Uploaded by AL

1. 2. Struktur Materi (Structure of matter)

advertisement
Materi 1 dan Materi 2 .
Struktur materi : Struktur atom dan
tinjauan perkembangan Teori Atom
Sejaran Struktur Atom dan
PerkembanganTeori Atom: Teori
Atom Dalton. Model Atom JJ
Thomson, Model Atom Ruterford,
Model atom N Borh, Model atom
mekanika gelombang
9/21/2020
1
Structure of matter
Definition of Chemistry:
The study of the properties, composition, and
Structure of matter, the physical and
chemical changes it undergoes, and the energy
liberated or absorbed during those changes.
Material Properties
Bulk Structure
Molecular Structure
Atomic Structure
9/21/2020
2
ATOMIC STRUCTURE HISTORY
Modern Concepts of Matter
John Dalton (1803) - An atomist who formalized
the idea of the atom into a viable scientific theory
in order to explain a large amount of empirical
data that could not be explained otherwise.
Matter is composed of small “indivisible” particles
called “atoms”.
The atoms of each element are identical to each
other in mass but different from the atoms of other
elements.
A compound contains atoms of two or more
elements bound together in fixed proportions
by mass.
9/21/2020
3
Definisi atom
2500 tahun yang lalu : atom = “not cut”
INTI TEORI ATOM DALTON :
1. Materi terdiri atas atom atom
2. Atom merupakan bagian terkecil dari materi dan tidak
dapat terbelah lagi
3. Atom dari suatu element memiliki massa dan sifat
sama
4. Atom dari element berbeda memiliki massa dan sifat
berbeda
5. Atom atom dapat bergabung membentuk senyawa
dengan rasio massa tertentu
Asumsi Dasar Teori Dalton
Tiap unsur kimia tersusun oleh partikelpartikel kecil yang tidak bisa dihancurkan
dan dibagi, yang disebut atom. Selama
perubahan kimia, atom tidak bisa
diciptakan dan juga tidak bisa
dimusnahkan
Semua atom dari suatu unsur
mempunyai massa (berat) dan sifat yang
sama, tetapi atom-atom dari suatu unsur
berbeda dengan atom dari unsur yang
lain, baik massa (berat) maupun sifatsifatnya berlainan.
Dalam senyawa kimiawi, atom-atom dari
unsur yang berlainan melakukan ikatan
dengan perbandingan numerik yang
sederhana : Misalnya satu atom A dan
satu atom B (AB) satu atom A dan dua
atom B (AB2).
Perkembangan dan kemajuan pemahaman hubungan materi dan listrik.
Fakta : Atom bukan unsur terkecil, ada sub atomic
ATOMIC STRUCTURE
Nucleus
Model of a
Helium-4
(4He) atom
e-
p+no
no p+
eElectron Cloud
NEXT …..
Teori Atom Dalton, Democritus → Thompson, Planck,
Einstein, Millikan, Rutherford, Bohr, de Broglie, Heisenberg,
Schrödinger, Chadwick, and many others.
9/21/2020
7
ATOMIC STRUCTURE
Democritus - First atomic ideas
Dalton - 1803 - First Atomic Theory
J. J. Thompson - 1890s - Measured the charge/mass
ratio of the electron (Cathode Rays)
Fluorescent
Material
_
Cathode
+
Anode
9/21/2020
Electric Field
Source (Off)
8
ATOMIC STRUCTURE
Fluorescent
Material
_
Cathode
+
Anode
Electric Field
Source (Off)
With the electric field off, the cathode ray is not deflected.
9/21/2020
9
ATOMIC STRUCTURE
-
Cathode
+
Anode
Fluorescent
Material
+
Electric Field
Source (On)
With the electric field on, the cathode ray is deflected
away from the negative plate. The stronger the electric
field, the greater the amount of deflection.
Cathode
+
Anode
9/21/2020
Magnet
10
Pengamatan J.J. Thomson (1856-1940)
Kode C = Katoda; A = Anoda; E = lempeng kondensor bermuatan listrik;
M = magnet; F = layar berfluoresens.
Berkas 1 : Hanya dengan adanya medan listrik, berkas sinar katoda dibelokkan
keatas menyentuh layar pada titik 1.
Berkas 2 : Hanya dengan adanya medan magnit, berkas sinar katoda dibelokkan
kebawah menyentuh layar pada titik 2.
