BAB II Dinamika Gaya sentripetal Setiap benda yang bergerak membentuk lintasan lingkaran harus tetap diberikan gaya agar benda tersebut terus berputar. Anda dapat membuktikannya dengan mengikat sebuah benda (sebaiknya berbentuk bulat atau segiempat) pada salah satu ujung tali. Setelah itu putarlah tali tersebut, sehingga benda tersebut ikut berputar. Jika anda menghentikan putaran, maka benda tersebut perlahan-lahan berhenti. Hal dikarenakan tidak ada gaya yang diberikan. Agar benda tetap berputar maka harus diberikan gaya secara terus menerus, yang dalam hal ini adalah tangan anda yang memutar tali. Besarnya gaya tersebut, dapat dihitung dengan Hukum II Newton untuk komponen radial : ar adalah percepatan sentripetal (percepatan radial) yang arahnya menuju pusat lingkaran. Persamaan di atas menunjukan hubungan antara gaya dan percepatan sentripetal. Karena gaya memiliki hubungan dengan percepatan sentripetal, maka arah gaya total yang diberikan harus menuju ke pusat lingkaran. Jika tidak ada gaya total yang diberikan (yang arahnya menuju pusat lingkaran) maka benda tersebut akan bergerak lurus alias bergerak keluar dari lingkaran. Anda dapat membuktikannya dengan melepaskan tali dari tangan anda. Untuk menarik sebuah benda dari jalur “normal”-nya, diperlukan gaya total ke samping. Karena arah percepatan sentripetal selalu menuju pusat lingkaran, maka gaya total ke samping tersebut harus selalu diarahkan menuju pusat lingkaran. Gaya ini disebut gaya sentripetal (sentripetal = “menuju ke pusat”). Gaya sentripetal bukan jenis gaya baru, tetapi merupakan gaya total yang arahnya menuju pusat Created by : Giri Wiarto lingkaran. Gaya sentripetal harus diberikan oleh benda lain. misalnya, ketika kita memutar bola yang terikat pada salah satu ujung tali, kita menarik tali tersebut dan tali memberikan gaya pada bola sehingga bola berputar. Percepatan sentripetal (arad) dapat dinyatakan dalam periode T (waktu yang dibutuhkan untuk melakukan putaran). Sekarang mari kita tinjau gaya sentripetal pada beberapa jenis Gerak Melingkar Beraturan : BENDA YANG BERPUTAR HORISONTAL Misalnya kita tinjau sebuah benda yang diputar menggunakan tali pada bidang horisontal, sebagaimana tampak pada gambar di bawah : Amati bahwa pada benda tersebut bekerja gaya berat (mg) yang arahnya ke bawah dan gaya tegangan tali (FT) yang bekerja horisontal. Tegangan tali timbul karena kita memberikan gaya tarik pada tali ketika memutar benda (ingat kembali penjelasan di atas). Gaya tegangan tali ini berfungsi untuk memberikan percepatan sentripetal. Created by : Giri Wiarto Berpedoman pada koordinat bidang xy, kita tetapkan komponen horisontal sebagai sumbu x. Dengan demikian, berdasarkan hukum II Newton, kita dapat menurunkan persamaan gaya sentripetal untuk benda yang berputar horisontal : BENDA YANG BERPUTAR VERTIKAL Misalnya kita tinjau sebuah benda yang diputar menggunakan tali pada bidang vertikal, sebagaimana tampak pada gambar di bawah : Ketika benda berada di titik A, pada benda bekerja gaya berat (mg) dan gaya tegangan tali (FTA) yang arahnya ke bawah (menuju pusat lingkaran). Kedua gaya ini memberikan percepatan sentripetal pada benda. Ketika benda berada pada titik A’, pada benda bekerja gaya berat yang arahnya ke bawah dan gaya tegangan tali (FTA‘) yang arahnya ke atas (menuju pusat lingkaran). Menggunakan hukum II Newton, kita dapat menurunkan persamaan gaya sentripetal untuk benda yang berputar vertikal. Terlebih dahulu kita tetapkan arah menuju ke pusat sebagai arah positif. Gaya Sentripetal di titik A Terlebih dahulu kita tinjau komponen gaya yang bekerja ketika benda berada di titik A. Ketika berada pada titik A, hubungan antara gaya sentripetal, gaya berat, massa benda, jari-jari dan percepatan sentripetal dinyatakan dengan persamaan di bawah ini : Created by : Giri Wiarto Keterangan : FTA = gaya tegangan tali di titik A, Fs = gaya sentripetal, as = percepatan sentripetal, vA = kecepatan gerak benda di titik A, r = jari-jari lingkaran (panjang tali) Berdasarkan persamaan 1 di atas, tampak bahwa ketika benda berada di titik A (puncak lintasan), benda masih bisa berputar walaupun tidak ada gaya tegangan tali yang bekerja pada benda tersebut. Untuk membuktikan hal ini, mari kita obok-obok persamaan di atas : Jika FTA = 0, maka persamaan di atas akan menjadi : Jadi ketika berada di titik A, benda tersebut masih bisa berputar dengan kecepatan linear vA, meskipun tidak ada gaya tegangan tali (Gaya tegangan tali pada kasus ini = gaya sentripetal). Besar kecepatan dinyatakan pada persamaan 2. Karena percepatan gravitasi (g) tetap maka besar kecepatan linear bergantung pada jari-jari lingkaran / panjang tali). Semakin panjang tali (semakin besar jari-jari lingkaran), semakin besar laju linear benda. Gaya Sentripetal di titik A’ Sekarang kita tinjau gaya sentripetal apabila benda berada di titik A’. Ketika benda berada di titik A’, pada benda bekerja gaya berat (mg) yang arahnya ke bawah dan gaya tegangan tali (FTA‘) yang arahnya ke atas. Menggunakan hukum II Created by : Giri Wiarto Newton, mari kita turunkan persamaan yang menyatakan hubungan antara gaya sentripetal, gaya berat, massa benda, jari-jari dan percepatan sentripetal : Berdasarkan persamaan, tampak bahwa ketika berada di titik A’, besar gaya sentripetal (dalam kasus ini gaya sentripetal = gaya tegangan tali) lebih besar dibandingkan dengan ketika benda berada di titik A’. Dengan demikian, ketika benda berada di titik A’ kita harus memberikan gaya putar yang lebih besar untuk mengimbangi gaya berat benda. Anda dapat melakukan percobaan untuk membuktikan hal ini. Ikatlah sebuah benda pada salah satu ujung tali dan putar benda tersebut secara vertikal. Ketika benda berada di lembah lintasan (A’), anda akan merasakan efek tarikan gaya berat yang lebih besar dibandingkan ketika benda berada di puncak lintasan (A). Agar benda tetap berputar, gaya yang anda berikan harus lebih besar untuk mengimbangi gaya berat benda yang arahnya ke bawah. Salah satu contoh gerak melingkar vertikal yang dapat kita temui dalam kehidupan sehari-hari adalah wahana putar. Pada dasarnya, komponen gaya sentripetal yang bekerja pada wahana putar sama dengan penjelasan gurumuda di atas. Bedanya, gaya sentripetal pada penjelasan di atas adalah gaya tegangan tali. KENDARAAN YANG MELEWATI TIKUNGAN Salah satu penerapan fisika dalam kehidupan kita, berkaitan dengan percepatan sentripetal adalah ketika kendaraan melewati tikungan. Pada kesempatan ini kita akan meninjau gaya sentripetal yang menyebabkan kendaraan dapat melewati tikungan. Pembahasan ini lebih berkaitan dengan gerakan mobil, atau kendaraan sejenis lainnya (truk, bus dkk). Kita tidak meninjau sepeda motor karena analisisnya sangat kompleks (mengapa kompleks alias ribet ? ayo… berpikirlah. Sering nonton GP khan ?). Tikungan rata Terlebih dahulu kita bahas tikungan yang permukaan jalannya rata. Ketika melewati tikungan yang rata, setiap mobil memiliki gaya sentripetal yang arahnya menuju pusat lintasan lingkaran (amati gambar di bawah). Gaya sentripetal tersebut bersumber dari gaya gesekan antara ban dengan permukaan jalan. Gesekan yang terjadi adalah gesekan statis selama ban tidak selip. Mengapa tidak gesekan kinetis ? anggap saja ini pr dari gurumuda untuk anda. Gunakan pengetahuan anda tentang gaya gesekan untuk menyelesaikan pr dari gurumuda ini… oke, kembali ke laptop, eh tikungan. Created by : Giri Wiarto Cermati gambar di atas. maaf gambarnya kurang sempurna (gambar kanan). Maksud yang ingin disampaikan gambar kanan adalah bahwa pada mobil tersebut, selain bekerja gaya sentripetal, bekerja juga gaya berat yang arahnya tegak lurus ke bawah dan gaya normal yang arahnya tegak lurus ke atas. Ketika mobil melewati tikungan dengan kecepatan (v), jalan memberikan gaya ke dalam (gesekan terhadap ban) dan membuat mobil tersebut bergerak melingkar. Arah gaya gesekan (Fges) menuju pusat lingkaran, seperti yang diperlihatkan pada gambar di atas. gaya gesekan inilah yang berperan sebagai gaya sentripetal. Sebenarnya penjelasan ini dapat anda pahami dengan mudah. Bayangkanlah, apa yang terjadi ketika anda mengendarai mobil pada tikungan yang sangat licin (anggap saja sedang hujan dan permukaan luar roda mobil anda sudah gundul) ? bisa ditebak, anda akan digiring ambulans menuju rumah sakit… mengapa ? ketika tidak ada gaya gesekan statis, ban mobil anda akan selip dan keluar dari lintasan lingkaran… dengan kata lain, pada mobil anda tidak bekerja gaya sentripetal. Jadi berhati-hatilah ketika melewati tikungan, apalagi tikungan tajam… Sekarang mari kita turunkan persamaan yang menyatakan hubungan antara gaya sentripetal (dalam kasus ini gaya sentripetal adalah gaya gesekan) dengan percepatan, jari-jari lintasan lingkaran dan massa benda… Berdasarkan hukum II Newton, gaya total yang bekerja pada mobil ketika melewati tikungan adalah : Created by : Giri Wiarto FR = Gaya radial alias gaya sentripetal, dan aR = gaya radial alias gaya sentripetal. Radial = sentripetal. Pada kasus ini, gaya sentripetal = gaya gesekan. Besar gaya gesekan dapat dihitung dengan persamaan : GAYA SENTRIFUGAL ? Ketika kita memutar bola, kita merasa bahwa seolah-olah ada gaya yang menarik tangan kita keluar. Hal ini seringkali diartikan secara keliru, bahwa ada gaya yang bekerja “menjahui pusat”. Kesalahpahaman yang terjadi menggambarkan bahwa benda yang bergerak melingkar mempunyai gaya ke luar yang bekerja padanya, yang disebut gaya sentrifugal (menjahui pusat). Kenyataan yang terjadi bukan seperti itu. Untuk mempertahankan gerak bola, tangan kita menarik tali ke dalam, yang memberikan gaya pada bola untuk bergerak melingkar karena ada gaya ke dalam alias menuju pusat lingkaran. Bola memberikan gaya yang sama tetapi berlawanan arah (ingat hukum III Newton : ada aksi maka ada reaksi, dan besarnya gaya aksi dan reaksi sama tetapi berlawanan arah). Hal ini yang kita rasakan seperti ada tarikan ke luar, tetapi itu bukan gaya sentrifugal, tetapi gaya reaksi yang diberikan oleh bola yang arahnya keluar melawan gaya aksi yang kita berikan kepada bola. Dengan demikian, tidak ada gaya sentrifugal yang bekerja pada bola. Created by : Giri Wiarto Untuk membuktikan bahwa tidak ada gaya sentrifugal, bayangkanlah apa yang terjadi ketika kita melepaskan tali. Anda juga dapat membuktikan dengan melakukan percobaan di atas (memutar tali yang salah satu ujungnya diikatkan bola) Jika ada gaya sentrifugal, maka bola akan terlempar ke luar, seperti yang ditunjukkan pada gambar di bawah. Tetapi kenyataannya tidak demikian; bola melayang secara tangensial atau ketika tali dilepaskan, arah gerak bola sesuai dengan arah kecepatan linearnya. Hal ini disebabkan karena ketika kita melepaskan tali, tidak ada lagi gaya ke dalam yang bekerja pada bola. Jika ada gaya sentrifugal maka ketika tali dilepaskan, bola akan melayang seperti pada gambar a. kenyataan yang terjadi, ketika tali dilepaskan bola melayang seperti gambar b. Created by : Giri Wiarto Note : Gaya sentrifugal merupakan gaya fiksi dan dianggap ada. Tergantung kerangka acuan pengamatan kita. Kalau kita mengamati dari kerangkan acuan inersial (seperti putaran tali di atas), yang bekerja hanya gaya sentripetal saja. Tetapi jika kita mengamati dari kerangka acuan tak inersial (misalnya kita berada di dalam mobil — posisi kita dan mobil tidak berubah), maka yang bekerja hanya gaya sentrifugal saja… Hukum Newton pada benda-benda yang dihubungkan dengan tali – Katrol Pengantar Pada pembahasan mengenai hukum Newton pada bidang datar dan bidang miring, kita telah menganalisis komponen-komponen gaya yang bekerja pada benda dan yang mempengaruhi gerakan benda pada permukaan bidang datar dan bidang miring. Kali ini kita mencoba mempelajari penerapan hukum Newton pada benda-benda yang dihubungkan dengan tali, misalnya benda yang digantung pada katrol. Sebelum membahas lebih jauh, terlebih dahulu kita berkenalan dengan konsep tegangan tali. Tegangan tali akan selalu dijumpai dalam setiap analisis mengenai komponen-komponen gaya yang bekerja pada benda yang dihubungkan dengan tali. Oleh karena itu, alangkah baiknya jika kosep tegangan tali dipahami secara baik dan benar sehingga memudahkan dirimu dalam memahami penjelasan selanjutnya. Selamat belajar ya, mudah-mudahan dirimu tidak tegang seperti tali …. Tegangan Tali Created by : Giri Wiarto Untuk membantu dirimu memahami konsep tegangan tali, pahami ilustrasi berikut ini. Misalnya kita letakan 3 benda pada permukaan bidang datar, di mana ketiga benda tersebut dihubungkan dengan tali (amati gambar di bawah). Ketika kita menarik benda A ke kiri dengan gaya F, benda B dan C juga ikut tertarik karena ketiga benda tersebut dihubungkan dengan tali. Pada saat benda A ditarik, tali 1 dan tali 2 tegang sehingga pada kedua ujung tali tersebut timbul tegangan tali (T). Benda A dan B dihubungkan dengan tali yang sama sehingga gaya tegangan tali pada kedua ujung tali 1 sama besar (T1). Demikian juga, besar gaya tegangan tali pada kedua ujung tali 2 (T2) sama besar, karena benda B dan C dihubungkan dengan tali yang sama. Ingat bahwa gaya tegangan tali pada tali 1 (T1) berbeda dengan gaya tegangan tali pada tali 2 (T2), karena tali 1 bekerja pada benda A dan B sedangkan tali 2 bekerja pada benda B dan C. Inti penjelasan ini adalah gaya tegangan tali (T) sama besar apabila tali bekerja pada benda yang sama, dang besar gaya tegangan tali berbeda apabila bekerja pada benda yang berbeda. Tegangan Tali pada Katrol Agar dirimu semakin memahami gaya tegangan tali, mari kita tinjau gaya tegangan tali katrol. Permukaan katrol dianggap licin sempurna sehingga tidak ada gaya gesek dan massa tali sangat ringan sehingga kita abaikan dalam analisis ini. Ilustrasi 1 : Pada katrol digantungkan tali dan pada kedua ujung tali digantungkan dua benda, masing-masing bermasa m1 dan m2. m1 lebih besar dari m2 (gaya berat pada benda bermassa m1 lebih besar dari gaya berat pada benda bermassa m2) sehingga katrol berputar ke kiri (berlawanan dengan arah jarum jam), sebagaimana tampak pada gambar di bawah. Benda bermassa m1 bergerak turun sedangkan benda bermassa m2 bergerak naik…. Created by : Giri Wiarto Pada tali bekerja gaya tegangan tali T1 dan T2, di mana besar gaya tegangan tali T1 = T2 (ingat ya, T1 dan T2 berada pada tali yang sama). Ilustrasi 2 : Katrol 1 dan katrol 2 dihubungkan dengan sebuah tali panjang. Katrol 2 dan benda bermassa m dihubungkan dengan sebuah tali pendek, sebagaimana tampak pada gambar di bawah… Created by : Giri Wiarto Ketika kita menarik tali ke bawah dengan gaya sebesar F, maka akan timbul gaya tegangan tali T1, T2 dan T3. T4 adalah gaya tegangan tali yang bekerja pada katrol 1 dengan tempat di mana tali dihubungkan, sedangkan T5 adalah gaya tegangan tali yang bekerja pada katrol 2 dan benda. Besar T1 = T2 = T3. T1, T2 dan T3 tidak sama dengan T4 dan T5. Besar T4 juga