor ini membagi wanita berpotensi daibetes kedalam dua kategori yaitu kategori normal (< 140) node 1 dan tinggi (≥ 140) node 2. Kemudian wanita berpotensi diabetes dengan kadar glukosa normal (< 140) node 1 dibagi oleh faktor berikutnya yaitu massa indeks tubuh normal, berlebihan, kekurangan (17 – 27) node 3 dan sangat berlebihan (> 27) node 4, faktor ini memiliki nilai chi-square sebesar 37.508. untuk wanita berpotensi diabetes dengan kadar glukosa antara 140 – 200 node 2 dibagi oleh faktor massa indeks tubuh dengan nilai chi-square sebesar 5.795, faktor ini membagi kadar glukosa berlebihan (≥ 140) node 2 kedalam dua kategori yaitu normal, berlebihan (18.5 – 27) node 4 dan sangat berlebihan ( > 27) node 5. kemudian faktor massa indeks tubuh sangat berlebihan (> 27) node 4 dibagi oleh jumlah kehamilan dengan nilai chi-square sebesar 10.286, jumlah kehamilan membagi massa indeks tubuh sangat berlebihan (> 27) node 4 dengan jumlah kehamilan nulligravida, primigravida, secungravida (0 – 2) node 7 dan multigravida (> 2) node 8. Node 3, node 5 dan node 6 merupakan node terminal karena tidak memiliki faktor dengan nilai chi-square signifikan yang dapat membagi node tersebut. Kemudian jumlah kehamilan nulligravida, primigravida, secungravida (0 – 2) node 7 dibagi oleh faktor tekanan darah diastolic yang memiliki nilai chi-square sebesar 8.475 yaitu rendah, normal (40 – 80) node 9 dan tinggi, sangat tinggi (80.1 – 100) node 10. Node 8 kategori multigravida (kehamilan > 2) tidak memiliki faktor dengan nilai chi-square signifikan yang dapat membagi faktor tersebut sehingga menjadi node terminal. Node 9 tekanan darah diastolic rendah, normal (40 – 80) node 9 dan node 10 tekanan darah diastolic tinggi, sangat tinggi (80.1 – 100) juga merupakan node terminal karena faktor yang tersisa tidak bisa membagi kedua node tersebut. 3.2 Knowledge presentation Berdasarkan pohon klasifikasi pada gambar 1 dapat dibentuk beberapa klasifiaksi faktor wanita berpotensi diabetes seperti pada tabel 20 Klasifikasi Faktor Penentu Wanita Diabetes (Muhammad Maulana Ramadhan) | 51 Jurnal Elektronik Nasional Teknologi dan Ilmu Komputer (JENTIK) Tabel 20. Pola klasifikasi faktor wanita berpotensi diabetes berdasarkan pohon keputusan algortima CHAID No 1 Faktor wanita berpotensi diabetes Wanita dengan kadar glukosa ≥ 140 dan massa indeks tubuh > 27 2 Wanita dengan kadar glukosa < 140, massa indeks tubuh > 27 dan jumlah kehamilan > 2 Wanita dengan kadar glukosa ≥ 140 dan massa indeks tubuh 18.5 - 27 3 4 Persentase Dari 166 respondeden yang terklasifikasi 70.5 % positif diabetes dan 29.5 % tidak Dari 203 responden yang terklasifikasi 36.5% positif diabetes dan 63.5% tidak Dari 24 responden 45.8% positif diabetes dan 54.2% tidak Dari 142 responden yang terklasifikasi 4.2% positif diabetes dan 95.8% tidak Dari 35 responden yan terklasifikasi 40% positif diabetes dan 60% tidak Klasifikasi Berpotensi diabetes Tidak berpotensi diabetes Tidak berpotensi diabetes Tidak berpotensi diabetes Tidak berpotensi diabetes Wanita dengan kadar glukosa < 140 dan memiliki massa indeks tubuh ≤ 17 – 27 5 Wanita dengan kadar glukosa <140, massa indeks tubuh > 27, jumlah kehamilan 0 – 2 dan tekanan darah diastolic 80.1 - 100 6 Wanita dengan kadar glukosa <140, Dari 154 responden yang Tidak massa indeks tubuh > 27, jumlah treklasifikasi 17.5% positif berpotensi kehamilan 0 – 2 dan tekanan darah diabetes dan 82.5% tidak diabetes diastolic 40 – 80 Sumber : Klasifikasi Faktor Penentu Wanita Berpotensi Diabetes Dengan Decision tree Menggunakan Algoritma Chi-Squared Automatic Interaction Detection (Chaid). 