Berkas 3 : Berkas sinar katoda akan lurus dan menyentuh layar dititik 3, bila
medan listrik dan medan magnit sama besarnya
With the magnetic field present, the cathode ray is
deflected out of the magnetic field. The stronger the
magnetic field, the greater the amount of deflection.
e/m = E/H2r
e = the charge on the electron
m = the mass of the electron
E = the electric field strength
H = the magnetic field strength
r = the radius of curvature of the electron beam
Thompson, thus, measured the charge/mass ratio
of the electron - 1.759 x 108 C/g
9/21/2020
12
Thomson’s Atomic Model
J. J. Thomson
Thomson believed that the electrons were like
plums embedded in a positively charged
“pudding,” thus it was called the
“plum pudding” model.
Summary of Thompson’s Findings
Cathode rays had the same properties no matter
what metal was being used.
Cathode rays appeared to be a constituent of all
matter and, thus, appeared to be a “sub-atomic”
particle.
Cathode rays had a negative charge.
Cathode rays have a charge-to-mass ratio
of 1.7588 x 108 C/g.
9/21/2020
14
FAKTA YANG ADA ……………..
•If a hydrogen atom absorbs radiation
whose energy corresponds to the
difference between that of n=1 and
some higher value of n, the atom is
said to be in an excited state. Excited
states are unstable and quickly
decay to the ground state, but not
always in a single step. For example,
if the electron is initially promoted to
the n=3 state, it can decay either to the
ground state or to the n=2 state, which
then decays to n=1. Thus this single
n=1→3 excitation can result in the
three emission lines depicted in the
diagram above, corresponding to
n=3→1, n=3→2, and n=2→1.
If, instead, enough energy is supplied to the atom to completely remove the electron,
we end up with a hydrogen ion and an electron. When these two particles recombine
(H+ + e– → H), the electron can initially find itself in a state corresponding to any value
of n, leading to the emission of many lines.
R. A. Millikan - Measured the charge of the electron.
In his famous “oil-drop” experiment, Millikan was able to
determine the charge on the electron independently of its
mass. Then using Thompson’s charge-to-mass ratio, he
was able to calculate the mass of the electron.
e = 1.602 10 x 10-19 coulomb
e/m = 1.7588 x 108 coulomb/gram (Thomson)
m = 9.1091 x 10-28 gram
9/21/2020
16
Mass of the Electron
Mass of the
electron is
9.11 x 10-28 g
The oil drop apparatus
1916 – Robert Millikan determines the mass of the
electron: 1/1840 the mass of a hydrogen atom; has one
unit of negative charge
Menghitung massa elektron.
Anda dapat memperoleh penyelesaian dengan
mensubstitusikan nilai yang didapat Millikan pada
hubungan:
muatan/massa = 1,76 x 108 (C g–1).
Maka, m = e/(1,76 x 108 C g–1)
= 1,6 x 10–19 C/(1,76 x 108C g–1)
= 9,1 x 10–28 g.
Muatan elektron =1,6 x 10–19 C.
Ratio muatan/massa (Thomson ) = 1,76 x108 C/g),
Goldstein - measure the mass of proton
Goldstein - Conducted “positive” ray experiments that lead
to the identification of the proton.
The charge was found to be identical to that of the electron
and the mass was found to be
1.6726 x 10-24 g.
9/21/2020
19
Menghitung rasio massa elektron dan atom hidrogen.
Massa atom Hidrogen (H) adalah:
mH = 1 g/6 x 1023 = 1,67 x 10–24g.
Jadi, me : mH = 9,1 x 10–28g : 1,67 x10–24g
= 1 : 1,83 x 103.
Sangat menakjubkan bahwa massa elektron sangat kecil.
Bahkan atom yang paling ringanpun, hidrogen, sekitar
2000 kali lebih berat dari massa elektron.
Menghitung ukuran atom
Dengan menganggap molekul air berbentuk kubus, perkiraan
ukuran satu atom (nyatakan dengan notasi saintifik 10x).
Volume 1 mol air sekitra 18 cm3.
Jadi volume 1 molekul air: v = 18 cm3/6 x 1023 = 3x10–23 cm3
= 30 x 10–24 cm3.
Panjang sisi kubus adalah (30 x 10–24)1/3 cm
= 3,1 x 10–8 cm.