tidak sama dengan T5. Mengapa demikian ? alasannya, T1, T2 dan T3 merupakan gaya tegangan tali pada tali yang sama, sedangkan T4 dan T5 merupakan gaya tegangan tali pada tali yang berbeda. Sampai di sini mudah2an dirimu memahami penjelasan GuruMuda. Sekarang mari kita pelajari penerapan hukum Newton pada benda-benda yang dihubungkan dengan tali. Hukum Newton pada benda-benda yang dihubungkan dengan tali. Pertama, dua buah benda bermassa sama, di mana kedua benda tersebut dihubungkan dengan sebuah tali dan digantungkan pada sebuah katrol (Lihat gambar di bawah). Kita menganggap permukaan katrol sangat licin sehingga gaya gesekan diabaikan dan massa tali sangat ringan sehingga kita abaikan dalam analisis ini. Berdasarkan Hukum III Newton (Hukum aksi-reaksi), benda 1 ditarik oleh tali dengan gaya sebesar T1 yang arahnya ke atas dan tali sendiri ditarik ke bawah oleh benda 1 dengan gaya sebesar T1 yang arahnya ke bawah (sambil lihat gambar ya…) Demikian juga dengan benda 2. Benda 2 ditarik oleh tali dengan gaya sebesar T2 yang arahnya ke atas dan tali sendiri ditarik ke bawah oleh benda 2 dengan gaya sebesar T2 yang arahnya ke bawah. Karena m1 (massa benda 1) dan m2 (massa benda 2) sama besar maka benda diam alias tidak bergerak. Dengan kata lain, benda berada dalam keadaan setimbang. walaupun benda diam, tapi pada benda tersebut bekerja gaya berat dan gaya tegangan tali. Berdasarkan hukum II Newton, gaya yang bekerja pada benda di atas adalah : Created by : Giri Wiarto Kedua, dua buah benda dihubungkan dengan sebuah tali dan digantungkan pada sebuah katrol. Massa salah satu benda lebih besar dari benda lain (m2 > m1). Berdasarkan Hukum III Newton (Hukum aksi-reaksi), benda 1 ditarik oleh tali dengan gaya sebesar T1 yang arahnya ke atas dan tali sendiri ditarik ke bawah oleh benda 1 dengan gaya sebesar T 1 yang arahnya ke bawah (sambil lihat gambar ya…) Demikian juga benda 2 ditarik oleh tali dengan gaya sebesar T2 yang arahnya ke atas dan tali sendiri ditarik ke bawah oleh benda 2 dengan gaya sebesar T2 yang arahnya ke bawah. Created by : Giri Wiarto Karena m2 (massa benda 2) lebih besar dari m1 (massa benda 1) maka benda 2 bergerak ke bawah dan benda 1 bergerak ke atas. Perhatikan arah putaran katrol. Benda 2 bergerak ke bawah karena dipengaruhi oleh gaya berat (w2). Ingat ya, w2 > w1 Berdasarkan hukum II Newton, gaya yang bekerja pada benda di atas adalah : Created by : Giri Wiarto Karena gaya tegangan tali T1 dan gaya tegangan tali T2 bekerja pada tali yang sama, maka : T1 = T2 = T Dengan demikian, persamaan 1 dan persamaan 2 kita tulis ulang menjadi : Menentukan nilai percepatan (a) Kita eliminasi gaya tegangan tali (T) pada kedua persamaan ini untuk memperoleh nilai percepatan gerak benda (a) : Bagaimana dengan gaya tegangan tali T ? Untuk memperoleh nilai T, kita subtitusikan nilai a pada persamaan 3 ke dalam persamaan 1 atau persamaan 2. Misalnya kita subtitusikan nilai a pada persamaan 3 ke dalam persamaan 1 : Created by : Giri Wiarto Ketiga, dua benda dihubungkan dengan katrol pada bidang miring, di mana massa benda 2 (m2) lebih besar dari massa benda 1 (m1), sehingga benda 2 bergerak ke bawah sedangkan benda 1 bergerak ke atas. perhatikan arah putaran katrol. Berdasarkan hukum II Newton, gaya yang bekerja pada benda di atas adalah : Created by : Giri Wiarto Karena gaya tegangan tali T1 dan gaya tegangan tali T2 bekerja pada tali yang sama, maka : T1 = T2 = T Dengan demikian, persamaan 1 dan persamaan 2 kita tulis ulang menjadi : Menentukan nilai percepatan (a) Kita eliminasi gaya tegangan tali (T) pada kedua persamaan ini untuk memperoleh nilai percepatan gerak benda (a) : Bagaimana dengan gaya tegangan tali T ? Untuk memperoleh nilai T, kita subtitusikan nilai a pada persamaan 3 ke dalam persamaan 1 atau persamaan 2. Misalnya kita subtitusikan nilai a pada persamaan 3 ke dalam persamaan 1 : Created by : Giri Wiarto Hukum Newton pada bidang datar dan bidang miring Hukum-hukum Newton yang telah kita pelajari sebelumnya dapat digunakan untuk memecahkan berbagai persoalan mekanika. Sebagai contoh, kita dapat menentukan percepatan gerak sebuah benda dengan mengetahui gaya-gaya yang bekerja pada benda tersebut. Atau sebaliknya, kita juga bisa menentukan gaya-gaya yang bekerja pada sebuah benda yang bergerak, apabila diketahui percepatannya. Nah, pada kesempatan ini kita akan mempelajari lebih jauh penerapan Hukum Newton bidang datar dan bidang miring, terutama berkaitan dengan benda-benda yang bergerak akibat adanya gaya tetap yang bekerja padanya. Met belajar ya, semoga setelah belajar pembahasan ini, dirimu dapat menyelesaikan berbagai persoalan mekanika menggunakan Hukum Newton…. Mari kita mulai dengan persoalan mekanika yang sangat sederhana Catatan : Dengan berpedoman pada koordinat x dan y, kita tetapkan arah ke kanan dan ke atas sebagai arah positif sedangkan ke bawah dan ke kiri sebagai arah negatif. Benda yang diletakan pada bidang datar dan ditarik dengan gaya konstan Permukaan bidang datar sangat licin (gesekan nol) Pada gambar a, benda di tarik ke kanan dengan konstan F yang sejajar horisontal, sedangkan pada gambar b, benda ditarik ke kanan dengan gaya konstan F yang membentuk sudut terhadap horisontal. Apakah pada benda hanya bekerja gaya tarik F ? mari kita tinjau gaya-gaya yang bekerja pada benda di atas…. Created by : Giri Wiarto Karena permukaan bidang datar sangat licin, maka kita mengandaikan gaya gesekan nol. Dalam kenyataannya gaya gesek tidak pernah bernilai nol. Ini hanya model ideal. Selain gaya tarik F yang arahnya ke kanan, pada benda juga bekerja gaya berat (w) dan gaya normal (N). Pasangan gaya berat w dan gaya normal N bukan pasangan gaya aksi-reaksi. Ingat bahwa gaya aksi-reaksi bekerja pada benda yang berbeda, sedangkan kedua gaya di atas (Gaya berat dan Gaya Normal) bekerja pada benda yang sama. Disebut gaya normal karena arah gaya tersebut tegak lurus bidang di mana benda berada… besar gaya normal sama dengan gaya berat (N = w). Karena gaya normal (N) dan gaya berat (w) memiliki gaya berat yang sama dan arahnya berlawanan maka kedua gaya tersebut saling menghilangkan…. Pada gambar a, benda bergerak karena adanya gaya tarik (F), sedangkan pada gambar b, benda bergerak karena komponen gaya tarik pada arah horisontal (Fx). Gambar a Berdasarkan hukum II Newton, percepatan gerak benda adalah : Komponen gaya yang bekerja pada sumbu y (vertikal) adalah : Created by : Giri Wiarto Gambar b Berdasarkan hukum II Newton, percepatan gerak benda adalah : Komponen gaya yang bekerja pada sumbu y (vertikal) adalah : Permukaan bidang datar kasar (ada gaya gesekan) Sekarang mari kita tinjau benda yang diletakan pada bidang datar yang kasar… Selain ketiga gaya seperti yang telah diuraikan di atas, pada benda juga bekerja gaya gesekan (Fg). Created by : Giri Wiarto Gambar a Berdasarkan hukum II Newton, percepatan gerak benda adalah : Komponen gaya yang bekerja pada sumbu y (vertikal) adalah : Gambar b Berdasarkan hukum II Newton, percepatan gerak benda adalah : Created by : Giri Wiarto Komponen gaya yang bekerja pada sumbu y (vertikal) adalah : Gaya gesekan yang bekerja pada dua permukaan benda yang bersentuhan, ketika benda tersebut belum bergerak disebut gaya gesek statik (lambangnya fs). Gaya gesek statis yang maksimum sama dengan gaya terkecil yang dibutuhkan agar benda mulai bergerak. Ketika benda telah bergerak, gaya gesekan antara dua permukaan biasanya berkurang sehingga diperlukan gaya yang lebih kecil agar benda bergerak dengan laju tetap. Ketika benda telah bergerak, gaya gesekan masih bekerja pada permukaan benda yang bersentuhan tersebut. Gaya gesekan yang bekerja ketika benda bergerak disebut gaya gesekan kinetik (lambangnya fk) (kinetik berasal dari bahasa yunani yang berarti “bergerak”). Ketika sebuah benda bergerak pada permukaan benda lain, gaya gesekan bekerja berlawanan arah terhadap kecepatan benda. Permukaan bidang miring sangat licin (gesekan nol) Created by : Giri Wiarto Terdapat tiga kondisi yang berbeda, sebagaimana ditunjukkan pada gambar di bawah. Pada gambar a, benda meluncur pada bidang miring yang licin (gaya gesekan = 0) tanpa ada gaya tarik. Jadi benda bergerak akibat adanya komponen gaya berat yang sejajar bidang miring (w sin teta). Pada gambar b, benda meluncur pada bidang miring yang licin (gaya gesekan = 0) akibat adanya gaya tarik (F) dan komponen gaya berat yang sejajar bidang miring (w sin teta). Pada gambar c, benda bergerak akibat adanya komponen gaya tarik yang sejajar permukaan bidang miring (F cos teta) dan komponen gaya berat yang sejajar bidang miring (w sin teta). Sekarang mari kita tinjau satu persatu….. Benda bergerak akibat adanya komponen gaya berat yang sejajar permukaan bidang miring…. Berdasarkan hukum II Newton, percepatan gerak benda adalah : Komponen gaya yang bekerja pada sumbu y (vertikal) adalah : Created by : Giri Wiarto Pada gambar ini (gambar b), benda bergerak akibat adanya gaya tarik F dan komponen gaya berat (w sin teta) yang sejajar permukaan bidang miring. Berdasarkan hukum II Newton, percepatan gerak benda adalah : Komponen gaya yang bekerja pada sumbu y adalah : Created by : Giri Wiarto Pada gambar ini (gambar c), benda bergerak akibat adanya komponen gaya tarik F yang sejajar permukaan bidang miring (F cos teta) dan komponen gaya berat yang sejajar permukaan bidang miring ((w sin teta). Berdasarkan hukum II Newton, percepatan gerak benda adalah : Komponen gaya yang bekerja pada sumbu y adalah : Created by : Giri Wiarto Permukaan bidang miring kasar (ada gaya gesekan) Pertama, benda bergerak pada bidang miring akibat adanya komponen gaya berat yang sejajar permukaan bidang miring, sebagaimana tampak pada gambar di bawah. Karena permukaan bidang miring kasar, maka terdapat gaya gesekan yang arahnya berlawanan dengan arah gerakan benda…. Berdasarkan hukum II Newton, percepatan gerak benda adalah : Komponen gaya yang bekerja pada sumbu y adalah : Created by : Giri Wiarto Kedua, benda bergerak pada bidang miring akibat adanya gaya tarik (F) dan komponen gaya berat yang sejajar permukaan bidang miring (w sin teta), sebagaimana tampak pada gambar di bawah. Karena permukaan bidang miring kasar, maka terdapat gaya gesekan (fg) yang arahnya berlawanan dengan arah gerakan benda…. Berdasarkan hukum II Newton, percepatan gerak benda adalah : Komponen gaya yang bekerja pada sumbu y adalah : Created by : Giri Wiarto Ketiga, benda bergerak akibat adanya komponen gaya tarik yang sejajar permukaan bidang miring (F cos teta) dan komponen gaya berat yang sejajar bidang miring (w sin teta). Karena permukaan bidang miring kasar, maka terdapat gaya gesekan (fg) yang arahnya berlawanan dengan arah gerakan benda…. Berdasarkan hukum II Newton, percepatan gerak benda adalah : Komponen gaya yang bekerja pada sumbu y adalah : Created by : Giri Wiarto Hukum Kepler Pengantar Sebelum kita mempelajari hukum Kepler secara lebih mendalam, terlebih dahulu kita kenang kembali kisah masa lalu yang mengantar Paman Kepler merumuskan hukumnya yang terkenal sampai di seluruh pelosok negeri, bahkan sampai ke seluruh penjuru ruangan kelas XI IPA. Tulisan ini juga menyinggung masa lalu ilmu astronomi, sebuah kisah perkembangan ilmu pengetahuan yang selalu menuai pertentangan di tahap awal perkembangannya. Sejarah Panjang Awal perkembangan ilmu astronomi modern dimulai oleh Purbach (1423-1461) di universitas Wina serta lebih khusus lagi oleh muridnya Yohanes muller (1436-1476). Johanes Muller pergi ke Italia khusus untuk belajar karya asli Ptolemeus tentang astronomi bersama temannya Walther (1430-1504). Walther adalah seorang yang kaya, ia memiliki observatorium pribadi, serta mesin percetakan pribadi. Muller bersama Walther membuat penanggalan berdasarkan benda-benda langit yang banyak dipakai oleh para pelaut Spanyol dan Portugis. Muller kemudian pergi ke Roma untuk melakukan pembaruan kalender di sana, akan tetapi ia meninggal sebelum dapat melaksanakan niatnya. Pengamatan muller dilanjutkan oleh temannya, Walther dan Albrecht Durer. Maka, ketika Nicolas Copernicus (1473-1543) memulai karyanya, telah terdapat cukup banyak karya hasil pengamatan astronomi. Sistem Copernicus yang baru tentang alam semesta menempatkan matahari sebagai pusat alam semesta, serta terdapat tiga jenis gerakan bumi. Tiga jenis gerakan bumi itu adalah gerak rotasi bumi (perputaran bumi pada porosnya), gerak revolusi (gerak bumi mengelilingi matahari) dan suatu girasi perputaran sumbu bumi yang mempertahankan waktu siang dan malam sama panjangnya. Teori Copernicus tersebut ditulis tangan dan diedarkan di antara kawan-kawannya pada tahun 1530. Teori Copernicus menjadi semakin terkenal dan menarik perhatian seorang ahli matematika dari wittenberg bernama George Rheticus (1514-1576). Rheticus kemudian belajar bersama Copernicus dan pada tahun 1540 menerbitkan buku tentang teori Copernicus. Akhirnya Copernicus Created by : Giri Wiarto menerbitkan hasil karyanya sendiri pada tahun 1543 berjudul On the Revolutions Of the Celestial Orbs. Buku copernicus dicetak di Nuremberg, pada awalnya di bawah supervisi Rheticus, kemudian dilanjutkan di bawah supervisi Andreas Osiander, seorang pastor Lutheran. Osiander menambahkan kata pengantar untuk karya Copernicus dengan menyatakan bahwa teori yang baru itu tidak harus benar, dan dapat dipandang semata-mata sebagai suatu kecocokan metode matematis tentang benda-benda langit. Copernicus sendiri tidak berpendapat begitu. Ia berpendapat bahwa sistem semesta yang dikemukakannya adalah nyata. Copernicus berpendapat bahwa sistem yang dikemukakan oleh ptolemous ‘tidak cukup tepat, tidak cukup memuaskan pikiran’, karena ptolemous beranjak langsung dari karya kelompok Pythagoras. Untuk menjelaskan gerakan benda-benda langit, ptolemous menganggap bahwa benda-benda langit itu bergerak melingkar dengan kecepatan angular yang tidak sama relatif terhadap pusatnya, kecepatan anguler itu hanya sama terhadap titik di luar pusat lingkaran itu. Menurut copernicus, asumsi itu merupakan kesalahan pokok dari sistem ptolemous. Akan tetapi hal ini bukan hal pokok yang dikemukakan oleh copernicus. Kritik utama yang dikemukakan oleh copernicus kepada para ahli astronomi pendahulunya adalah, dengan menggunakan aksioma-aksiomanya, mereka telah gagal menjelaskan gerakan benda-benda langit yang teramati dan juga teori-teori yang mereka kembangkan melibatkan sistem yang rumit yang tidak perlu. Copernicus menilai para pendahulunya dengan mengatakan : “di dalam metode yang dikembangkan, mereka telah mengabaikan hal-hal penting atau menambahkan hal-hal yang tidak perlu”. Copernicus memusatkan perhatian pada hal yang terakhir. Ia melihat bahwa para leluhurnya telah menambahkan tiga gerakan bumi untuk setiap benda langit agar sampai pada kesimpulan bahwa bumi berada diam di pusat putaran. Ketiga lingkaran tersebut telah ditambahkan