2017 Kemudian klasifikasi yang sudah didapatkan dari pohon keputusan algoritma chaid diperiksa perbandingannya dengan kasus diabetes yang digunakan sebagai data testing pembanding yaitu dataset kasus wanita diabetes Puskesmas Kelayan Dalam Banjarmasin. Hasil dari perbandingan tersebut dapat dilihat pada tabel 21. Tabel 21. Hasil perbandingan klasifikasi dengan dataset diabetes puskesmas kelayan dalam banjarmasin klasifikasi jumlah Persentase % Keterangan klasifikasi ke 1 61 85,92 Positif klasifikasi ke 2 7 9.86 Tidak klasifikasi ke 3 1 1.41 Tidak klasifiaksi ke 4 1 1.41 Tidak klasifikasi ke 5 1 1.41 Tidak klasifiaksi ke 6 0 0.00 Tidak Total 71 100 85, 92% positif; 14,08% tidak Sumber : Klasifikasi Faktor Penentu Wanita Berpotensi Diabetes Dengan Decision tree Menggunakan Algoritma Chi-Squared Automatic Interaction Detection (Chaid). 2017 Klasifikasi Faktor Penentu Wanita Diabetes (Muhammad Maulana Ramadhan) | 52 Jurnal Elektronik Nasional Teknologi dan Ilmu Komputer (JENTIK) Seperti yang dapat dilihat pada tabel 21 terdapat 85,92% wanita yang masuk kedalam klasifikasi positif diabetes. Sedangkan terdapat 14,08% wanita yang termasuk tidak positif diabetes. Pohon klasifikasi yang terbentuk dari algoritma CHAID ini sudah memiliki persentase kesesuaian yang cukup besar, walaupun masih ada wanita yang positif diabetes pada data testing namun termasuk tidak positif pada klasifiaksi pohon keputusan. 4. SIMPULAN Dari penelitian yang sudah dilakukan, maka kesimpulan yang dapat diambil adalah sebagai berikut: a. Faktor yang berpengaruh pada kondisi seorang wanita yang berpotensi mengalami diabetes berdasarkan data training yang digunakan pada penelitian ini diurutkan berdasarkan nilai chi-square nya seperti berikut 1) Kadar glukosa dengan nilai chi-square sebesar 124. 147 2) Massa indeks tubuh dengan nilai chi-square sebesar 37.508 3) Jumlah kehamilan dengan nilai chi-square sebesar 10.286 4) Tekanan darah diastolik dengan nilai chi-square sebesar 9.475 b. Pola decision tree dari faktor – faktor yang mempengaruhi kondisi wanita tersebut yaitu 1) Wanita dengan Wanita dengan kadar glukosa ≥ 140 dan massa indeks tubuh > 27; wanita dengan kondisi ini 70,5% berpotensi diabetes. 2) Wanita dengan kadar glukosa < 140; massa indeks tubuh > 27 dan jumlah kehamilan > 2; wanita dengan kondisi ini 36,5% berpotensi daibetes. 3) Wanita dengan kadar glukosa ≥ 140 dan massa indeks tubuh 18,5 – 27; wanita dengan kondisi ini 45,8% berpotensi diabetes. 4) Wanita dengan kadar glukosa < 140 dan memiliki massa indeks tubuh ≤ 17 – 27; wanita dengan kondisi ini 4,2% berpotensi diabetes. 5) Wanita dengan kadar glukosa <140; massa indeks tubuh > 27; jumlah kehamilan 0 – 2 dan tekanan darah diastolic 80,1 – 100; wanita dengan kondisi ini 40% berpotensi diabetes. 6) Wanita dengan kadar glukosa <140, massa indeks tubuh > 27; jumlah kehamilan 0 – 2 dan tekanan darah diastolic 40 – 80; wanita dengan kondisi ini 17,5% berpotensi diabetes Dari pola decision tree berdasarkan data training ini, kesesuaian dengan kasus diabetes yang terdata pada Puskesmas Kelayan Dalam memiliki persentase sebesar 85,92% Klasifikasi Faktor Penentu Wanita Diabetes (Muhammad Maulana Ramadhan) | 53 Jurnal Elektronik Nasional Teknologi dan Ilmu Komputer (JENTIK) DAFTAR PUSTAKA [1] [2] [3] [4] [5] Kementerian Kesehatan RI, “InfoDATIN Situati dan Analisis Diabetes”, Kementerian Kesehatan RI, 2014. Jelantik, Igusti, M.G, dan Haryati, E., “Hubungan Faktor Risiko Umur, Jenis Kelamin, Kegemukan dan Hipertensi dengan Kejadian Diabetes Mellitus Tipe II di Wilayah Kerja Puskesmas Mataram”. Jurnal Penelitian. Volume 8, No. 1, ISSN No. 1978-3787, Februari 2014. Irawan, Dedi, “Prevalensi dan Faktor Risiko Kejadian Diabetes melitus Tipe 2 di Daerah Urban Indonesia (Analisa Data Sekunder Riskesdas 2007)”, Thesis, Universitas Indonesia, 2010. Han, Jiawei dan Kamber, Micheline, “Data mining: Concepts and Techniques Second Edition”, Elsevier, 2006. Ramadhan, M.,M., “Klasifikasi Faktor Penentu Wanita Berpotensi Diabetes Dengan Decision tree Menggunakan Algoritma ChiSquared Automatic Interaction Detection (Chaid)”, Skripsi Program Studi Ilmu Komputer, Universitas Lambung Mangkurat, Banjarbaru, 2017. Klasifikasi Faktor Penentu Wanita Diabetes (Muhammad Maulana Ramadhan) | 54