Nilai ini mengindikasikan bahwa ukuran atom sekitar 10–8 cm.
Thomson mengasumsikan bahwa atom dengan dimensi sebesar itu
adalah bola seragam bermuatan positif dan elektron-elektron kecil
yang bermuatan negatif tersebar di bola tersebut. Dalam kaitan ini
model Thomson sering disebut dengan “model bolu kismis”,
kismisnya seolah elektron dan bolunya adalah atom.
….Nilai ini mengindikasikan bahwa ukuran atom sekitar
10–8 cm.
Thomson mengasumsikan bahwa atom dengan dimensi
sebesar itu adalah bola seragam bermuatan positif dan
elektron-elektron kecil yang bermuatan negatif tersebar di
bola tersebut. .
Dalam kaitan ini model Thomson
sering disebut dengan “model bolu
kismis”, kismisnya seolah elektron
dan bolunya adalah atom
9/21/2020
22
Apa kelemahan model
atom Thomson?
- tidak dapat menerangkan
susunan muatan positif / negatif
dalam sebuah atom.
ATOMIC STRUCTURE
Lanjutan ….
9/21/2020
24
ATOMIC STRUCTURE
Ernest Rutherford - Developed the “nuclear” model
of the atom.
The Plum Pudding Model of the atom:
+ +
+
+ - - - -- +
+ - - - - - +
+ - - - - ++
A smeared out “pudding”
of positive charge with
negative electron “plums”
imbedded in it.
The Metal Foil Experiments:
Radioactive
Material in
Pb box.
9/21/2020
a-particles
Fluorescent
Screen
Metal
Foil
25
Ernest Rutherford’s
Gold Foil Experiment - 1911
Alpha particles are helium nuclei - The alpha particles
were fired at a thin sheet of gold foil
▪ Particles that hit on the detecting screen (film) are
recorded
▪
Rutherford’s problem:
In the following pictures, there is a target hidden by a cloud.
To figure out the shape of the target, we shot some beams
into the cloud and recorded where the beams came out. Can
you figure out the shape of the target?
Target
#1
Target
#2
The Answers:
Target #1
Target #2
Rutherford’s Findings
Most of the particles passed right through
▪ A few particles were deflected
▪ VERY FEW were greatly deflected
▪
“Like howitzer shells bouncing
off of tissue paper!”
Conclusions:
a) The nucleus is small
b) The nucleus is dense
c) The nucleus is positively charged
The Rutherford Atomic Model
Based on his experimental evidence:
The atom is mostly empty space
All the positive charge, and almost all the mass is
concentrated in a small area in the center. He
called this a “nucleus”
The nucleus is composed of protons and neutrons
(they make the nucleus!)
The electrons distributed around the nucleus, and
occupy most of the volume
His model was called a “nuclear model”
If the plum pudding model is correct, then all of
the massive a-particles should pass right through
without being deflected.
In fact, most of the a - particles DID pass right
through. However, a few of them were deflected at
high angles, disproving the “plum pudding” model.
Rutherford concluded from this that the atom consisted of a very dense nucleus containing all of the
positive charge and most of the mass surrounded by
electrons that orbited around the nucleus much as
the planets orbit around the sun.
9/21/2020
31
Nucleus (INTI)
Quiz 1. Assignment:
Assume the diameter of the nucleus of a hydrogen
atom is 1 x 10 -13 cm and the diameter of the atom
is 1 x 10 -8 cm.
1. Calculate the volume of the nucleus and the volume
of the atom in cm3 .
2. Calculate the volume of empty space in the atom.
3. Calculate the ratio of the volume of the nucleus to
volume of the whole atom.
4. Calculate the density of the nucleus if the proton’s
mass is 1.6726 x 10-24 g
9/21/2020
33
Problems with the Rutherford Model:
It was known from experiment and electromagnetic
theory that when charges are accelerated, they
continuously emit radiation, i.e., they loose energy
continuously. The “orbiting” electrons in the atom
were, obviously, not doing this.
The Fact :
Atomic spectra and blackbody radiation
were known to be DIScontinuous.
The atoms were NOT collapsing.
9/21/2020
34
Atomic Spectra - Since the 19th century, it had
been known that when elements and compounds
are heated until they emit light (glow) they emit
that light only at discrete frequencies, giving a
line spectrum.