untuk setiap benda langit di dalam sistem geometris bangsa Yunani untuk menjelaskan gerakan benda-benda langit dengan bumi sebagai pusatnya. Copernicus berpendapat bahwa lingkaran-lingkaran tersebut tidak diperlukan dengan berpendapat bahwa bumi berputar pada sumbuhnya setiap hari dan bergerak melintasi orbitnya mengitari matahari setiap tahun. Dengan cara demikian, Copernicus mengurangi jumlah lingkaran yang diperlukan untuk menjelaskan gerakan benda-benda langit. Dengan sistem yang dikemukakannya itu, Copernicus memberikan jawaban yang paling sederhana untuk menjawab pertanyaan yang diajukan bangsa Yunani tentang bagaimana menjelaskan gerakan benda-benda langit dalam suatu gerakan yang melingkar dan seragam. Tidak ada hal yang baru dalam metode tersebut, hal itu telah dipergunakan oleh para astronom sejak jaman Pythagoras. Dengan menggunakan konsepsi yang dipakai oleh Pythagoras, ia mencampakkan sistem yang dikembangkan oleh bangsa yunani. Akan tetapi, ada satu konsep yang tidak dipakainya, yaitu bahwa benda-benda langit adalah mulia. Di dalam sistem Copernicus, bumi berputar mengitari matahari, seperti planet-planet lainnya. Bumi menjalani gerakan yang seragam dan melingkar sebagai benda langit, Created by : Giri Wiarto suatu gerakan yang sejak lama diyakini sebagai gerakan yang sempurna. Lebih jauh, copernicus menekankan kesamaan antara bumi dengan benda-benda langit lainnya bahwa semuanya memiliki gravitasi. Gravitasi ini tidak berada di langit, melainkan bekerja pada materi, seperti bumi dan benda-benda langit memiliki gaya ikat dan mempertahankannya dalam suatu lingkaran yang sempurna. Untuk hal ini penjelasan copernicus agak berbau teologis : “menurut saya gravitasi tidak lain daripada suatu kekuatan alam yang diciptakan oleh pencipta agar supaya semuanya berada dalam kesatuan dan keutuhan. Kekuatan seperti itu mungkin juga dimiliki oleh matahari, bulan dan planet-planet agar semuanya tetap bundar” Sistem copernicus lebih bagus dan lebih sederhana daripada sistem ptolomeus. Di dalam sistem lama, benda-benda langit memiliki baik gerakan timur-barat maupun rotasi pada arah yang berlawanan. Dalam sistem copernicus, bumi dan semua planet bergerak mengitari matahari dengan arah yang sama dan laju yang berkurang semakin jauh dari matahari. Sementara itu, matahari yang berada di pusat dan bintang-bintang yang berada di luar tatasurya berada pada tempatnya yang tetap. Sekarang dapat dijelaskan mengapa planet-planet kelihatan mendekati dan menjahui bumi. Planet-planet itu pada suatu saat berada pada satu sisi yang sama dengan bumi, tetapi pada saat yang lain berada pada sisi yang berseberangan Dengan sistem Copernicus, perhitungan astronomi dibuat menjadi lebih mudah, karena melibatkan jumlah lingkaran yang lebih sedikit. Tetapi prakiraan posisi planet-planet dan perhitungan lainnya tidak lebih tepat daripada dihitung dengan menggunakan sistem ptolemous, keduanya masih memiliki kesalahan sekitar satu persen. Selanjutnya terdapat keberatan-keberatan terhadap sistem Copernicus. Pertama, dan mungkin tidak terlalu serius ketika itu, adalah kenyataan bahwa pusat tata surya tidak tepat berada pada matahari. Copernicus menempatkan pusat tatasurya pada pusat orbit bumi, yang tidak persis berada pada matahari, untuk menjelaskan perbedaan panjang musim-musim. Beberapa filsuf berpendapat bahwa pusat tata surya haruslah berada pada suatu obyek nyata, meskipun banyak juga yang menerima bahwa titik geometris dapat dipakai sebagai pusat tatasurya. Selanjutnya, para pendukung aristoteles berpendapat bahwa gravitasi bekerja ke arah titik geometris tersebut, sebagai pusat tatasurya, yang tidak harus sama dengan pusat bumi. Keberatan kedua, yang lebih serius, menyatakan bahwa bila bumi berputar, maka udara cenderung tertinggal di belakang, hal ini akan menimbulkan angin yang arahnya ke timur. Copernicus memberikan dua jawaban untuk keberatan timur. Pertama, yang merupakan suatu jenis penjelasan abad pertengahan, yaitu udara berputar bersama-sama dengan bumi karena udara berisi partikel-partikel bumi yang memiliki sifat-sifat yang sama dengan bumi. Maka bumi menarik udara berputar bersama-sama dengan bumi karena udara bersisi partikel-partikel bumi. Maka bumi menarik udara berputar dengan bumi. Jawaban kedua yang bersifat modern, udara berputar tanpa hambatan karena udara berdampingan dengan bumi yang terus menerus berputar. Keberatan yang sama adalah apabila sebuah batu dilemparkan ke atas maka batu itu akan tertinggal oleh bumi yang berputar, sehingga kalau batu itu jatuh akan berada di sebelah barat proyeksi batu itu. Untuk keberatan ini, copernicus menjawab ‘karena benda-benda yang ditarik ke tanah oleh beratnya adalah Created by : Giri Wiarto terbuat dari tanah, maka tidak diragukan bahwa benda-benda itu memiliki sifat yang sama dengan bumi secara keseluruhan, sehingga berputar bersama-sama dengan bumi’ Keberatan lebih jauh terhadap sistem copernicus adalah bila bumi berputar, maka bumi akan hancur berkeping-keping oleh gaya sentrifugal. Copernicus menjawab bahwa bila bumi tidak berputar maka bola yang lebih besar yang ditempati oleh bintang-bintang pasti bergerak dengan kecepatan yang sangat besar dan lebih rentan oleh pengaruh gaya sentrifugal. Nampaknya copernicus tidak menerima teori aristoteles juga tidak menerima teori adanya gaya dorong. Copernicus berpendapat bahwa spin dan gerakan dalam suatu lingkaran adalah gerakan-gerakan yang spontan, merupakan sifat alami dari suatu bentuk bola dimana bumi dan benda-benda langit ada. Oleh karena itu, copernicus tidak menggunakan hirarki para malaikat untuk menggerakan benda-benda langit, yaitu malaikat yang lebih berkuasa menggerakan benda yang lebih tinggi hirarkinya. Menurut copernicus benda-benda langit bergerak secara spontan. Maka bersama copernicus muncul suatu sistem cosmos yang betul-betul baru. Penggerak alam semesta tidak lagi penting. Matahari sebagai pusat tatasurya menjadi pengatur alam semesta. Terdapat figur perantara di antara pendukung aristoteles yang mendukung adanya penggerak alam semesta dan copernicus yang menyatakan matahari sebagai pusat tatasurya yaitu nicolas Cusa. Kiranya dapat dikatakan bahwa copernicus berusaha mempromosikan suatu nilai baru dengan sistem yang dikemukakannya. Karena apabila ia sekedar ingin mengembangkan suatu sistem yang lebih sederhana, terdapat suatu sistem yang dipakai oleh tycho brahe (1546-1601). Di dalam sistem itu planet-planet berputar mengelilingi matahari, sementara itu matahari bersama-sama dengan planet-planet yang mengelilinginya sebagai satu kesatuan, berputar mengelilingi bumi yang diam yang berada pada pusat semesta. Sistem itu secara matematis ekuivalen dengan sistem copernicus, dan juga sistem itu tidak menimbulkan persoalan fisis. Tetapi sistem itu tetap mempertahankan nilai-nilai lama dalam sistem cosmos yaitu bumi sebagai pusat alam semesta. Itulah mungkin sebabnya copernicus mengajukan suatu sistem baru, heliosentris. Dalam seluruh hidupnya, Copenicus menganut pandangan bangsa yunani bahwa gerakan benda-benda langit adalah melingkar dengan kecepatan tetap, maka meskipun sistem yang dibuat copernicus lebih sederhana dibandingkan dengan sistem ptolomeus, tetapi tetap rumit dibandingkan dengan sistem Kepler (1571-1630). Copernicus menjelaskan gerakan benda-benda langit dengan menggunakan tiga puluh empat lingkaran, sementara itu kepler hanya menggunakan tujuh elips. Seperti dikatakan oleh kepler, copernicus tidak menyadari akan adanya suatu bangunan yang sangat baik yang ada dalam genggamannya. Copernicus mengetahui bahwa gabungan beberapa lingkaran dapat menghasilkan elips, akan tetapi ia tidak pernah menggunakan elips untuk menggambarkan benda-benda langit. Lagipula, pada tahap-tahap awal, copernicus sangat Created by : Giri Wiarto menghargai hasil observasi bangsa kuno. Copernicus menentang werner yang menyatakan bahwa hasil-hasil pengamatan terakhir lebih cocok dengan sistem ptolemous daripada dengan sistem copernicus. Kenyataannya memang tiga kali lebih tepat. Pengamatan paling penting dalam bidang astronomi modern adalah yang dilakukan oleh Ticho Brahe. Hasil pengamatan Ticho Brahe limapuluh kali lebih tepat dari hasil muller, hasil terbaik yang dapat dilakukan dengan mata telanjang. Tycho Brahe adalah orang Denmark terhormat. Raja Frederick II dari Denmark memberi tempat tinggal dan pulau Hveen untuk melakukan kegiatan astronominya. Di pulau itu Tycho Brahe membangun kastil, bengkel, percetakan pribadi, dan observatorium. Ia bekerja di pulau itu dari tahun 1576 sampai 1597. Ia berpendapat bahwa adalah tidak mungkin melakukan pengamatan tanpa panduan suatu teori. Ia menganut pendangan geosentris. Ketika raja Frederick II wafat, fasilitas yang diterima Tycho Brahe tidak diperpanjang, kemudian Ticho Brahe pergi ke Praha pada tahun 1599, di mana ia mendapat tunjangan dari raja Rudolph II. Tahun-tahun berikutnya ia bergabung dengan astronom jerman, Johann Kepler, seorang matematikawan. Kepler adalah anak seorang tentara wurtemburg. Ia mempelajari sistem copernicus di Tubingen. Kerja sama antara Kepler dengan Ticho Brahe tidak berlangsung lama karena Ticho Brahe meninggal dunia. Setelah Ticho Brahe meninggal, Kepler tetap tinggal di Praha. Karya pertama Kepler dalam bidang astronomi berjudul The Mysteri of the Universe yang diterbitkan pada tahun 1596. Di dalam buku itu, ia berusaha mencari suatu keselarasan antara orbit-orbit planet menurut copernicus dengan hasil pengamatan Ticho Brahe. Akan tetapi Kepler tidak berhasil menemukan keselarasan antara sistem-sistem yang dikembangkan oleh Copernicus maupun Ptolemous dengan hasil pengamatan Tycho Brahe. Oleh karena itu ia meninggalkan sistem ptolemous dan Copernicus lalu berusaha mencari sistem baru. Pada tahun 1609, Kepler menemukan ternyata elips sangat cocok dengan hasil pengamatan Ticho Brahe. Kepler tidak lagi menggunakan lingkaran sebagai lintasan benda-benda langit melainkan elips. HUKUM KEPLER Karya Kepler sebagian dihasilkan dari data-data hasil pengamatan yang dikumpulkan Ticho Brahe mengenai posisi planet-planet dalam geraknya di luar angkasa. Hukum ini telah dicetuskan Kepler setengah abad sebelum Newton mengajukan ketiga Hukum-nya tentang gerak dan hukum gravitasi universal. Di antara hasil karya Kepler, terdapat tiga penemuan yang sekarang kita kenal sebagai Hukum Kepler mengenai gerak planet. Hukum I Kepler Lintasan setiap planet ketika mengelilingi matahari berbentuk elips, di mana matahari terletak pada salah satu fokusnya. Created by : Giri Wiarto Kepler tidak mengetahui alasan mengapa planet bergerak dengan cara demikian. Ketika mulai tertarik dengan gerak planet-planet, Newton menemukan bahwa ternyata hukumhukum Kepler ini bisa diturunkan secara matematis dari hukum gravitasi universal dan hukum gerak Newton. Newton juga menunjukkan bahwa di antara kemungkinan yang masuk akal mengenai hukum gravitasi, hanya satu yang berbanding terbalik dengan kuadrat jarak yang konsisten dengan Hukum Kepler. Perhatikan orbit elips yang dijelaskan pada Hukum I Kepler. Dimensi paling panjang pada orbit elips disebut sumbu mayor alias sumbu utama, dengan setengah panjang a. Setengah panjang ini disebut sumbu semiutama alias semimayor (sambil lihat gambar di bawah ya). F1 dan F2 adalah titik Fokus. Matahari berada pada F1 dan planet berada pada P. Tidak ada benda langit lainnya pada F2. Total jarak dari F1 ke P dan F2 ke P sama untuk semua titik dalam kurva elips. Jarak pusat elips (O) dan titik fokus (F1 dan F2) adalah ea, di mana e merupakan angka tak berdimensi yang besarnya berkisar antara 0 sampai 1, disebut juga eksentrisitas. Jika e = 0 maka elips berubah menjadi lingkaran. Kenyataanya, orbit planet berbentuk elips alias mendekati lingkaran. Dengan demikian besar eksentrisitas tidak pernah bernilai nol. Nilai e untuk orbit planet bumi adalah 0,017. Perihelion merupakan titik yang terdekat dengan matahari, sedangkan titik terjauh adalah aphelion. Pada Persamaan Hukum Gravitasi Newton, telah kita pelajari bahwa gaya tarik gravitasi berbanding terbalik dengan kuadrat jarak (1/r2), di mana hal ini hanya bisa terjadi pada orbit yang berbentuk elips atau lingkaran saja. Contoh soal Hukum I Kepler : Created by : Giri Wiarto Komet Halley bergerak sepanjang orbit elips mengitari matahari. Pada perihelion, komet Halley berjarak 8,75 x107 km dari matahari, sedangkan pada aphelion berjarak 5,26 x 109 km dari matahari. Berapakah eksentrisitas dari orbit komet halley Panduan jawaban : Panjang sumbu utama sama dengan total jarak komet ke matahari ketika komet berada di perihelion dan aphelion. Panjang sumbu utama adalah 2a, dengan demikian : Pada Perihelion, jarak komet Halley dengan matahari diperoleh dari (sambil perhatikan gambar di atas) : a – ea = a(1-e) Jarak komet Halley dengan matahari ketika komet Halley berada pada perihelion adalah 8,75 x107 km. Dengan demikian, eksentrisitas komet Halley adalah : Nilai eksentrisitas komet halley mendekati 1. Ini menunjukkan bahwa orbit halley sangat panjang…. Hukum II Kepler Luas daerah yang disapu oleh garis antara matahari dengan planet adalah sama untuk setiap periode waktu yang sama. Created by : Giri Wiarto Hal yang paling utama dalam Hukum II Kepler adalah kecepatan sektor mempunyai harga yang sama pada semua titik sepanjang orbit yang berbentuk elips. Created by : Giri Wiarto Hukum III Kepler Kuadrat waktu yang diperlukan oleh planet untuk menyelesaikan satu kali orbit sebanding dengan pangkat tiga jarak rata-rata planet-planet tersebut dari matahari. Jika T1 dan T2 menyatakan periode dua planet, dan r1 dan r2 menyatakan jarak rata-rata mereka dari matahari, maka Newton menunjukkan bahwa Hukum III Kepler juga bisa diturunkan secara matematis dari Hukum Gravitasi Universal dan Hukum Newton tentang gerak dan gerak melingkar. Sekarang mari kita tinjau Hukum III Kepler menggunakan pendekatan Newton. Terlebih dahulu kita tinjau kasus khusus orbit lingkaran, yang merupakan kasus khusus dari orbit elips. Semoga dirimu belum melupakan Hukum Newton dan pelajaran Gerak Melingkar… Created by : Giri Wiarto Sekarang kita masukan persamaan Hukum Gravitasi Newton dan percepatan sentripetal ke dalam persamaan Hukum II Newton : m1 adalah massa planet, mM adalah massa matahari, r1 adalah jarak rata-rata planet dari matahari, v1 merupakan laju rata-rata planet pada orbitnya. Waktu yang diperlukan sebuah planet untuk menyelesaikan satu orbit adalah T1, di mana jarak tempuhnya sama dengan keliling lingkaran, 2 phi r1. Dengan demikian, besar v1 adalah : Misalnya persamaan 1 kita turunkan untuk planet venus (planet 1). Penurunan persamaan yang sama dapat digunakan untuk planet bumi (planet kedua). Created by : Giri Wiarto T2 dan r2 adalah periode dan jari-jari orbit planet kedua. Sekarang coba anda perhatikan persamaan 1 dan persamaan 2. Perhatikan bahwa ruas kanan kedua persamaan