-
+
Hydrogen
Gas
9/21/2020
Line Spectrum
35
When white light is passed through a sample of
the vapor of a substance, only discrete frequencies
are absorbed, giving an absorption ban spectrum.
These frequencies are identical to those of the
line spectrum of the same element or compound.
For hydrogen, the spectroscopists of the 19th
Century found that the lines were related by the
Rydberg equation:
n/c = R[(1/m2) - (1/n2)]
n = frequency
c = speed of light
9/21/2020
R = Rydberg Constant
m = 1, 2, 3, ….
n = (m+1), (m+2), (m+3), ….
36
ATOMIC STRUCTURE
Max Planck - In 1900 he was investigating the nature
of black body radiation and tried to interpret his
findings using accepted theories of electromagnetic
radiation (light). He was NOT successful since these
theories were based on the assumption that light had
WAVE characteristics.
To solve the problem he postulated that light was
emitted from black bodies in discrete packets he
called “quanta”. Einstein later called them
“photons”. By assuming that the atoms of the black
body emitted energy only at discrete frequencies, he
was able to explain black body radiation.
9/21/2020
Einstein Equation E = hn
37
ATOMIC STRUCTURE
Both spectroscopy and black body radiation
indicated that atoms emitted energy only at
discrete frequencies or energies rather than
continuously.
Is light a particle or a wave??
Why do atoms emit only discrete energies?
What actually happens when light interacts
with matter?
What was wrong with Rutherford’s Model?
9/21/2020
38
ATOMIC STRUCTURE-BOHR
Niels Bohr - Bohr corrected Rutherford’s model
of the atom by formulating the following postulates:
Electrons in atoms move only in discrete orbits
around the nucleus.
When in an orbit, the electron does NOT emit
energy.
They may move from one orbit to another but are
NEVER residing in between orbits.
9/21/2020
When an electron moves from one orbit to
another, it absorbs or emits a photon of light with a
specific energy that depends on the difference in
energy between the two orbits.
39
How the Bohr model explains the hydrogen line spectrum?
Each spectral line represents an energy difference
between two possible states of the atom. Each of
these states corresponds to the electron in the hydrogen
atom being in an "orbit" whose radius increases with the
quantum number n. The lowest allowed value of n is 1;
because the electron is as close to the nucleus as it can
get, the energy of the system has its minimum (most
negative) value. This is the "normal" (most stable) state
of the hydrogen atom, and is called the ground state.
The Bohr Model of the Atom
Balmer
Series
(Visible)
Lyman
Series
Paschen
Series
+
(UV)
(IR)
9/21/2020
41
The lowest possible energy state for an electron
is called the GROUND STATE. All other states
are called EXCITED STATES.
En = (- 2.179 x 10-18 J)/n2
Ephoton = Ehigh - Elow
Ephoton = [(- 2.179 x 10-18 J)/n2high]
-[(- 2.179 x 10-18 J)/n2low]
= - 2.179 x 10-18 J[(1/n2high) - (1/n2low)]
Does this equation look familiar? Rydberg equation
9/21/2020
n/c = R[(1/m2) - (1/n2)]
42
Problem :
Jari-jari r dapat diungkapan dalam persamaan
r = n2aB, n = 1, 2, 3,...
aB adalah jari-jari minimum (jari-jari Bohr= 5,2918 x 10–
11 m) bila n = 1. Tentukan jari-jari lainnya untuk n=2,3,4
Shell and Energy level
RANGKUMAN TEORI
ATOM BOHR
9/21/2020
45
Keterbatasan teori Bohr
Keberhasilan teori Bohr begitu menakjubkan. Teori Bohr dengan sangat
baik menggambarkan struktur atom hidrogen, dengan elektron berotasi
mengelilingi inti dalam orbit melingkar.
Setelah berbagai penyempurnaan, teori Bohr mampu menerangkankan
spektrum atom mirip hidrogen dengan satu elektron seperti ion helium He+.
Namun, spektra atom atom poli-elektronik tidak dapat dijelaskan.
Kemudian menjadi jelas bahwa ada keterbatasan dalam teori ini yaitu tidak
ada penjelasan persuasif tentang ikatan kimia dapat diperoleh. Dengan kata
lain, teori Bohr adalah satu langkah ke arah teori struktur atom yang dapat
berlaku bagi semua atom dan ikatan kimia.
Pentingnya teori Bohr tidak dapat diremehkan karena teori ini dengan jelas
menunjukkan pentingnya teori kuantum untuk memahami struktur atom,
dan secara lebih umum struktur materi.
Niels Bohr won the Nobel Prize for his work.
However, the model only worked perfectly for
hydrogen. What about all of those other elements??
Louis de Broglie - Thought that if light, which was
thought to have wave characteristics, could also have
particle characteristics, then perhaps electrons, which
were thought to be particles, could have characteristics
of waves.
l = h/mv
An electron in an atom was a “standing wave”!
9/21/2020
47
Karakter partikel dan karakter gelombang
l = h/mv
Particle character : massa, wave character : wavelength
9/21/2020
48
ATOMIC STRUCTURE
Werner Heisenberg - Developed the “uncertainty”
principle: It is impossible to make simultaneous and
exact measurements of both the position (location)
and the momentum of a sub-atomic particle such as
an electron.
(Dx)(Dp)  h/2p
Our knowledge of the inner workings of atoms and
molecules must be based on probabilities rather
than on absolute certainties.
9/21/2020
49
Quntum mechanism for atomic structure
Erwin Schrödinger - Developed a form of quantum
mechanics known as “wave mechanics”.
Hy = Ey
H = Hamiltonian operator
E = Total energy of the system
y = Wave function
[(-h2)/(8p2m)]2y - [e2/r] y = Ey
Kinetic Energy
Term
Potential Energy
Term
This is simply a quantum mechanical statement of the Law
of Conservation of Energy
9/21/2020
50
Of the numerous solutions to the Schrödinger equation
for hydrogen, only certain ones are allowed due to the
following boundary conditions:
Y, the wave function, must be continuous and finite.
It must be single-valued at all points (There can’t be
two different probabilities of finding an electron at one
point in space).
The probability of finding the electron, Y2, somewhere
in space must = 1.
+
-  Y2dxdydz = 1
Y has many values that meet these conditions. They are
called “orbitals”.
9/21/2020
51
Ketidakpastian posisi
electron
9/21/2020
52
Wave Function - A mathematical function associated
with each possible state of an electron in an atom or
molecule.
It can be used to calculate the energy of an
electron in the state
the average and most probable distance from the
nucleus
the probability of finding the electron in any
specified region of space.
9/21/2020
53
Quantum Numbers:
Principle Quantum Number, n - An integer
greater than zero that represents the principle
energy level or “shell” that an electron occupies.
n
1
2
3
4
etc.
9/21/2020
Energy
Level
1st
2nd
3rd
4th
etc.
Shell
K
L
M
N
etc.
# of orbitals
n2
1
2
9
16
etc.
54
Quantum number (n)
9/21/2020
55
ATOMIC STRUCTURE
Azimuthal Quantum Number, l - The quantum
number that designates the “subshell” an electron
occupies. It is an indicator of the shape of an orbital
in the subshell. It has integer values from 0 to n-1.
l = 0, 1, 2, 3, …, n - 1
s p d f
Magnetic Quantum Number, ml - The quantum
number that determines the behavior of an electron
in a magnetic field. It designates the orbital and
has integer values from -l to +l including 0.
ml = -l, …, -3, -2, -1, 0, +1, +2, +3, …, +l
9/21/2020
56
n
1
2
3
etc.
l
0
0
1
0
1
2
etc.
Orbital
Name
1s
2s
2p
3s
3p
3d
etc.
# of
ml
Orbitals
0
1
0
1
-1, 0, +1
3
0
1
-1, 0, +1
3
-2, -1, 0, +1, +2
5
etc.
etc.
Spin Quantum Number, ms - The quantum number
that designates the orientation of an electron in a
magnetic field. It has half-integer values, +½ or -½.
9/21/2020
57
Orbital 1s vs orbital 2s
9/21/2020
58
9/21/2020
59
So what do atoms look like?
A. Interpretation of Y: The probability of finding
an electron in a small volume of space centered
around some point is proportional to the value of
Y2 at that point.
B. Electron Probability Density vs. r
C. Dot Density Representation: Imagine superimposing millions of photographs taken of an
electron in rapid succession.
D. Radial Densities
9/21/2020
60
Electron Configuration
9/21/2020
61
ATOMIC STRUCTURE
Electron Configuration
A. Many-electron atom: An atom that contains
two or more electrons.