memiliki nilai yang sama. Dengan demikian, jika kedua persamaan ini digabungkan, akan kita peroleh : Persamaan ini adalah Hukum III Kepler… Kita juga bisa menurunkan persamaaan untuk menghitung besarnya periode gerak planet (T) dengan cara lain. Pertama terlebih dahulu kita turunkan untuk kasus gerak melingkar. Sebelumnya kita telah mensubtitusikan persamaan Hukum Gravitasi Newton dan percepatan sentripetal ke dalam persamaan Hukum II Newton : Pada pembahasan mengenai gerak melingkar beraturan, kita mempelajari bahwa laju v adalah perbandingan jarak tempuh dalam satu kali putaran (2phir) dengan periode (waktu yang dibutuhkan untuk melakukan satu kali putaran), yang secara matematis dirumuskan sebagai berikut : Created by : Giri Wiarto Pada persamaan ini tampak bahwa periode dalam orbit lingkaran sebanding dengan pangkat 3/2 dari jari-jari orbit. Newton menunjukkan bahwa hubungan ini juga berlaku untuk orbit elips, di mana jari-jari orbit lingkaran (r) diganti dengan setengah sumbu utama a Dibaca secara perlahan-lahan sambil direnungkan Created by : Giri Wiarto DATA ASTRONOMI Hukum Newton Tentang Gravitasi Pada pembahasan mengenai pokok bahasan kinematika (gerak lurus dan gerak bengkok, kita telah menyinggung mengenai Gravitasi. Pada kesempatan ini, kita akan mempelajari Gravitasi secara lebih mendalam. Mengapa buah mangga yang lezat dan bergizi yang terlepas dari tangkainya selalu jatuh ke permukaan bumi ? ayo dijawab… Selain mengembangkan tiga hukum tentang Gerak (Hukum I Newton, Hukum II Newton dan Hukum III Newton), eyang Newton juga menyelidiki gerakan planet-planet dan bulan. Ia selalu bertanya mengapa bulan selalu berada dalam orbitnya yang hampir berupa lingkaran ketika mengitari bumi. Selain itu, ia juga selalu mempersoalkan mengapa benda-benda selalu jatuh menuju permukaan bumi. Wililiam Stukeley, teman eyang Newton ketika masih muda, menulis bahwa ketika mereka sedang duduk minum teh di bawah pohoh apel, eyang Newton yang waktu itu masih muda dan cakep, melihat sebuah apel jatuh dari pohonnya. Dikatakan bahwa eyang Newton mendapat ilham dari jatuhnya buah apel. Menurutnya, jika gravitasi bekerja di puncak pohon apel, bahkan di puncak gunung, maka mungkin saja gravitasi bekerja sampai ke bulan. Dengan penalaran bahwa gravitasi bumi yang menahan bulan pada orbitnya, eyang Newton mengembangkan teori gravitasi yang sekarang diwariskan kepada kita. Created by : Giri Wiarto Perlu diketahui bahwa persoalan yang dipikirkan eyang Newton ini telah ada sejak zaman yunani kuno. Ada dua persoalan dasar yang telah diselidiki oleh orang yunani, jauh sebelum eyang Newton lahir. Persoalan yang selalu dipertanyakan adalah mengapa benda-benda selalu jatuh ke permukaan bumi dan bagaimana gerakan planet-planet, termasuk matahari dan bulan (matahari dan bulan pada waktu itu digolongkan menjadi planet-planet). Orang-orang Yunani pada waktu itu melihat kedua persoalan di atas (benda yang jatuh dan gerakan planet) sebagai dua hal yang berbeda. Demikian hal itu berlanjut hingga zaman eyang Newton. Jadi apa yang dihasilkan oleh eyang dibangun di atas hasil karya orang-orang sebelum dirinya. Yang membedakan eyang Newton dan orang-orang sebelumnya adalah bahwa eyang memandang kedua persoalan dasar di atas (gerak jatuh benda dan gerakan planet) disebabkan oleh satu hal saja dan pasti mematuhi hukum yang sama. Pada abad ke-17, eyang menemukan bahwa ada interaksi yang sama yang menjadi penyebab jatuhnya buah apel dari pohon dan membuat planet tetap berada pada orbitnya ketika mengelilingi matahari. Demikian juga bulan, satu-satunya satelit alam kesayangan bumi tetap berada pada orbitnya. Mari kita belajar hukum dasar cetusan eyang Newton yang kini diwariskan kepada kita. Hukum dasar inilah yang menentukan interaksi gravitasi. Ingat bahwa hukum ini bersifat universal alias umum; gravitasi bekerja dengan cara yang sama, baik antara diri kita dengan bumi, antara bumi dengan buah mangga yang lezat ketika jatuh, antara bumi dengan pesawat yang jatuh , antara planet dengan satelit dan antara matahari dengan planet-planetnya dalam sistem tatasurya. Oya lupa…. Tahukah anda, bahkan gagasan eyang Newton mengenai gravitasi pada mulanya dibantai habisan-habisan oleh banyak ilmuwan yang bertentangan dengan gagasannya ? Pada waktu itu, banyak ilmuwan yang mungkin saking kebingungan sulit menerima gagasan eyang Newton mengenai gaya gravitasi. Gaya gravitasi termasuk gaya tak sentuh, di mana bekerja antara dua benda yang berjauhan alias tidak ada kontak antara benda-benda tersebut. Gaya-gaya yang umumnya dikenal adalah gaya-gaya yang bekerja karena adanya kontak; gerobak sampah bergerak karena kita memberikan gaya dorong, bola bergerak karena ditendang, sedangkan gravitasi, bisa bekerja tanpa sentuhan ? aneh… eyang Newton mengatakan kepada mereka bahwa ketika apel jatuh, bumi memberikan gaya kepadanya sehingga apel tersebut jatuh, demikian juga bumi mempertahankan bulan tetap pada orbitnya dengan gaya gravitasi, meskipun tidak ada kontak dan letak bumi dan bulan berjauhan. Akhirnya, perlahan-lahan sambil bersungut-sungut mereka mulai merestui dan mendukung dengan penuh semangat Hukum Gravitasi yang dicetuskan oleh Eyang Newton HUKUM GRAVITASI NEWTON Sebelum mencetuskan Hukum Gravitasi Universal, eyang Newton telah melakukan perhitungan untuk menentukan besar gaya gravitasi yang diberikan bumi pada bulan sebagaimana besar gaya gravitasi bumi yang bekerja pada benda-benda di permukaan Created by : Giri Wiarto bumi. Sebagaimana yang kita ketahui, besar percepatan gravitasi di bumi adalah 9,8 m/s 2. Jika gaya gravitasi bumi mempercepat benda di bumi dengan percepatan 9,8 m/s2, berapakah percepatan di bulan ? karena bulan bergerak melingkar beraturan (gerakan melingkar bulan hampir beraturan), maka percepatan sentripetal bulan dihitung menggunakan rumus percepatan sentripetal Gerak melingkar beraturan. Diketahui orbit bulan yang hampir bulat mempunyai jari-jari sekitar 384.000 km dan periode (waktu yang dibutuhkan untuk melakukan satu putaran) adalah 27,3 hari. Dengan demikian, percepatan bulan terhadap bumi adalah Jadi percepatan gravitasi bulan terhadap bumi 3600 kali lebih kecil dibandingkan dengan percepatan gravitasi bumi terhadap benda-benda di permukaan bumi. Bulan berjarak 384.000 km dari bumi. Jarak bulan dengan bumi ini sama dengan 60 kali jari-jari bumi (jari-jari bumi = 6380 km). Jika jarak bulan dari bumi (60 kali jari-jari bumi) dikuadratkan, maka hasilnya sama dengan 3600 (60 x 60 = 602 = 3600). Angka 3600 yang diperoleh dengan mengkuadratkan 60 hasilnya sama dengan Percepatan bulan terhadap bumi, sebagaimana hasil yang diperoleh melalui perhitungan. Berdasarkan perhitungan ini, eyang newton menyimpulkan bahwa besar gaya gravitasi yang diberikan oleh bumi pada setiap benda semakin berkurang terhadap kuadrat jaraknya (r) dari pusat bumi. Secara matematis dapat ditulis sebagai berikut : Selain faktor jarak, Eyang Newton juga menyadari bahwa gaya gravitasi juga bergantung pada massa benda. Pada Hukum III Newton kita belajar bahwa jika ada gaya aksi maka ada gaya reaksi. Ketika bumi memberikan gaya aksi berupa gaya gravitasi kepada benda lain, maka benda tersebut memberikan gaya reaksi yang sama besar tetapi berlawanan Created by : Giri Wiarto arah terhadap bumi. Karena besarnya gaya aksi dan reaksi sama, maka besar gaya gravitasi juga harus sebanding dengan massa dua benda yang berinteraksi. Berdasarkan penalaran ini, eyang Newton menyatakan hubungan antara massa dan gaya gravitasi. Secara matematis ditulis sbb : MB adalah massa bumi, Mb adalah massa benda lain dan r adalah jarak antara pusat bumi dan pusat benda lain. Setelah membuat penalaran mengenai hubungan antara besar gaya gravitasi dengan massa dan jarak, eyang Newton membuat penalaran baru berkaitan dengan gerakan planet yang selalu berada pada orbitnya ketika mengitari matahari. Eyang menyatakan bahwa jika planet-planet selalu berada pada orbitnya, maka pasti ada gaya gravitasi yang bekerja antara matahari dan planet serta gaya gravitasi antara planet, sehingga benda langit tersebut tetap berada pada orbitnya masing-masing. Luar biasa pemikiran eyang Newton ini. Tidak puas dengan penalarannya di atas, ia menyatakan bahwa jika gaya gravitasi bekerja antara bumi dan benda-benda di permukaan bumi, serta antara matahari dan planet-planet maka mengapa gaya gravitasi tidak bekerja pada semua benda ? Akhirnya, setelah bertele-tele dan terseok-seok, kita tiba pada inti pembahasan panjang lebar ini. Eyang Newton pun mencetuskan Hukum Gravitasi Universal dan mengumumkannya pada tahun 1687, hukum yang sangat terkenal dan berlaku baik di indonesia, amerika atau afrika bahkan di seluruh penjuru alam semesta. Hukum gravitasi Universal itu berbunyi demikian : Semua benda di alam semesta menarik semua benda lain dengan gaya sebanding dengan hasil kali massa benda-benda tersebut dan berbanding terbalik dengan kuadrat jarak antara benda-benda tersebut. Secara matematis, besar gaya gravitasi antara partikel dapat ditulis sbb : Fg adalah besar gaya gravitasi pada salah satu partikel, m1 dan m2 adalah massa kedua partikel, r adalah jarak antara kedua partikel. G adalah konstanta universal yang diperoleh dari hasil pengukuran secara eksperimen. 100 tahun setelah eyang Newton mencetuskan hukum Gravitasi Universal, pada tahun 1978, Henry Cavendish berhasil mengukur gaya yang sangat kecil antara dua benda, mirip seperti dua bola. Melalui pengukuran tersebut, Henry membuktikan dengan sangat tepat persamaan Hukum Gravitasi Universal di atas. Perbaikan penting dibuat oleh Created by : Giri Wiarto Poyting dan Boys pada abad kesembilan belas. Nilai G yang diakui sekarang = 6,67 x 1011 Nm2/kg2 Contoh soal 1 : Seorang guru fisika sedang duduk di depan kelas dan seorang murid sedang duduk di bagian belakang ruangan kelas. Massa guru tersebut adalah 60 kg dan massa siswa 70 kg (siswa gendut). Jika pusat mereka (yang dimakudkan di sini bukan pusat yang terletak di depan perut manusia) berjarak 10 meter, berapa besar gaya gravitasi yang diberikan oleh guru dan murid satu sama lain ? Panduan jawaban : Gampang, tinggal dimasukkan aja nilai-nilai telah diketahui ke dalam persamaan Hukum Newton tentang Gravitasi Ya, gayanya sangat kecil… Contoh soal 2 : Diketahui massa bulan 7,35 x 1022 kg, massa bumi 5,98 x 1024 kg dan massa matahari adalah 1,99 x 1030 kg. Hitunglah gaya total di bulan yang disebabkan oleh gaya gravitasi bumi dan matahari. Anggap saja posisi bulan, bumi dan matahari membentuk segitiga siku-siku. Oya, jarak bumi-bulan 3,84 x 108 m dan jarak matahari-bulan 1,50 x 108 km (1,50 x 1011 m). Created by : Giri Wiarto Keterangan Gambar : b = bulan, B = bumi dan M = matahari Panduan jawaban : Gaya total yang bekerja pada bulan akibat gravitasi matahari dan bumi kita hitung menggunakan vektor. Sebelumnya, terlebih dahulu kita hitung besar gaya gravitasi antara bumi-bulan dan matahari-bulan. Besar gaya gravitasi antara bumi-bulan : Besar gaya gravitasi antara matahari-bulan. Created by : Giri Wiarto Besar gaya total yang dialami bulan dapat dihitung sebagai berikut : Gaya total yang dimaksud di sini tidak sama dengan gaya total pada Hukum II Newton. Hukum gravitasi berbeda dengan Hukum II Newton. Hukum Gravitasi menjelaskan gaya gravitasi dan besarnya yang selalu berbeda tergantung dari jarak dan massa benda yang terlibat. Hukum II Newton menghubungkan gaya total yang bekerja pada sebuah benda dengan massa dan percepatan benda tersebut. Dipahami ya perbedaannya…. Kuat Medan Gravitasi dan Percepatan Gravitasi Pada pembahasan mengenai Hukum Newton tentang Gravitasi, kita telah meninjau gaya gravitasi sebagai interaksi gaya antara dua atau lebih partikel bermassa. Partikel-partikel tersebut dapat saling berinteraksi walaupun tidak bersentuhan. Pandangan lain mengenai gravitasi adalah konsep medan, di mana sebuah benda bermassa mengubah ruang di sekitarnya dan menimbulkan medan gravitasi. Medan ini bekerja pada semua partikel bermassa yang berada di dalam medan tersebut dengan menimbulkan gaya tarik gravitasi. Jika sebuah benda berada di dekat bumi, maka terdapat sebuah gaya yang dikerjakan pada benda tersebut. Gaya ini mempunyai besar dan arah di setiap titik pada ruang di sekitar bumi. Arahnya menuju pusat bumi dan besarnya adalah mg. Jadi jika sebuah benda terletak di setiap titik di dekat bumi, maka pada benda tersebut bekerja sebuah vektor g yang sama dengan percepatan yang akan dialami apabila benda itu dilepaskan. Vektor g tersebut dinamakan kekuatan medan gravitasi. Secara matematis, besar g dinyatakan sebagai berikut : Berdasarkan persamaan di atas, kita dapat mengatakan bahwa kekuatan medan gravitasi di setiap titik merupakan gaya gravitasi yang bekerja pada setiap satuan massa di titik tersebut. Gravitasi di Sekitar Permukaan Bumi Created by : Giri Wiarto Pada awal tulisan ini, kita telah mempelajari Hukum gravitasi Newton dan menurunkan persamaan gravitasi Universal. Sekarang kita mencoba menerapkannya pada gaya gravitasi antara bumi dan benda-benda yang terletak di permukaannya. Kita tulis kembali persamaan gravitasi universal untuk membantu kita dalam menganalisis : Untuk persoalan gravitasi yang bekerja antara bumi dan benda-benda yang terletak di permukaan bumi, m1 pada persamaan di atas adalah massa bumi (mB), m2 adalah massa benda (m), dan r adalah jarak benda dari permukaan bumi, yang merupakan jari-jari bumi (rB). Gaya gravitasi yang bekerja pada bumi merupakan berat benda, mg. Dengan demikian, persamaan di atas kita ubah menjadi : Berdasarkan persamaan ini, dapat diketahui bahwa percepatan gravitasi pada permukaan bumi alias g ditentukan oleh massa bumi (mB) dan jari-jari bumi (rB) G dan g merupkan dua hal yang berbeda. g adalah percepatan gravitasi, sedangkan G adalah konstanta universal yang diperoleh dari hasil pengukuran. Setelah G ditemukan, manusia baru bisa mengetahui massa bumi lewat perhitungan menggunakan persamaan ini. Hal ini bisa dilakukan karena telah diketahui konstanta universal, percepatan gravitasi dan jari-jari bumi. Ini adalah persamaan percepatan gravitasi efektiv. Jika ditanyakan percepatan gravitasi pada ketinggian tertentu di dekat permukaan bumi, maka kita dapat menggunakan persamaan ini. Jika kita menghitung berat benda yang terletak di permukaan bumi, kita menggunakan mg. Hukum III Newton (Aksi – Reaksi) Pengantar Pernahkah anda menendang batu ? belum… pernahkah dirimu menendang dirinya ? Pernakah anda menendang atau memukul alias meninju sesuatu ? jika pernah, apa yang Created by : Giri Wiarto anda rasakan ? sakit… bisakah dirimu menjelaskan mengapa tangan atau kaki terasa sakit ? Apabila anda tidak bisa menjelaskannya, pelajarilah Hukum III Newton dengan penuh semangat Hukum III Newton Pada Hukum II Newton, kita belajar bahwa gaya-gaya mempengaruhi gerakan benda. Dari manakah gaya tersebut datang ? dalam