B. Problems with the Bohr model:
1. It “assumed” quantization of the energy
levels in hydrogen.
2. It failed to describe or predict the spectra
of more complicated atoms.
9/21/2020
62
ATOMIC STRUCTURE
C. What are the differences in electron energy
levels in hydrogen vs. more complicated atoms?
3s
3p
2s
2p
3d
Ground State Hydrogen Atom
1s
9/21/2020
63
ATOMIC STRUCTURE
Splitting of the Degeneracy
2s
2p
2s
2p
1s
1s
H
9/21/2020
Li
64
ATOMIC STRUCTURE
Splitting of the Degeneracy
1. In hydrogen, all subshells and orbitals in a
given principal energy level have the same energy.
They are said to be Degenerate.
2. In many-electron atoms, s-orbitals have lower
energy than p-orbitals which have lower energy
than d-orbitals which have lower energy than
f-orbitals, etc., etc.
3. Reason: Complex electrostatic interactions.
9/21/2020
65
+
-
-
-
-
-
Hydrogen
++
Helium
+++
Lithium
A. Shielding Effect - A decrease in the nuclear force
of attraction for an electron caused by the presence
of other electrons in underlying orbitals.
B. Effective Nuclear Charge - A positive charge
that may be less than the atomic number. It is the
charge “felt” by outer electrons due to shielding by
electrons in underlying orbitals.
9/21/2020
66
ATOMIC STRUCTURE
The Pauli Exclusion Principle - No two electron in
the same atom can have the same four quantum
numbers.
H + e- → H -
Quantum
Number
n
l
ml
ms
9/21/2020
Electron 1
1
0
0
+1/2
Electron 2
1
0
0
-1/2
67
The Aufbau Principle - A procedure for “building up”
the electronic configuration of many-electron atoms
wherein each electron is added consecutively to the
lowest energy orbital available, taking into account
the Pauli exclusion principle.
Order of Filling 1s
2s
2p
3s
1s
2s
3s
4s
5s
9/21/2020
3p
4s
3d
4p
5s
Increasing Energy
2p
3p 3d
4p 4d 4f
5p 5d 5f 5g
68
Designating Electron Configurations Standard Designation
H
1s1
He
1s2
Li
1s2 2s1
B
1s2 2s2 2p1
Be
1s2
C
1s2 2s2 2p2
2s2
Orbital Diagram Designation
H
Li
1s
He
2s
Be
1s
9/21/2020
1s
B
1s 2s
2p
1s 2s
2p
C
1s
2s
69
Core Designation - A designation of electronic
configuration wherein the outer shell electrons
are shown along with the “core” configuration of
the closest previous noble gas.
Li
Be
[He] 2s2
Na [Ne] 3s1
Mg
[Ne] 3s2
[Ar] 4s1
Ca
[Ar] 4s2
Rb [Kr] 5s1
Sr
[Kr] 5s2
K
9/21/2020
[He] 2s1
70
Hund’s Rule of Maximum Multiplicity - Electrons
occupy a given subshell singly and with parallel spins
until each orbital in the subshell has one electron.
“Electrons try to stay as far apart as possible”
Elevator Analogy
2
1
B [He] 2s 2p
[He]
C [He] 2s2 2p2
[He]
N [He] 2s2 2p3
[He]
Bus Seat Analogy
2s
9/21/2020
2p
71
Assignment: Write the electron configuration using
all three types of designation for lead (Pb).
Pb 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2
4f14 5d10 6p2
Pb [Xe] 6s2 4f14 5d10 6p2
Electronic Configuration for postive ions (cations) Cations are formed by removing electrons in order
of decreasing n value. Electrons with the same n
value are removed in order of decreasing l value.
9/21/2020
72
Assignment: What are the electron configurations for
Fe2+
Fe3+
Cr
Cr3+
Se2- ?
Questions?
9/21/2020
73
Sinar Kanal (Sinar Positif)
Dalam tahun 1886 Eugen Goldstein melakukan serangkaian
percobaan dan ia menemukan partikel jenis baru yang disebut sinar
kanal (canal rays) atau sinar positif.
Sinar katoda mengalir kearah anoda. Tumbukannya dengan sisa atom
gas melepaskan elektron dari atom gas, menghasilkan ion yang
bermuatan listrik positif. Ion-ion ini menuju ke katoda (-) tetapi sebagian
dari ion ini lolos melewati lubang pada katoda dan merupakan arus
partikel mengarah ke sisi lain. Berkas sinar positif ini disebut sinar
positif atau sinar kanal.
Sifat-sifat sinar kanal
Partikel-partikelnya dibelokkan oleh medan listrik dan
magnit dan arahnya menunjukkan bahwa muatannya
positif.
Perbandingan muatan dan massa (e/m) sinar positif
lebih kecil daripada elektron.
Perbandingan e/m sinar positif tergantung pada sifat
gas dalam tabung. Perbandingan terbesar dimiliki
oleh gas hidrogen. Untuk gas lain e/m merupakan
pecahan integral (mis. ¼, 1/20 dari hidrogen).
Perbandingan e/m dari sinar positif yang dihasilkan
bila gas hidrogen ada dalam tabung adalah identik
dengan e/m untuk gas hidrogen yang dihasilkan
melalui air.
Pengamatan ini dapat diterangkan dengan model atom yang dibuat
J.J. Thomson yaitu model plum pudding. Kesimpulan dari sifat sinar
kanal ini ialah semua atom terdiri dari satuan dasar yang bermuatan
positif, pada atom H terdapat satu dan atom-atom lainnya
mengandung jumlah lebih banyak. Satuan dasar ini sekarang disebut
dengan proton.
Unsur Radioaktif dan Radiasinya
Ernest Rutherford membuktikan adanya dua jenis radiasi, sinar alfa
dan sinar beta.
Sinar a mempunyai kekuatan ionisasi besar tetapi daya tembusnya
terhadap materi rendah. Sinar ini dapat ditahan oleh kertas biasa. Sinar
ini adalah partikel yang membawa 2 satuan dasar muatan + dan
mempunyai massa identik dengan He (Sinar a = ion He2+).
Sinar  sebaliknya memiliki kekuatan ionisasi rendah dan daya tembus
besar. Sinar ini dapat melewati lempeng alumunium setebal 3 mm.
Sinar ini memiliki partikel bermuatan negatif dengan e/m sama seperti
elektron.
Bentuk radiasi ketiga mempunyai daya tembus sangat besar dan tidak
dibelokkan oleh medan listrik dan magnit. REM ini dikenal dengan sinar
gamma ().
Inti Atom
Tahun 1909 Hans Geiger dan Ernest Marsden membuat
serangkaian percobaan yang menggunakan lempeng emas
yang sangat tipis dan logam lain (tebal 10-4 s.d. 10-5 cm)
sebagai sasaran partikel a yang berasal dari radioaktif.
Geiger dan Marsden mengamati bahwa”
1. Sebagian besar dari partikel a menembus lempeng logam tanpa
pembelokkan.
2. Sebagian (~1 dari tiap 20.000) mengalami pembelokkan setelah
menembus lempeng logam.
3. Dalam jumlah yang sama (poin 2) tidak menembus lempeng
logam sama sekali tetapi berbalik sesuai arah datangnya sinar.
Proton dan Neutron
Pada tahun 1913 Moseley menemukan bahwa panjang
gelombang sinar x bervariasi tergantung dari bahan
sasarannya. Dengan menghubungkan hal ini ke persamaan
matematis disimpulkan bahwa setiap unsur dapat ditetapkan
dengan suatu bilangan bulat yang disebut nomor atom.
Tahun 1919 Rutherford mengembangkan satuan dasar muatan
positif yang disebut proton hasil risetnya dari jalur lintasan
partikel a diudara.
Konsep yang dipopulerkan oleh Rutherford adalah inti
mengandung sejumlah proton yang sama dengan nomor
atomnya dan sejumlah partikel netral yang disebut neutron agar
sesuai dengan massa atom.
Pada tahun 1930-an Chadwick membuktikan keberadaan
neutron melalui percobaan pemboman berilium dan boron
dengan partikel a, sehingga model atom yang terdiri dari
elektron, proton dan neutron lengkap ditemukan.
Subatomic Particles
Particle
Charge
Mass (g)
Location
Electron
(e-)
-1
9.11 x 10-28
Electron
cloud
Proton
(p+)
+1
1.67 x 10-24
Nucleus
Neutron
(no)
0
1.67 x 10-24
Nucleus
Download