kehidupan sehari-hari, kita mengamati bahwa gaya yang diberikan kepada sebuah benda, selalu berasal dari benda lain. gerobak bergerak karena kita yang mendorong, paku dapat tertanam karena dipukul dengan martil, buah mangga yang lezat jatuh karena ditarik oleh gravitasi bumi, demikian juga benda yang terbuat dari besi ditarik oleh magnet. Apakah semua benda bergerak karena diberikan gaya oleh benda lain ? Eyang Newton mengatakan bahwa kenyataan dalam kehidupan sehari-hari tidak semuanya seperti itu. Ketika sebuah benda memberikan gaya kepada benda lain maka benda kedua tersebut membalas dengan memberikan gaya kepada benda pertama, di mana gaya yang diberikan sama besar tetapi berlawanan arah. Jadi gaya yang bekerja pada sebuah benda merupakan hasil interaksi dengan benda lain. Anda dapat melakukan percobaan untuk membuktikan hal ini. Tendanglah batu atau tembok dengan keras, maka kaki anda akan terasa sakit (jangan dilakukan). Mengapa kaki terasa sakit ? hal ini disebabkan karena ketika kita menendang tembok atau batu, tembok atau batu membalas memberikan gaya kepada kaki kita, di mana besar gaya tersebut sama, hanya berlawanan arah. Gaya yang kita berikan arahnya menuju batu atau tembok, sedangkan gaya yang diberikan oleh batu atau tembok arahnya menuju kaki kita. Ketika kita menendang bola, gaya yang kita berikan tersebut menggerakan bola. Pada saat yang sama, kita merasa gaya dari bola menekan kaki kita. Jika anda punya skate board, lakukanlah percobaan berikut ini sehingga semakin menambah pemahaman anda. letakan papan luncur alias skate board di dekat sebuah tembok. Berdirilah di atas skate board (papan luncur) tersebut dan doronglah tembok dihadapan anda. Apa yang anda alami ? skate board tersebut meluncur ke belakang. Aneh khan ? padahal anda tidak mendorong skate board ke belakang. Skate board meluncur ke belakang karena tembok yang anda dorong membalas memberikan gaya dorong kepada anda, di mana arah gaya yang diberikan tembok berlawanan arah dengan arah dorongan anda. anda mendorong tembok ke depan, sedangkan tembok mendorong anda ke belakang sehingga skate board kesayangan anda meluncur ke belakang. Jika anda tinggal di tepi pantai dan termasuk anak pantai, lakukanlah percobaan dengan menaiki perahu dan melemparkan sesuatu, entah batu atau benda lain ke luar dari perahu. Lakukanlah hal ini ketika perahu sedang diam. Amati bahwa perahu akan bergerak ke belakang jika anda melempar ke depan, dan sebaliknya. Serius… diriku pernah mencobanya. Nah, semua penjelasan panjang lebar ini adalah inti Hukum III Newton. Apabila sebuah benda memberikan gaya kepada benda lain, maka benda kedua memberikan gaya kepada benda yang pertama. Kedua gaya tersebut memiliki besar yang sama tetapi berlawanan arah. Created by : Giri Wiarto Secara matematis Hukum III Newton dapat ditulis sebagai berikut : F A ke B = – F B ke A F A ke B adalah gaya yang diberikan oleh benda A kepada benda B, sedangkan F B ke A adalah gaya yang yang diberikan benda B kepada benda A. Misalnya ketika anda menendang sebuah batu, maka gaya yang anda berikan adalah F A ke B, dan gaya ini bekerja pada batu. Gaya yang diberikan oleh batu kepada kaki anda adalah – F B ke A. Tanda negatif menunjukkan bahwa arah gaya reaksi tersebut berlawanan dengan gaya aksi yang anda berikan. Jika anda menggambar tanda panah yang melambangkan interaksi kedua gaya ini, maka gaya F A ke B digambar pada batu, sedangkan gaya yang diberikan batu kepada kaki anda, – F B ke A, digambarkan pada kaki anda. Persamaan Hukum III Newton di atas juga bisa kita tulis sebagai berikut : Faksi = -Freaksi Hukum warisan eyang Newton ini dikenal dengan julukan hukum aksi-reaksi. Ada aksi maka ada reaksi, yang besarnya sama dan berlawanan arah. Kadang-kadang kedua gaya tersebut disebut pasangan aksi-reaksi. Ingat bahwa kedua gaya tersebut (gaya aksigaya reaksi) bekerja pada benda yang berbeda. Berbeda dengan Hukum I Newton dan Hukum II Newton yang menjelaskan gaya yang bekerja pada benda yang sama. Gaya aksi dan reaksi adalah gaya kontak yang terjadi ketika kedua benda bersentuhan. Walaupun demikian, Hukum III Newton juga berlaku untuk gaya tak sentuh, seperti gaya gravitasi yang menarik buah mangga kesayangan anda. Ketika kita menjatuhkan batu, misalnya, antara bumi dan batu saling dipercepat satu dengan lain. batu bergerak menuju ke permukaan bumi, bumi juga bergerak menuju batu. Gaya total yang bekerja pada bumi dan batu besarnya sama. Bumi bergerak ke arah batu yang jatuh ? masa sich… karena massa bumi sangat besar maka percepatan yang dialami bumi sangat kecil (Ingat hubungan antara massa dan percepatan pada persamaan hukum II Newton). Walaupun secara makroskopis tidak tampak, tetapi bumi juga bergerak menuju batu atau benda yang jatuh akibat gravitasi. Bumi menarik batu, batu juga membalas gaya tarik bumi, di mana besar gaya tersebut sama namun arahnya berlawanan. Hukum III Newton dalam Kehidupan Sehari-hari Konsep Hukum III Newton sebenarnya sering kita alami dalam kehidupan sehari-hari, walau kadang tidak kita sadari. Hal apa saja dalam kehidupan sehari-hari yang menggunakan konsep Hukum III Newton ? Hukum III Newton berlaku ketika kita berjalan atau berlari Ketika berjalan, telapak kaki kita memberikan gaya aksi dengan mendorong permukaan tanah atau lantai ke belakang. Permukaan tanah atau lantai memberikan gaya reaksi kepada kita dengan mendorong telapak kaki kita ke depan, sehingga kita berjalan ke Created by : Giri Wiarto depan. Ketika berjalan mundur, telapak kaki kita mendorong permukaan tanah atau lantai ke depan. Sebagai reaksi, permukaan tanah atau lantai mendorong telapak kaki kita ke belakang sehingga kita bisa berjalan mundur. Besarnya gaya aksi dan reaksi sama, tetapi arahnya berlawanan. Telapak kaki kita mendorong lantai ke belakang, lantai mendorong telapak kaki kita ke depan. Ketika kita berjalan lambat, gaya yang kita berikan kecil, sehingga gaya reaksi yang diberikan oleh lantai juga kecil, akibatnya kita berjalan pelan. Pada saat kita berjalan cepat, telapak kaki kita menekan lantai lebih kuat, akibatnya gaya reaksi yang diberikan lantai juga besar sehingga kita didorong dengan kuat ke depan. Dirimu dapat melakukan percobaan ini untuk membuktikannya. Ketika kita berlari, gaya aksi berupa dorongan yang diberikan oleh telapak kaki kita kepada permukaan tanah sangat besar sehingga gaya reaksi yang diberikan oleh permukaan tanah kepada telapak kaki kita juga sangat besar. Akibatnya kita bisa berlari dengan kencang. Jadi besarnya gaya reaksi yang diberikan oleh permukaan tanah atau lantai kepada telapak kaki kita sebanding alias sama besar dengan gaya aksi yang kita berikan dan arahnya berlawanan. Hukum III Newton berlaku ketika kita berenang Apakah dirimu bisa berenang ? kalo belum bisa, ayo belajar berenang… gampang kok. Kaya belajar naik sepeda atau motor, awalnya memang agak sulit tapi kalo sering latihan ntar juga mahir, asyik lagi.. Ketika kita berenang, kaki dan tangan kita mendorong air ke belakang. Sebagai reaksi, air mendorong kaki dan tangan kita ke depan, sehingga kita berenang ke depan. Hukum III Newton berlaku pada pistol atau senapan yang ditembakan Ketika sebuah peluru ditembakan, pistol atau senapan memberikan gaya aksi kepada peluru dengan mendorong peluru ke depan. Karena mendapat gaya aksi maka peluru tersebut mendorong pistol atau senapan ke belakang. Akibatnya, para penembak merasa tersentak ke belakang akibat dorongan tersebut. Seandainya dirimu bercita-cita menjadi polisi atau tentara maka suatu saat nanti bisa melakukan percobaan untuk membuktikannya. Kalau terbukti, ingat eyang Newton sama GuruMuda ya Hukum III Newton berlaku pada Balon Udara yang bergerak Pernahkah dirimu melihat dan memegang balon ? ya pernah-lah… saking gemes, balon-balon dipecahin semua Hukum III Newton juga berlaku pada balon udara yang bergerak ? balon udara bergerak ? maksudnya bagaimanakah…. Yang dimaksudkan di sini bukan balon udara yang bergerak karena ditiup angin, tapi karena di Created by : Giri Wiarto dorong oleh udara yang ada di dalam balon. Bertambah bingung-kah ? lakukan percobaan berikut ini sehingga menambah pemahamanmu. Beli sebuah balon di warung terdekat (murah kok, lagian cuma satu). Tiuplah balon sampai balon mengembung; jangan lupa jepit mulut balon dengan jarimu agar udara tidak keluar. Nah, silahkan lepas jepitan tanganmu pada mulut balon. Apa yang terjadi ? balon tersebut bergerak khan ? jika posisi balon tegak, di mana mulut balon berada di bawah, maka balon akan meluncur ke atas. Balon bergerak ke atas karena balon memberikan gaya aksi dengan mendorong udara ke bawah (udara keluar lewat mulut balon). Udara yang keluar lewat mulut balon memberikan gaya reaksi dengan mendorong balon ke atas, sehingga balon bergerak ke atas. Apabila posisi balon dibalik, di mana mulut balon berada di atas, maka balon akan bergerak ke bawah. Besar gaya aksi dan reaksi sama, hanya berlawanan arah. Balon mendorong udara ke bawah, udara mendorong balon ke atas. Atau sebaliknya balon mendorong udara ke atas, udara mendorong balon ke bawah. Semakin banyak udara yang ditiupkan ke dalam balon, maka balon bergerak makin cepat ketika mulut balon tersebut dibuka. Hal ini disebabkan karena balon mendorong lebih banyak udara keluar, sehingga udara yang didorong tersebut memberikan reaksi dengan mendorong balon. Semakin banyak udara yang ada di dalam balon, semakin lama dan jauh balon bergerak; semakin sedikit udara dalam balon, semakin pelan balon bergerak. Jadi besar gaya aksi sama dengan besar gaya reaksi, hanya arahnya berlawanan. Hukum III Newton berlaku pada Ikan Gurita yang bergerak dalam air. Pernahkah dirimu menikmati lezatnya ikan gurita ? enak banget, manyus… ga ada tulang lagi, wah pokoknya sedap. Awas air liurmu tiris ikan gurita ga punya sirip… lalu bagaimana-kah ia berenang ? Hukum III Newton lagi… Hukum III Newton lagi… eyang newton menguasai darat, udara dan laut. Ikan newton, eh ikan gurita bergerak ke depan dengan menyemprotkan air ke belakang (gaya aksi); air yang disemprotkan tersebut mendorong ikan gurita ke depan (gaya reaksi), sehingga ikan gurita bisa berenang bebas di dalam air laut. Peluncuran Roket menggunakan konsep Hukum III Newton Created by : Giri Wiarto Bagaimanakah prinsip kerja roket yang diluncurkan ke luar angkasa ? di luar angkasa tidak udara, tapi mengapa roket bisa bergerak ? helikopter atau pesawat terbang bisa bergerak di udara karena terdapat baling-baling yang menggerakan udara, sedangkan roket bisa bergerak di luar angkasa (ruang hampa udara ?) kok bisa ya…. Bagaimanakah dirimu menjelaskannya ? Konsep dasar peluncuran roket sama dengan percobaan balon yang meluncur ke atas. Roket memberikan gaya aksi yang sangat besar kepada gas dengan mendorong gas keluar dan gas tersebut memberikan gaya reaksi yang sama besar, dengan mendorong roket ke atas. Gaya dorong yang diberikan gas kepada roket sama besar dengan gaya yang diberikan roket kepada gas, hanya arahnya berlawanan. Roket mendorong gas ke bawah, gas mendorong roket ke atas. Bagaimanakah dengan pesawat jet ? pesawat jet juga menggunakan konsep hukum III Newton. Mesin pesawat jet memberikan gaya aksi dengan menyemburkan gas keluar lewat belakang pesawat, dan gas tersebut memberikan gaya reaksi dengan mendorong pesawat jet ke depan. Gaya dorong yang dilakukan oleh mesin pesawat jet terhadap gas sangat besar sehingga gas juga mendorong pesawat jet dengan gaya yang sangat besar. Mesin pesawat jet mendorong gas ke belakang, gas mendorong pesawat jet ke depan. Jadi arah gaya berlawanan, tapi besar gaya sama. Pesawat jet bergerak horisontal alias mendatar, sedangkan roket bergerak vertikal alias tegak lurus permukaan bumi. Selesai…. Asyik khan fisika ? dengan fisika, kita bisa menjelaskan banyak hal dalam kehidupan kita… ini baru hukum III Newton lho, belom yang laen… pokoknya seru deh… Oya, baru lupa… Mengapa mobil bergerak ? Mobil bergerak karena mesin menggerakan roda sehingga roda berputar. Karena roda berputar maka mobil atau sepeda motor bergerak. Hmmm, apakah hanya demikian jawabannya ? Penjelasan seperti ini belum cukup, karena jika mobil atau sepeda motor berada di atas permukaan es atau jalan yang sangat licin (tidak ada gesekan), apakah mobil masih bisa bergerak ? paling rodanya muter di tempat. Mobil atau sepeda motor bisa bergerak ke depan karena ada gaya gesekan yang diberikan jalan pada roda. Gaya gesekan ini adalah gaya reaksi terhadap gaya aksi yang diberikan oleh roda terhadap jalan. Semakin cepat roda berputar, maka semakin cepat roda tersebut memberikan gaya aksi kepada jalan, dan jalan juga memberikan gaya reaksi secara cepat kepada roda kendaraan. Ingat bahwa gaya aksi dan reaksi tersebut bekerja sepanjang jalan yang dilewati oleh kendaraan beroda. Apakah gaya aksi dan reaksi antara roda dan jalan tersebut yang membuat mobil bergerak cepat ? bukan… mesin kendaraan yang memutar roda dengan cepat sehingga kendaraan beroda bergerak cepat. Jika mesin memutar roda dengan lambat maka kendaraan beroda akan berjalan lambat. Tetapi ingat bahwa kendaraan beroda bisa bergerak karena terjadi gaya aksi-reaksi antara roda dan jalan sepanjang Created by : Giri Wiarto lintasan kendaraan tersebut. Dirimu bisa memahami penjelasan GuruMuda khaen ? kalo bingun dibaca perlahan-lahan, kalo belum puas bisa diulangi sampai puas dan ngerti… okhe ? Ssttt….kalo lagi nyetir mobil atau motor jangan mikiran gaya aksi-reaksi ya…. ntar aksireaksinya bukan antara roda dan jalan tapi malah antara dirimu dan jalan pisss…. Catatan : Ingat ya, gaya mempengaruhi gerak benda jika diberikan kepada benda tersebut. Gaya yang diberikan oleh sebuah benda tidak mempengaruhi benda tersebut, tetapi mempengaruhi benda lain yang diberi gaya itu. Misalnya, ketika roda memberikan gaya aksi kepada jalan, maka gaya tersebut mempengaruhi jalan, bukan roda sebagai pemberi gaya aksi. Demikian juga ketika jalan memberi gaya reaksi kepada roda, maka gaya tersebut mempengaruhi roda; tidak mempengaruhi jalan. Beda lho… intinya gaya mempengaruhi benda lain yang diberikan gaya. Gaya aksi yang diberikan roda bekerja pada jalan, sedangkan gaya reaksi yang diberikan jalan, bekerja pada roda. Sekian dan semoga bermanfaat… Hukum II Newton Pengantar Dalam Hukum I Newton, kita telah belajar bahwa jika tidak ada gaya total yang bekerja pada sebuah benda, maka benda tersebut akan tetap diam, atau jika benda tersebut sedang bergerak maka benda tersebut tetap bergerak dengan laju tetap pada lintasan lurus. Apa yang terjadi jika gaya total tidak sama dengan nol ? Sebelum menjawab pertanyaan tersebut, apakah anda sudah memahami pengertian gaya total ? Jika belum, silahkan pahami penjelasan gurumuda berikut ini. Selamat belajar Hukum II Newton, semoga sukses sampai di tempat tujuan semoga Hukum Newton semakin dekat di hati anda Pengertian Gaya Total Seperti apakah gaya total itu ? Misalnya kita mendorong sekeping uang logam di atas meja; setelah bergerak, uang logam yang didorong tersebut berhenti. Ketika kita mendorong uang logam tadi, kita memberikan gaya berupa dorongan sehingga uang logam begerak. Nah, selain gaya dorongan kita, pada logam tersebut bekerja juga gaya gesekan udara dan gaya gesekan antara permukaan bawah uang logam dan permukaan meja, yang arahnya berlawanan dengan arah gaya dorongan kita. Apabila jumlah selisih antara kekuatan dorongan kita (Gaya dorong) dan gaya gesekan (baik gaya gesekan udara maupun gaya gesekan antara permukaan logam dan meja) adalah nol, maka uang Created by : Giri Wiarto logam berhenti bergerak/diam. Jika selisih antara gaya dorong yang kita berikan dengan gaya gesekan tidak nol, maka uang logam tersebut akan tetap bergerak. Selisih antara gaya dorong dan gaya gesekan tersebut dinamakan gaya total. Semoga ilustrasi sederhana ini bisa membantu anda memahami pengertian gaya total. Hukum II Newton Sekarang kita kembali ke pertanyaan awal pada bagian pengantar. Apa yang terjadi jika gaya total yang bekerja pada benda tidak sama dengan nol ? Newton mengatakan bahwa jika pada sebuah benda diberikan gaya total atau dengan kata lain, terdapat gaya total yang bekerja pada sebuah benda, maka benda yang diam akan bergerak, demikian juga benda yang sedang bergerak bertambah kelajuannya. Apabila arah gaya total berlawanan dengan arah gerak benda, maka gaya tersebut akan mengurangi laju gerak benda. Apabila arah gaya total berbeda dengan arah gerak benda maka arah kecepatan benda tersebut berubah dan mungkin besarnya juga berubah. Karena perubahan kecepatan merupakan percepatan maka kita dapat menyimpulkan bahwa gaya total yang bekerja pada benda menyebabkan benda tersebut mengalami percepatan. Arah percepatan tersebut sama dengan arah gaya total. Jika besar gaya total tetap atau tidak berubah, maka besar percepatan yang dialami benda juga tetap alias tidak berubah. Bagaimana hubungan antara Percepatan dan Gaya ? Pernahkah anda mendorong sesuatu ? mungkin motor yang mogok atau gerobak sampah jika belum pernah mendorong sesuatu seumur hidup anda, gurumuda menyarankan agar sebaiknya anda berlatih mendorong. Tapi jangan mendorong mobil orang lain yang sedang diparkir, apalagi mendorong teman anda hingga jatuh. Ok, kembali ke dorong… Bayangkanlah anda mendorong sebuah gerobak sampah yang bau-nya menyengat. Usahakan sampai gerobak tersebut bergerak. Nah, ketika gerobak bergerak, kita dapat mengatakan bahwa terdapat gaya total yang bekerja pada gerobak itu. Silahkan dorong gerobak sampah itu dengan gaya tetap selama 30 detik. Ketika anda mendorong gerobak tersebut dengan gaya tetap selama 30 menit, tampak bahwa gerobak yang tadinya diam, sekarang bergerak dengan laju tertentu, anggap saja 4 km/jam. Sekarang, doronglah gerobak tersebut dengan gaya dua kali lebih besar (gerobaknya didiamin dulu). Apa yang anda amati ? wah, gawat kalau belajar sambil ngelamun… Jika anda mendorong gerobak sampah dengan gaya dua kali lipat, maka gerobak tersebut bergerak dengan laju 4 km/jam dua kali lebih cepat dibandingkan sebelumnya. Percepatan gerak gerobak dua kali lebih besar. Apabila anda mendorong gerobak dengan gaya lima kali lebih besar, maka percepatan gerobak juga bertambah lima kali lipat. Demikian seterusnya. Kita bisa menyimpulkan bahwa percepatan berbanding lurus dengan gaya total yang bekerja pada benda. Seandainya percobaan mendorong gerobak sampah diulangi. Percobaan pertama, kita menggunakan gerobak yang terbuat dari kayu, sedangkan percobaan kedua kita menggunakan gerobak yang terbuat dari besi dan lebih berat. Jika anda mendorong Created by : Giri Wiarto gerobak besi dengan gaya dua kali lipat, apakah gerobak tersebut bergerak dengan laju 4 km/jam dua kali lebih cepat dibandingkan gerobak sebelumnya yang terbuat dari kayu ? Tentu saja tidak karena percepatan juga bergantung pada massa benda. Anda dapat membuktikannya sendiri dengan melakukan percobaan di atas. Jika anda mendorong gerobak sampah yang terbuat dari sampah dengan gaya yang sama ketika anda mendorong gerobak yang terbuat dari kayu, makaakan terlihat bahwa percepatan gerobak besi lebih kecil. Apabila gaya total yang bekerja pada benda tersebut sama, maka makin besar massa benda, makin kecil percepatannya, sebaliknya makin kecil massa benda makin besar percepatannya. Hubungan ini dikemas oleh eyang Newton dalam Hukum-nya yang laris manis di sekolah, yakni Hukum II Newton tentang Gerak : Jika suatu gaya total bekerja pada benda, maka benda akan mengalami percepatan, di mana arah percepatan sama dengan arah gaya total yang bekerja padanya. Vektor gaya total sama dengan massa benda dikalikan dengan percepatan benda. m adalah massa benda dan a adalah (vektor) percepatannya. Jika persamaan di atas ditulis dalam bentuk a = F/m, tampak bahwa percepatan sebuah benda berbanding lurus dengan resultan gaya yang bekerja padanya dan arahnya sejajar dengan gaya tersebut. Tampak juga bahwa percepatan berbanding terbalik dengan massa benda. Jadi apabila tidak ada gaya total alias resultan gaya yang bekerja pada benda maka benda akan diam apabila benda tersebut sedang diam; atau benda tersebut bergerak dengan kecepatan tetap, jika benda sedang bergerak. Ini merupakan bunyi Hukum I Newton. Setiap gaya F merupakan vektor yang memiliki besar dan arah. Persamaan hukum II Newton di atas dapat ditulis dalam bentuk komponen pada koordinat xyz alias koordinat tiga dimensi, antara lain : Created by : Giri Wiarto Satuan massa adalah kilogram, satuan percepatan adalah kilogram meter per sekon kuadrat (kg m/s2). Satuan Gaya dalam Sistem Internasional adalah kg m/s2. Nama lain satuan ini adalah Newton; diberikan untuk menghargai jasa eyang Isaac Newton. Satuansatuan tersebut merupaka satuan Sistem Internasional (SI). Dengan kata lain, satu Newton adalah gaya total yang diperlukan untuk memberikan percepatan sebesar 1 m/s2 kepada massa 1 kg. Hal ini berarti 1 Newton = 1 kg m/s2. Dalam satuan CGS (centimeter, gram, sekon), satuan massa adalah gram (g), gaya adalah dyne. Satu dyne didefinisikan sebagai gaya total yang diperlukan untuk memberi percepatan sebesar 1 cm/s2 untuk benda bermassa 1 gram. Jadi 1 dyne = 1 gr cm/s2. Kedua jenis satuan yang kita bahas di atas adalah satuan Sistem Internasional (SI). Untuk satuan Sistem Inggris (British Sistem), satuan gaya adalah pound (lb). 1 lb = 4,45 N. Satuan massa = slug. Dengan demikian, 1 pound didefinisikan sebagai gaya total yang diperlukan untuk memberi percepatan sebesar 1 ft/s2 kepada benda bermassa 1 slug. Dalam perhitungan, sebaiknya anda menggunakan satuan MKS (meter, kilogram, sekon) SI. Jadi jika diketahui satuan dalam CGS atau sistem British, terlebih dahulu anda konversi. Contoh soal 1 : Berapakah gaya total yang dibutuhkan untuk memberi percepatan sebesar 10 m/s 2 kepada mobil yang bermassa 2000 kg ? Panduan Jawaban : Contoh soal 2 : Dirimu mendorong sebuah kotak bermassa 1 kg yang terletak pada permukaan meja datar tanpa gesekan,dengan gaya sebesar 5 N. berapakah percepatan yang dialami kotak tersebut ? Panduan jawaban : Created by : Giri Wiarto Contoh soal 3 : Mesin sebuah mobil sedan mampu menghasilkan gaya sebesar 10000 N. Massa pengemudi dan mobil tersebut sebesar 1000 kg. Jika gaya gesekan udara dan gaya gesekan antara ban dan permukaan jalan sebesar 500 N, berapakah percepatan mobil tersebut ? Panduan jawaban : Terlebih dahulu kita tuliskan persamaan Hukum II Newton : Ingat bahwa gaya gesekan bekerja berlawanan arah dengan gaya yang menggerakan mobil. Selisih antara kedua gaya tersebut menghasilkan gaya total. Karena yang ditanyakan adalah percepatan mobil maka persamaan di atas kita tulis kembali sbb : Contoh soal 4 : Sebuah gaya yang dikerjakan pada sebuah benda bermassa m1 menghasilkan percepatan 2 m/s2. Gaya yang sama ketika dikerjakan pada sebuah benda bermassa m2 menghasilkan percepatan sebesar 4 m/s2. (a) berapakah nilai perbandingan antara m1 dan m2 (m1/m2) ? (b) berapakah percepatan yang dihasilkan jika m1 dan m2 digabung (m1 + m2) ? Panduan Jawaban : Created by : Giri Wiarto (a) nilai perbandingan antara m1 dan m2 adalah : (b) jika m1 + m2 digabung maka percepatan yang dihasilkan adalah : Kita gantikan nilai m1 dengan 2m2 pada persamaan 1 HUBUNGAN ANTARA GAYA DAN GLBB Created by : Giri Wiarto Kita telah belajar mengenai Gerak Lurus Berubah Beraturan (GLBB) pada pembahasan mengenai Kinematika. Nah, pada pembahasan mengenai kinematika, kita mengabaikan gaya. Sekarang kita analisis Gerak Lurus Berubah Beraturan dan mengaitkannya dengan Gaya sebagai penyebab gerakan benda dan juga sebagai penghambat gerakan benda (gaya gesek). Terdapat tiga persamaan pada GLBB, yakni : Ketiga persamaan tersebut mempunyai komponen percepatan alias a. Dengan demikian, gaya total alias resultan gaya dihubungkan dengan GLBB oleh percepatan. Contoh soal 1 : Sebuah truk gandeng bermassa 3000 kg sedang melaju dengan kelajuan 100 km/jam. berapakah gaya total yang dibutuhkan untuk menghentikan truk tersebut pada jarak 50 meter ? Panduan jawaban : Terlebih dahulu kita tulis persamaan hukum II Newton : Created by : Giri Wiarto Akhirnya a ditemukan. Nah, dengan demikian kita dengan sangat mudah menghitung besar gaya total : Contoh soal 2 : Sebuah mobil bermassa 500 kg dipercepat oleh mesinnya dari keadaan diam hingga bergerak dengan laju 50 m/s dalam waktu 50 s. Apabila gaya gesekan diabaikan, berapakah gaya yang dihasilkan mobil ? Panduan jawaban : Karena yang ditanyakan gaya yang dihasilkan mobil maka terlebih dahulu kita tulis persamaan Hukum II Newton : Nah, perhatikan bahwa kita belum bisa menentukan besarnya gaya karena percepatan belum diketahui. Oleh karena itu kita temukan terlebih dahulu nilai percepatan menggunakan persamaan GLBB. Baca secara saksama soal di atas. Selain massa, apa saja yang diketahui ? Pada mulanya mobil diam, berarti vo = 0. Kecepatan akhir (vt) = 50 m/s dan waktu (t) = 50 s. karena yang diketahui vo, vt dan t maka untuk menentukan percepatan, kita menggunakan persamaan Contoh soal 3 : Created by : Giri Wiarto Sebuah mobil bermassa 500 kg bergerak dengan kelajuan 50 m/s. Jika mobil tersebut direm oleh sopirnya dan berhenti setelah menempuh jarak 100 m, berapakah gaya rem yang bekerja pada mobil tersebut ? Panduan jawaban : Kita tulis terlebih dahulu persamaan hukum II Newton. Nah, untuk menghitung gaya rem, maka kita harus mengetahui perlambatan alias percepatan yang bernilai negatif, yang dialami mobil tersebut. Ingat bahwa mobil tersebut direm ketika bergerak dengan laju 50 m/s. ini adalah kelajuan awal (vo). Karena setelah direm mobil berhenti, maka kelajuan akhir (vt) = 0. Jarak yang ditempuh mobil sejak direm hingga berhenti (s) adalah 100 m. Dengan demikian, karena diketahui vo, vt dan s maka kita menggunakan persamaan di bawah ini : Tanda negatif menunjukkan bahwa arah percepatan berlawanan dengan arah gerak mobil atau dengan kata lain mobil mengalami perlambatan. Kita masukan nila a ke dalam persamaan hukum II Newton untuk menghitung gaya rem Tanda negatif menunjukkan bahwa arah gaya rem berlawanan dengan arah gerak mobil. Jadi arah gaya rem searah dengan arah perlambatan (percepatan yang bernilai negatif) Gaya Gesekan – gaya gesekan Statis dan Kinetis Pengantar Pernahkah anda jatuh terpeleset karena menginjak sesuatu yang licin ? jika belum, silahkan mencoba kita bisa terpeleset ketika menginjakkan kaki pada sesuatu yang licin karena tidak ada gaya gesek yang bekerja. Tanpa gaya gesek, kita tidak akan bisa berjalan, roda sepeda motor atau mobil juga tidak akan bisa berputar, demikian juga Created by : Giri Wiarto pesawat terbang akan selalu tergelincir. Masa sich ? berita di televisi dan surat kabar yang mengatakan bahwa pesawat terbang tergelincir merupakan salah satu bukti, demikian juga ketika anda terpeleset dan jatuh sambil tertawa. Kehidupan kita sehari-hari tidak terlepas dari bantuan gaya gesekan, walaupun terkadang tidak kita sadari. Pada kesempatan ini gurumuda akan membantu anda untuk mengenal lebih jauh Gaya Gesekan. Dalam pembahasan mengenai hukum Newton, kita akan selalu berhubungan dengan gaya gesekan. Oleh karena itu, pahamilah konsep Gaya Gesekan dengan baik sehingga anda bisa memahami Hukum Newton dengan lebih mudah. Selamat belajar, semoga sukses… KONSEP GAYA GESEKAN Gesekan biasanya terjadi di antara dua permukaan benda yang bersentuhan, baik terhadap udara, air atau benda padat. Ketika sebuah benda bergerak di udara, permukaan benda tersebut akan bersentuhan dengan udara sehingga terjadi gesekan antara benda tersebut dengan udara. Demikian juga ketika bergerak di dalam air. Gaya gesekan juga selalu terjadi antara permukaan benda padat yang bersentuhan, sekalipun benda tersebut sangat licin. Permukaan benda yang sangat licin pun sebenarnya sangat kasar dalam skala mikroskopis. Ketika kita mencoba menggerakan sebuah benda, tonjolan-tonjolan miskroskopis ini mengganggu gerak tersebut. Sebagai tambahan, pada tingkat atom (ingat bahwa semua materi tersusun dari atom-atom), sebuah tonjolan pada permukaan menyebabkan atom-atom sangat dekat dengan permukaan lainnya, sehingga gaya-gaya listrik di antara atom dapat membentuk ikatan kimia, sebagai penyatu kecil di antara dua permukaan benda yang bergerak. Ketika sebuah benda bergerak, misalnya ketika kita mendorong sebuah buku pada permukaan meja, gerakan buku tersebut mengalami hambatan dan akhirnya berhenti, karena terjadi gesekan antara permukaan bawah buku dengan permukaan meja serta gesekan antara permukaan buku dengan udara, di mana dalam skala miskropis, hal ini terjadi akibat pembentukan dan pelepasan ikatan tersebut. Jika permukaan suatu benda bergeseran dengan permukaan benda lain, masing-masing benda tersebut melakukan gaya gesekan antara satu dengan yang lain. Gaya gesekan pada benda yang bergerak selalu berlawanan arah dengan arah gerakan benda tersebut. Selain menghambat gerak benda, gesekan dapat menimbulkan aus dan kerusakan. Hal ini dapat kita amati pada mesin kendaraan. Misalnya ketika kita memberikan minyak pelumas pada mesin sepeda motor, sebenarnya kita ingin mengurangi gaya gesekan yang terjadi di dalam mesin. Jika tidak diberi minyak pelumas maka mesin kendaraan kita cepat rusak. Contoh ini merupakan salah satu kerugian yang disebabkan oleh gaya gesek. Kita dapat berjalan karena terdapat gaya gesek antara permukaan sandal atau sepatu dengan permukaan tanah. Jika anda tidak biasa menggunakan alas kaki gaya gesek tersebut bekerja antara permukaan bawah kaki dengan permukaan tanah atau lantai. Alas sepatu atau sandal biasanya kasar / bergerigi alias tidak licin. Para pembuat sepatu dan sandal membuatnya demikian karena mereka sudah mengetahui konsep gaya gesekan. Demikian juga alas sepatu bola yang dipakai oleh pemain sepak bola, yang terdiri dari tonjolan-tonjolan kecil. Apabila alas sepatu atau sandal sangat licin, maka anda akan Created by : Giri Wiarto terpeleset ketika berjalan di atas lantai yang licin atau gaya gesek yang bekerja sangat kecil sehingga akan mempersulit gerakan anda. Ini merupakan contoh gaya gesek yang menguntungkan. Ketika sebuah benda berguling di atas suatu permukaan (misalnya roda kendaraan yang berputar atau bola yang berguling di tanah), gaya gesekan tetap ada walaupun lebih kecil dibandingkan dengan ketika benda tersebut meluncur di atas permukaan benda lain. Gaya gesekan yang bekerja pada benda yang berguling di atas permukaan benda lainnya dikenal dengan gaya gesekan rotasi. Sedangkan gaya gesekan yang bekerja pada permukaan benda yang meluncur di atas permukaan benda lain (misalnya buku yang didorong di atas permukaan meja) disebut sebagai gaya gesekan translasi. Pada kesempatan ini kita hanya membahas gaya gesekan translasi, yaitu gaya gesekan yang bekerja pada benda padat yang meluncur di atas benda padat lainnya. GAYA GESEKAN STATIK DAN KINETIK Lakukanlah percobaan berikut ini untuk menambah pemahaman anda. Letakanlah sebuah balok pada permukaan meja. Ikatlah sebuah neraca pegas (alat untuk mengukur besar gaya) pada sisi depan balok tersebut. Sekarang, tarik pegas perlahan-lahan sambil mengamati perubahan skala pada neraca pegas. Tampak bahwa balok tidak bergerak jika diberikan gaya yang kecil. Balok belum bergerak karena gaya tarik yang kita berikan pada balok diimbangi oleh gaya gesekan antara alas balok dengan permukaan meja. Ketika balok belum bergerak, besarnya gaya gesekan sama dengan gaya tarik yang kita berikan. Jika tarikan kita semakin kuat, terlihat bahwa pada suatu harga tertentu balok mulai bergerak. Pada saat balok mulai bergerak, gaya yang sama menghasilkan gaya dipercepat. Dengan memperkecil kembali gaya tarik tersebut, kita dapat menjaga agar balok bergerak dengan laju tetap; tanpa percepatan. Kita juga bisa mempercepat gerak balok tersebut dengan menambah gaya tarik. Gaya gesekan yang bekerja pada dua permukaan benda yang bersentuhan, ketika benda tersebut belum bergerak disebut gaya gesek statik (lambangnya fs). Gaya gesek statis yang maksimum sama dengan gaya terkecil yang dibutuhkan agar benda mulai bergerak. Ketika benda telah bergerak, gaya gesekan antara dua permukaan biasanya berkurang sehingga diperlukan gaya yang lebih kecil agar benda bergerak dengan laju tetap. Ketika benda telah bergerak, gaya gesekan masih bekerja pada permukaan benda yang bersentuhan tersebut. Gaya gesekan yang bekerja ketika benda bergerak disebut gaya gesekan kinetik (lambangnya fk) (kinetik berasal dari bahasa yunani yang berarti “bergerak”). Ketika sebuah benda bergerak pada permukaan benda lain, gaya gesekan bekerja berlawanan arah terhadap kecepatan benda. Hasil eksperimen menunjukkan bahwa pada permukaan benda yang kering tanpa pelumas, besar gaya gesekan sebanding dengan Gaya Normal. KOOFISIEN GESEKAN STATIK DAN KINETIK Created by : Giri Wiarto Perhatikan bahwa hubungan antara gaya normal dan gaya gesekan pada persamaan di atas hanya untuk besarnya saja. Arah kedua gaya tersebut selalu saling tegak lurus satu dengan yang lain, sebagaimana diperlihatkan pada gambar di bawah ini. Berikut ini keterangan untuk gambar di bawah : fk adalah gaya gesekan kinetik, fs adalah gaya gesekan statik, F adalah gaya tarik, N adalah gaya normal, w adalah gaya berat, m adalah massa, g adalah percepatan gravitasi. Created by : Giri Wiarto Contoh Soal 1 : Sebuah buku berada dalam keadaam diam di atas meja yang permukaannya datar. Koofisien gesekan statik adalah 0,4 dan koofisien gesekan kinetik adalah 0,30. Jika massa buku tersebut adalah 1 kg, berapakah Gaya minimum yang diberikan agar buku itu mulai bergerak ? anggap saja percepatan gravitasi (g) = 10 m/s2 Panduan Jawaban : Terlebih dahulu kita hitung besar Gaya Normal (N). N = w = m g = (1 kg) (10 m/s2) = 10 kg m/s2 = 10 N. Setelah memperoleh besar Gaya Normal, selanjutnya kita hitung besar gaya gesek statis (fs). Besar gaya gesek statis adalah 4 N. Agar buku dapat bergerak, maka gaya tarik minimum yang diberikan harus lebih besar dari 4 Newton (agar benda mulai bergerak maka F > fs) Contoh Soal 2 : Sebuah balok bermassa 10 kg diletakkan pada bidang miring sebagaimana tampak pada gambar di bawah. Jika sudut yang dibentuk antara bidang miring dengan permukaan lantai sebesar 30o dan koofisien gesekan kinetik adalah 0,4, berapakah gaya gesekan kinetis yang bekerja pada permukaan balok dan bidang miring ? Created by : Giri Wiarto Panduan Jawaban Massa, Berat, - Gaya Gravitasi dan gaya normal Pengantar Dalam kehidupan sehari-hari kita sering menggunakan istilah massa dan berat. Ketika mengukur badan kita dengan timbangan, kita selalu menyatakannya dengan berat. Jika ditinjau dari ilmu fisika, yang kita maksudkan sebenarnya massa, bukan berat. Pengertian massa dan berat yang kita gunakan dalam kehidupan sehari-hari sangat berbeda maknanya dalam ilmu fisika. Pada kesempatan ini kita akan belajar tentang massa dan berat. Pembahasan ini diselipkan di awal pembahasan hukum Newton, karena Hukum Newton selalu menggunakan konsep massa dan berat. Oleh karena itu sangat disarankan agar anda mempelajari pembahasan ini terlebih dahulu sebelum mempelajari Hukum Newton. Akhirnya, gurumuda mengucapkan selamat belajar… Semoga setelah mempelajari topik ini anda dapat membedakan pengertian massa dan berat dengan baik dan benar, sehingga membantu anda memahami Hukum Newton dengan mudah. PENGERTIAN MASSA Apa yang anda ketahui tentang massa ? Hukum Newton yang akan kita pelajari nanti menggunakan konsep massa. Eyang Newton menggunakan konsep massa sebagai sinonim jumlah zat. Pandangan mengenai massa benda seperti ini tidak terlalu tepat karena ?jumlah zat’ tidak terdefinisi dengan baik. Dengan kata lain tidak ada cara praktis untuk menghitung partikel-partkel tersebut. Created by : Giri Wiarto Lebih tepatnya, massa merupakan ukuran inersia/kelembaman suatu benda (kemampuan mempertahankan keadaan suatu gerak). Makin besar massa suatu benda, makin sulit mengubah keadaan gerak benda tersebut. Semakin besar massa benda, semakin sulit menggerakannya dari keadaan diam, atau menghentikannya ketika sedang bergerak atau merubah gerakannya keluar dari lintasannya yang lurus. Kita dapat mengatakan bahwa semakin besar massa benda, semakin besar hambatan benda tersebut untuk dipercepat. Konsep ini dengan mudah dapat kita kaitkan dengan kehidupan sehari-hari. Jika kita memukul bola tenis meja dan bola basket dengan gaya yang sama maka tentu saja bola basket akan bergerak lebih lambat/bola basket memiliki percepatan yang lebih kecil dibandingkan denga bola tenis. Demikian juga sebuah truk gandeng yang sedang bergerak lebih sulit dihentikan dibandingkan dengan sebuah taxi. Jika sebuah gaya menghasilkan percepatan yang besar, maka massa benda kecil; jika gaya yang sama menyebabkan percepatan kecil, maka massa benda besar. Satuan Sistem Internasional untuk massa adalah Kilogram (kg). Lambang massa adalah m, yang merupakan inisial dari kata mass (kata massa dalam bahasa inggris). Lambang ini merupakan ketetapan yang dibuat untuk penyeragaman. Bayangkanlah seandainya setelah menamatkan SMA di Indonesia dan anda melanjutkan belajar pada perguruan tinggi di luar negeri maka anda harus menyesuaikan lagi ilmu fisika yang pernah dipelajari di Indonesia, seandainya kita menggunakan lambang lain. Massa merupakan besaran skalar, yakni besaran yang hanya mempunyai nilai/besar saja. PENGERTIAN BERAT Dalam kehidupan sehari-hari kita sering menggunakan istilah massa dan berat secara keliru. Oleh karena itu kita perlu membedakan pengertian massa dan berat secara benar. Massa adalah sifat dari benda itu sendiri, yakni ukuran kelembaman benda tersebut atau “jumlah zat’-nya. Sedangkan berat adalah gaya, gaya gravitasi yang bekerja pada sebuah benda. Untuk melihat perbedaannya, misalnya kita membawa sebuah benda ke bulan. Jika kita tidak akan pernah ke bulan, benda tersebut kita titipkan saja lewat para astronout ketika berada di bulan, berat benda tersebut hanya seperenam dari beratnya di bumi karena gaya gravitasi di bulan enam kali lebih kecil dibandingkan dengan gaya gravitasi di bumi. Tetapi massa benda tersebut tetap sama. Benda tersebut tetap memiliki jumlah zat yang sama dan inersia alias kelembamannya juga sama. Sebuah batu ketika dibawa ke bulan, tetap menjadi batu dengan ukuran yang sama. Yang berbeda adalah berat-nya alias gaya gravitasi yang bekerja pada batu tersebut. Secara matematis, berat di tulis sebagai berikut : w=mg w adalah inisial dari weight (kata berat dalam bahasa Inggris). m adalah lambang massa dan g adalah lambang gaya gravitasi. Jadi secara matematis, w adalah hasil kali antara massa dan gravitasi. massa adalah besaran skalar, sedangkan gravitasi adalah besaran vektor. Perkalian antara skalar (massa) dengan vektor (gravitasi), menghasilkan besaran Created by : Giri Wiarto vektor (Berat). Jika anda kebingungan, silahkan pelajari kembali pembahasan mengenai perkalian antara besaran vektor dan skalar. Dengan demikian Berat termasuk besaran vektor (besaran vektor adalah besaran yang memiliki besar dan arah). Arah Berat sama dengan arah gravitasi, yakni menuju ke pusat bumi alias tegak lurus ke bawah (permukaan tanah). Vektor berat benda selalu digambarkan berarah tegak lurus ke bawah, di manapun posisi benda diletakan, baik pada bidang horisontal, bidang miring, atau pada bidang tegak. Satuan Berat adalah kg m/s2. Dari manakah asal satuan ini ? tolong ingat kembali pelajaran mengenai dimensi besaran. Itu fungsinya kita belajar dimensi (besaran dan satuan) di awal pelajaran fisika. Nama lain satuan Berat adalah Newton. Newton adalah satuan Gaya, dengan demikian secara matematis kita sudah menunjukan bahwa Berat juga termasuk Gaya. Latihan Soal 1 : Berapakah massa dirimu seandainya berat dirimu 400 Newton ? anggap saja gravitasi bernilai 10 m/s2 Latihan Soal 2 : Massa Gurumuda di bumi adalah 50 kg. Berapa berat Gurumuda di bulan seandainya Gurumuda jalan-jalan ke bulan ? anggap saja percepatan gravitasi di bumi 10 m/s2 dan gravitasi di bulan seperenam gravitasi di bumi. GRAVITASI Percepatan gravitasi di permukaan bumi secara rata-rata bernilai 9,8 m/s2. kenyataannya, nilai gravitasi (g) sedikit berubah dari satu titik ke titik lain di permukaan bumi, dari kirakira 9, 78 m/s2 sampai 9,82 m/s2. beberapa faktor yang mempengaruhi hal tersebut antara lain : pertama, bumi kita tidak benar-benar bulat, percepatan gravitasi bergantung pada jaraknya dari pusat bumi (planet); kedua, percepatan gravitasi tergantung dari jaraknya terhadap permukaan bumi. Semakin tinggi sebuah benda dari permukaan bumi, semakin kecil percepatan gravitasi; ketiga, percepatan gravitasi bergantung pada planet tempat benda berada, di mana setiap planet, satelit atau benda angkasa lainnya memiliki gravitasi yang berbeda. Mengapa Gravitasi di permukaan bumi berbeda-beda ? mengapa percepatan gravitasi di setiap planet berbeda ? untuk mengetahui hal ini, anda perlu mengetahui apa sebenarnya gravitasi atau apa yang membuat bumi dan benda angkasa lainnya, termasuk bulan memiliki gravitasi. Mengenai hal ini selengkapnya akan kita pelajari pada pokok bahasan teori relativitas umum eyang Einstein. Pada kesempatan ini Gurumuda ingin menjawab rasa penasaran anda, seandainya anda ingin mengetahui apa itu gravitasi sesungguhnya sehingga setiap benda selalu jatuh ke permukaan bumi. Created by : Giri Wiarto Untuk memudahkan pemahaman anda mengenai gravitasi, bayangkanlah anda dan teman dekat atau pacar anda yang cantik+ merentangkan sebuah kain (sebaiknya kain tersebut terbuat dari karet). Sekarang, letakan sebuah benda, dari ukuran terkecil hingga ukuran besar di atas kain atau lembaran karet tersebut. Apa yang anda amati ? jika yang anda letakan adalah sebuah kelereng, maka lekukan yang terbentuk kecil, tetapi jika anda meletakan sebongkah batu yang berukuran besar maka lekukan pada kain atau lembaran karet tersebut sangat besar. nah, sekarang, letakan sebuah kerikil atau batu kecil pada pinggir kain tersebut. Apa yang anda amati ? kerikil atau batu kecil tersebut akan terperosok alias jatuh menuju pusat lekukan, di mana batu besar yang anda letakan pada kain berada. Setiap benda angkasa yang bermassa (termasuk bumi) selalu membuat lekukan dalam ruang waktu. hal ini yang menyebabkan setiap benda seolah-olah ditarik bumi atau benda angkasa lainnya. Sebenarnya ini disebabkan oleh efek lekukan, sebagaimana ilustrasi kain karet dan batu di atas. Selengkapnya anda pelajari pada pembahasan mengenai Teori Relativitas Umum (kelas XII). Pada pembahasan mengenai Gerak Jatuh Bebas, kita telah belajar bahwa benda-benda yang dijatuhkan dekat permukaan bumi akan jatuh dengan percepatan yang sama, g (percepatan gravitasi), seandainya hambatan udara diabaikan. Gaya yang menyebabkan percepatan ini disebut gaya gravitasi. Gaya gravitasi bekerja pada sebuah benda ketika benda tersebut jatuh. Kita terapkan hukum II Newton untuk gaya gravitasi dan untuk percepatan a, kita ganti dengan percepatan gravitasi (g). ingat kembali pelajaran Gerak Jatuh Bebas. Benda yang jatuh hanya dipengaruhi oleh percepatan gravitasi. Dengan demikian Gaya Gravitasi yang pada sebuah benda, FG, yang besarnya disebut berat, dapat ditulis sebagai : FG = mg Arah gaya ini ke bawah, menuju ke pusat bumi. Persamaan ini sama dengan w = mg, seperti yang sudah kita pelajari di atas, karena berat adalah gaya gravitasi yang bekerja pada sebuah benda. Ketika benda berada dalam keadaan diam di permukaan bumi, gaya gravitasi yang ada pada benda tersebut tidak hilang. Untuk membuktikaan hal ini, kita bisa mengukur benda tersebut dengan neraca pegas dan membandingkannya dengan hasil perhitungan kita (FG = m g atau w = mg). Lalu mengapa benda tidak bergerak ? Dari hukum II Newton, gaya total untuk benda yang diam adalah nol. Jika demikian, pasti ada gaya lain yang bekerja pada benda tersebut, untuk mengimbangi gaya gravitasi. Gaya apakah itu ? GAYA NORMAL Ketika kita meletakan sebuah kotak di atas meja, berat kotak tersebut menekan meja ke bawah dan sebaliknya meja membalas dengan memberikan gaya ke atas (lihat gambar di bawah). Gaya yang diberikan oleh meja bisa disebut gaya kontak, karena gaya tersebut terjadi karena adanya sentuhan antara kotak dan meja. Sebuah gaya kontak yang tegak Created by : Giri Wiarto lurus terhadap permukaan kontak disebut Gaya Normal (normal berarti tegak lurus), dan mempunyai Lambang FN atau bisa ditulis N. Kedua gaya yang ditunjukkan pada gambar diatas bekerja pada kotak sehingga kotak tetap diam. Selisih kedua gaya tersebut (gaya total) pasti nol, sehinga kotak tersebut diam/tidak jatuh ke tanah. FG atau w dan N pasti memiliki besar yang sama dan memiliki arah yang berlawanan, sehingga gaya total atau selisih kedua gaya tersebut nol. Gayagaya tersebut bukan gaya aksi reaksi yang dijelaskan pada Hukum III Newton. Ingat bahwa gaya aksi reaksi bekerja pada benda yang berbeda, sedangkan kedua gaya di atas (Gaya berat dan Gaya Normal) bekerja pada benda yang sama, yakni kotak. Perhatikan gambar di atas secara saksama. Gaya berat benda yang menekan meja digambarkan pada titik pusat kotak alias berada di tengah-tengah kotak. Sedangkan Gaya Normal digambarkan pada permukaan sentuh antara kotak dan meja. Lalu apa gaya reaksinya ? gaya ke atas yang diberikan oleh meja terhadap kotak adalah N, disebut gaya aksi. Gaya reaksi diberikan oleh kotak kepada meja, yakni N’, sebagaimana diperlihatkan pada gambar di bawah. Perhatikan baik-baik posisi tanda panah pada gambar. Tanda panah yang mewakili N’ digambarkan pada meja, bukan pada kotak. Panjang tanda panah sama, hal ini menunjukkan bahwa besarnya gaya sama, hanya berlawanan arah (aksi = – reaksi). Mengenai aksi-reaksi selengkapnya dipelajari pada Pokok Bahasan Hukum III Newton. Created by : Giri Wiarto Gaya Normal (N) bekerja pada bidang sentuh antara dua benda yang saling bersentuhan dan arahnya selalu tegak lurus pada bidang sentuh. Beberapa contoh arah Gaya Normal terhadap gaya sentuh ditunjukkan pada gambar di bawah. Contoh Soal 1 : Sebuah buku diletakkan di atas sebuah meja yang permukaannya datar sebagaimana ditunjukkan pada gambar di bawah. Apabila massa buku 1 kg, berapakah Gaya Normal (N) yang diberikan meja terhadap buku ? anggap saja gravitasi 10 m/s2 Created by : Giri Wiarto Soal di atas tergolong gampang, silahkan coba masukin rumusnya aja???? Contoh Soal 2 : Sebuah balok diletakkan di atas sebuah papan yang diletakkan miring sebagaimana ditunjukkan pada gambar di bawah. Apabila massa balok 5 kg dan sudut yang dibentuk antara papan dengan lantai adalah 45o, berapakah Gaya Normal (N) yang diberikan meja terhadap buku ? anggap saja gravitasi 10 m/s2 Ini Juga gampang. Coba ngerjain sendiri ya??? Panduan Jawaban : Karena balok terletak pada bidang miring maka kita tidak bisa menghitung N seperti contoh soal 1. cermati gambar di bawah. Created by : Giri Wiarto Hukum I Newton Kita telah mempelajari sifat-sifat gaya pada bagian pengantar pokok bahasan Dinamika, namun sejauh ini kita belum membahas bagaimana gaya berpengaruh terhadap gerak. Nah, bagaimana hubungan yang tepat antara Gaya dan Gerak ? Untuk mengawalinya, mari kita bayangkan apa yang terjadi ketika gaya total pada sebuah benda sama dengan nol atau dengan kata lain tidak ada gaya yang bekerja pada benda. Anda pasti akan setuju bahwa benda tersebut dalam keadaan diam, dan jika tidak ada gaya yang bekerja padanya, yaitu tidak ada tarikan atau dorongan, maka benda itu akan tetap diam. Nah, bagaimana jika terdapat gaya total nol yang bekerja pada benda yang sedang bergerak ? Untuk memperjelas permasalahan ini, anggap saja anda sedang mendorong sekeping uang logam pada permukaan lantai kasar. Setelah anda berhenti mendorong, keping uang logam tersebut tidak akan terus bergerak, namun melambat kemudian berhenti. Untuk menjaganya agar tetap bergerak, kita harus tetap mendorong (memberikan gaya). Jika dicermati dengan saksama, anda akan menyimpulkan bahwa benda-benda yang bergerak secara alami akan berhenti dan sebuah gaya diperlukan agar untuk mempertahankannya agar tetap bergerak. Pada abad ketiga Sebelum Masehi, Aristoteles, seorang filsuf Yunani pernah menyatakan bahwa diperlukan sebuah gaya agar benda tetap bergerak pada bidang datar. Menurut eyang Aristoteles, keadaan alami dari sebuah benda adalah diam. Oleh karena itu perlu ada gaya untuk menjaga agar benda tetap bergerak. Ia juga mengatakan bahwa laju benda sebanding dengan besar gaya, di mana makin besar gaya, makin besar laju gerak benda tersebut. Setelah 2000 tahun kemudian, Galileo Galilei mempersoalkan pandangan Aristoteles. Galileo mengatakan bahwa sama alaminya bagi sebuah benda untuk bergerak mendatar dengan kecepatan tetap, seperti ketika benda tersebut berada dalam keadaan diam. Untuk memahami pandangan galileo, bayangkan anda mendorong sekeping uang logam pada permukaan lantai yang sangat licin. Setelah anda berhenti mendorong, keping uang logam tersebut akan meluncur jauh lebih panjang (dibandingkan ketika mendorong di atas permukaan lantai kasar). Jika dituangkan minyak pelumas atau pelicin lainnya pada permukaan lantai tersebut, maka keping uang logam akan bergerak lebih jauh, dibandingkan dengan percobaan pertama. Created by : Giri Wiarto Untuk mendorong sebuah benda yang mempunyai permukaan kasar di permukaan lantai dengan laju tetap, dibutuhkan gaya dengan besar tertentu. Untuk mendorong sebuah benda lain yang sama beratnya tetapi mempunyai permukaan yang licin di atas lantai dengan laju yang sama, akan diperlukan gaya yang lebih kecil. Jika dituangkan pelumas pada permukaan benda dan lantai, maka hampir tidak diperlukan gaya sama sekali untuk menggerakan benda. Perhatikan bahwa pada percobaan di atas, besarnya gaya dorong semakin kecil akibat permukaan benda semakin licin. Selanjutnya, kita dapat membayangkan sebuah keadaan di mana keping uang logam tersebut tidak bersentuhan dengan lantai sama sekali atau ada pelicin sempurna antara permukaan bawah keping uang logam dengan lantai. Anggapan mengenai adanya pelicin sempurna tersebut membuat uang logam bergerak dengan laju tetap tanpa ada gaya yang diberikan. Ini adalah gagasan Eyang Galileo yang membayangkan dunia tanpa gesekan. Pemikiran ini kemudian membuatnya menyimpulkan bahwa jika tidak ada gaya yang diberikan kepada benda yang bergerak, maka benda tersebut terus bergerak lurus dengan laju tetap. Benda yang sedang bergerak akan melambat apabila pada benda bekerja gaya total. Dengan demikian, eyang Galileo menganggap bahwa gesekan merupakan gaya yang sama dengan tarikan atau dorongan biasa. Untuk mendorong keping uang logam untuk bergerak pada permukaan lantai, dibutuhkan gaya dari tangan kita, hanya untuk mengimbangi gaya gesekan. Jika benda tersebut bergerak dengan laju tetap, gaya dorongan kita sama besar dengan gaya gesek; tetapi kedua gaya ini memiliki arah yang berbeda sehingga gaya total pada benda adalah nol. Hal ini sesuai dengan pendapat eyang Galileo karena benda bergerak dengan laju tetap apabila pada benda tidak bekerja gaya total. Berdasarkan penemuan ini, eyang Newton membangun teori gerak-nya. Analisisnya dikemas dalam “Tiga Hukum Gerak Newton” yang terkenal sampai ke seluruh pelosok ruang kelas X SMA. Hukum I Newton menyatakan bahwa : Setiap benda tetap berada dalam keadaan diam atau bergerak dengan laju tetap sepanjang garis lurus, jika tidak ada gaya yang bekerja pada benda tersebut atau tidak ada gaya total pada benda tersebut. Secara matematis, Hukum I Newton dapat dinyatakan sebagai berikut : Kecenderungan suatu benda untuk tetap bergerak atau mempertahankan keadaan diam dinamakan inersia. Karenanya, hukum I Newton dikenal juga dengan julukan Hukum Inersia alias Hukum Kelembaman. Created by : Giri Wiarto Sifat lembam ini dapat kita amati, misalnya ketika mengeluarkan saus tomat dari botol dengan mengguncangnya. Pertama, kita memulai dengan menggerakan botol ke bawah; pada saat kita mendorong botol ke atas, saus akan tetap bergerak ke bawah dan jatuh pada makanan. Kecenderungan sebuah benda yang diam untuk tetap diam juga diakibatkan oleh inersia alias kelembaman. Misalnya ketika kita menarik selembar kertas yang ditindih oleh tumpukan buku tebal dan berat. Jika lembar kertas tadi ditarik dengan cepat, maka tumpukan buku tersebut tidak bergerak. Contoh lain yang sering kita alami adalah ketika berada di dalam mobil. Apabila mobil bergerak maju secara tiba-tiba, maka tubuh kita akan sempoyongan ke belakang, demikian juga ketika mobil tiba-tiba direm, tubuh kita akan sempoyongan ke depan. Hal ini diakibatkan karena tubuh kita memiliki kecenderungan untuk tetap diam jika kita diam dan juga memiliki kecenderungan untuk terus bergerak jika kita telah bergerak. Hukum Pertama Newton telah dibuktikan oleh para astronout pada saat berada di luar angkasa. Ketika seorang astronout mendorong sebuah pensil (pensil mengambang karena tidak ada gaya gravitasi),pensil tersebut bergerak lurus dengan laju tetap dan baru berhenti setelah menabrak dinding pesawat luar angkasa. Hal ini disebabkan karena di luar angkasa tidak ada udara, sehingga tidak ada gaya gesek yang menghambat gerak pensil tersebut. Pengantar Dinamika Dalam kehidupan sehari-hari, kita menemukan banyak benda yang melakukan gerak, sebagaimana yang telah kita pelajari pada pokok bahasan Kinematika. Nah, mengapa benda-benda tersebut melakukan gerakan ? apa yang membuat benda-benda tersebut yang pada mulanya diam mulai bergerak ? apa yang mempercepat gerakan benda atau memperlambat gerakan benda ? faktor-faktor apa saja yang terlibat dalam setiap gerakan benda ? Bagaimana mungkin sebuah perahu mendorong sebuah kapal yang lebih berat darinya ? mengapa diperlukan jarak yang jauh untuk mengentikan mobil massanya sangat besar ketika mobil tersebut bergerak ? mengapa kaki kita terasa lebih sakit ketika menendang sebuah batu besar dibandingkan dengan ketika kita menendang sebuah batu kerikil ? mengapa lebih sulit mengendalikan mobil di atas jalan yang licin ? Anda bingung dan kesulitan dalam menjawab pertanyaan-pertanyaan di atas ? Jawaban dari pertanyaan di atas dan pertanyaan serupa akan membawa kita pada masalah Dinamika, yakni hubungan antara gerak dan gaya yang menyebabkannya. Pada pokok bahasan kinematika, kita telah belajar mengenai gerak benda. Dalam pokok bahasan ini kita mempelajari tentang penyebab gerak benda. Pada pokok bahasan Dinamika, kita menggunakan besaran kinematika seperti jarak/ perpindahan, kecepatan dan percepatan yang dihubungkan dengan dua konsep baru, yaitu gaya dan massa. Prinsip ini dikemas dalam tiga hukum Newton yang akan kita pelajari Created by : Giri Wiarto nanti. Hukum pertama menyatakan bahwa jika gaya total pada sebuah benda sama dengan nol, maka gerak benda tidak berubah. Hukum kedua meyatakan hubungan antara gaya dan percepatan ketika gaya gaya total tidak sama dengan nol. Hukum ketiga menyatakan hubungan antara gaya-gaya yang bekerja antara dua benda yang berinteraksi. Hukum Newton tidak berlaku secara umum, namun masih membutuhkan modifikasi untuk benda yang bergerak dengan kecepatan sangat tinggi (mendekati kecepatan cahaya) dan untuk benda dengan ukuran sangat kecil (seperti atom). Hukum tentang gerak pertama kali dinyatakan oleh Sir Isaac Newton, yang dipublish pada tahun 1687 dalam bukunya Philosophiae Naturalis Principia Mathematica (“mathematical Principles of Natural Philosophy”). Hukum tersebut dikembangkan Newton berkat sumbangan ilmuwan lain dalam menetapkan dasar ilmu mekanika, di antaranya adalah Copernicus, Ticho Brahe, Kepler dan khususnya Galileo Galilei, yang meninggal pada tahun yang sama dengan kelahiran Newton. Sebelum melangkah lebih jauh dan masuk jurang, terlebih dahulu mari kita pahami konsep gaya secara kualitatif. Sebelum melangkah lebih jauh dan masuk jurang, terlebih dahulu mari kita pahami konsep gaya secara kualitatif. Gaya itu apa ya ? Anda pasti sering mendengar atau bahkan selalu menggunaka kata ini (gaya) dalam kehidupan sehari-hari. Arti kata Gaya dalam kehidupan sehari-hari agak berbeda dengan pengertian gaya dalam ilmu fisika. Pernahkah anda mendorong motor atau mobil yang mogok ? ketika mendorong motor atau mobil tersebut, anda memberikan gaya pada mobil atau motor tersebut. Akibat gaya yang anda berikan, mobil atau motor tersebut bergerak. Ketika kita menggunakan lift dari lantai dasar ke lantai empat, misalnya, lift tersebut melakukan gaya angkat terhadap kita sehingga kita bisa berpindah dari lantai satu ke lantai empat. Ketika angin meniup dedaunan sehingga membuatnya bergerak, ada sebuah gaya yang sedang diberikan. Sebuah meja akan bergerak jika anda mendorongnya, karena pada saat mendorong, anda memberikan gaya pada meja tersebut. Masih banyak contoh lain dalam kehidupan seharihari, anda dapat menyebutkannya satu-persatu…. Berdasarkan intuisi, kita menggambarkan gaya sebagai semacam dorongan atau tarikan terhadap suatu benda. Dorongan atau tarikan tersebut menyebabkan benda bergerak. Ketika mendorong motor sehingga motor tersebut bergerak, maka gaya yang bekerja pada motor tersebut diakibatkan oleh dorongan. Kita bisa mengatakan bahwa gaya yang diakibatkan oleh dorongan merupakan jenis gaya sentuh, karena terdapat kontak langsung antara benda dan sumber gaya. Bagaimana dengan tarikan ? ketika buah mangga yang lezat dan ranum jatuh dari pohon, sehingga membuat anda lari pontang-panting untuk mengambilnya, yang menjadi penyebab jatuhnya buah mangga tersebut adalah gaya gravitasi. Gaya gravitasi menyebabkan buah pepaya, jeruk dan kelapa bisa jatuh dari Created by : Giri Wiarto pohonnya. Gaya gravitasi juga yang menyebabkan semua benda atau manusia jatuh ke permukaan bumi. Perhatikan bahwa pada kasus jatuhnya buah mangga atau buah jeruk dari pohonnya tersebut tidak sama seperti ketika anda mendorong motor atau mobil hingga bergerak. Tidak ada kontak langsung atau sentuhan yang terjadi sehingga buahbuah kesayangan anda tersebut jatuh. Gaya seperti ini diakibatkan oleh tarikan, bukan dorongan dan termasuk gaya tak sentuh. Apakah gaya selalu menyebabkan benda bergerak ? ayo dijawab, salah gpp….. Ketika mendorong tembok rumah anda, misalnya, walaupun anda sampai banjir keringat atau lemas tak berdaya sambil mengeluarkan air mata buaya, tembok tersebut tetap tidak akan bergerak. Apakah contoh itu tidak termasuk gaya ? ketika mendorong tembok, anda juga memberikan gaya pada tembok tersebut. Walaupun demikian, gaya anda sangat kecil sehingga tidak mampu merubuhkan tembok itu. Ini hanya salah satu contoh yang menunjukan bahwa tidak semua gaya dapat menghasilkan gerakan. Bagaimana kita mengukur gaya ? satu cara yang digunakan untuk mengukur gaya adalah dengan menggunakan neraca pegas. Biasanya neraca itu digunakan untuk menimbang berat sebuah benda. Istilah berat dan massa akan kita kupas tuntas pada pembahasan tersendiri, tetapi masih dalam pokok bahasan Dinamika. Ingat bahwa gaya adalah besaran vektor. Mengapa gaya digolongkan dalam besaran vektor ? ketika anda mendorong meja, misalnya, jika anda hanya mengatakan bahwa : “saya mendorong meja dengan gaya 50 N”, maka pernyataan ini masih membingungkan. Anda mendorong meja ke arah mana ? oleh karena itu anda juga harus menyebutkan arah gerak benda yang didorong. Jadi gaya termasuk besaran yang memiliki nilai dan arah. Karena gaya merupakan besaran vektor maka dalam menyatakan arahnya pada sebuah diagram, kita harus menggunakan aturan-aturan vektor. Mengenai hal ini sudah gurumuda jelaskan pada pokok bahasan vektor dan skalar (besaran dan satuan). Apabila anda belum mempelajarinya, sebaiknya dipelajari terlebih dahulu agar anda tidak kebingungan atau gak nyambung dengan pelajaran selanjutnya…. OK BOS ? santai saja… Created by : Giri Wiarto