APLIKASI METODE TRANSPORTASI DENGAN PROGRAM SOLVER DALAM MEMINIMUMKAN BIAYA PENGIRIMAN PRODUK (STUDI KASUS PT. RAJAA TUNGGAL) skripsi disajikan sebagai salah satu syarat untuk memperoleh gelar Sarjana Sains Program Studi Matematika oleh Devie Kurnia Wijayanti 4150406510 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI SEMARANG 2011 PENGESAHAN Skripsi yang berjudul Aplikasi Metode Transportasi dengan Program Solver dalam Meminimumkan Biaya Pengiriman Produk (Studi Kasus PT. Rajaa Tunggal) disusun oleh Devie Kurnia Wijayanti 4150406510 telah dipertahankan di hadapan sidang Panitia Ujian Skripsi FMIPA UNNES pada tanggal 28 September 2011. Panitia: Ketua Sekretaris Dr. Kasmadi Imam S., M.S NIP.195111151979031001 Drs. Edy Soedjoko, M.Pd NIP. 195604191987031001 Ketua Penguji Muhammad Kharis,S.Si., M.Sc NIP. 198210122005011001 AnggotaPenguji/ Anggota Penguji/ Pembimbing I Pembimbing II Dr. Dwijanto, M.S NIP. 195804301984031006 Drs. Mashuri, M.Si NIP.196708101992031003 ii PERNYATAAN Saya menyatakan bahwa skripsi ini bebas plagiat, dan apabila di kemudian hari terbukti terdapat plagiat dalam skripsi ini, maka saya bersedia menerima sanksi sesuai peraturan perundang-undangan. Semarang, 28 September 2011 Devie Kurnia W 4150406510 iii MOTTO DAN PERSEMBAHAN MOTTO : Biarlah hidup sewajarnya mengalir, seperti angin yang berhembus tanpa alasan yang pantas untuk dijadikan penjelasan. (Devie) The good fighters of old first put themselves beyond the possibility of defeat, and then waited for an opportunity of defeating the enemy. (Sun Tzu) “Sesungguhnya do‟a itu dapat memberi manfaat untuk sesuatu yang telah terjadi dan yang belum terjadi. Maka wahai hamba Allah lakukanlah do‟a itu (HR.Tirmidzi)”. Hargailah segala yang kau miliki; anda akan memiliki lebih lagi. Jika anda fokus pada apa yang tidak anda miliki, anda tidak akan pernah merasa cukup dalam hal apapun. ( Oprah Winfrey) PERSEMBAHAN : Skripsi ini saya persembahkan untuk 1. Bapak dan ibuku tercinta yang selalu menyayangi dan mendoakan dalam setiap langkahku, terimakasih atas kasih sayang, perhatian, do‟a serta segenap dukungan yang telah diberikan selama ini. 2. Sahabat-sahabatku : ina, siska, liyung, d‟somplaks (lia, tri, nurul, zizah), asti, suny, alfi, terima kasih atas supportnya. 3. Teman-teman Matematika Paralel Angkatan „06. 4. Teman-teman kost ”Wisma Karya”, terima kasih atas dukungannya. iv PRAKATA Alhamdulillah, segala puji bagi Allah SWT yang senantiasa melimpahkan rahmat, hidayah dan inayah-Nya, sehingga penulis dapat menyelesaikan skripsi yang berjudul: “APLIKASI METODE TRANSPORTASI DENGAN PROGRAM SOLVER DALAM MEMINIMUMKAN BIAYA PENGIRIMAN PRODUK (STUDI KASUS PT. RAJAA TUNGGAL)” dengan baik dan lancar. Skripsi ini dapat diselesaikan berkat bimbingan dan bantuan dari berbagai pihak. Oleh karena itu, dengan kerendahan hati disampaikan terima kasih kepada yang terhormat : 1. Prof. Dr. H. Sudijono Sastroatmodjo, M.Si selaku Rektor Universitas Negeri Semarang yang telah memberikan izin kuliah dan segala fasilitas untuk menyelesaikan skripsi ini. 2. Dr. Kasmadi Imam S., M.S selaku Dekan Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Semarang atas ijinnya untuk melakukan penelitian. 3. Drs. Edy Soedjoko, M.Pd selaku Ketua Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Semarang yang telah mendorong dan mengarahkan selama menempuh studi. 4. Dr. Dwijanto, M.S selaku Dosen Pembimbing I dengan penuh kesabaran memberikan bimbingan, bantuan dan dorongan dalam penulisan skripsi ini. 5. Drs. Mashuri, M.Si selaku Dosen Pembimbing II dengan penuh kesabaran memberikan bimbingan, bantuan dan dorongan dalam penulisan skripsi ini. v 6. Muhammad Kharis,S.Si., M.Sc selaku Dosen Penguji yang memberikan bimbingan dalam penulisan skripsi ini. 7. Seluruh Dosen Matematika yang telah membimbing dan memberikan ilmunya kepada penulis. 8. Kepala dan seluruh karyawan PT. Rajaa Tunggal atas izin penelitian yang telah diberikan. 9. Keluarga, sahabat, dan teman-teman yang telah memberikan do‟a, semangat, dan dukungan. 10. Semua pihak yang telah membantu dalam penyelesaian skripsi ini yang tidak bisa disebutkan satu per satu. Mudah-mudahan apa yang dituangkan dalam skripsi ini dapat menambah informasi dan bermanfaat bagi semua pihak. Semarang, September 2011 Penulis vi ABSTRAK Wijayanti, Devie Kurnia. 2011. “Aplikasi Metode Transportasi dengan Program Solver dalam Meminimumkan Biaya Pengiriman Produk (Studi Kasus PT. Rajaa Tunggal)”. Skripsi, Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Semarang. Pembimbing Utama Dr. Dwijanto, MS. dan Pembimbing Pendamping Drs. Mashuri, M.Si. Kata kunci : transportasi, solver, biaya. Persoalan transportasi membahas masalah pendistribusian suatu komoditas atau produk dari sejumlah sumber ke sejumlah tujuan, dengan tujuan meminimumkan ongkos pengangkutan yang terjadi. Oleh karena itu perlu dilakukan suatu usaha agar biaya pengiriman produk seminimal mungkin. Program solver merupakan salah satu software yang banyak digunakan untuk masalah optimasi misalnya dalam menyelesaikan masalah transportasi. PT. Rajaa Tunggal merupakan suatu perusahaan yang memproduksi rokok di Surakarta. Pada perusahaan tersebut biaya transportasi dari produk yang dikirimkan ke distributor belum efektif karena belum menggunakan metode transportasi yang sudah ada. Sehingga diperlukan analisa tentang sistem pendistribusian yang tepat dari sumber dan tujuan yang ada dengan alternatif jalur untuk rute yang dilewati mampu meminimumkan biaya pengiriman. Permasalahan dalam penelitian ini adalah bagaimana penerapan metode transportasi dengan program solver dalam meminimumkan biaya pengiriman produk di PT. Rajaa Tunggal dan apakah pembiayaan transportasi yang dikeluarkan PT. Rajaa Tunggal sudah optimum. Tujuan penelitian ini adalah untuk mengetahui penerapan metode transportasi dengan program solver dalam meminimumkan biaya pengiriman produk di PT. Rajaa Tunggal dan untuk mengetahui apakah pembiayaan transportasi yang dikeluarkan PT. Rajaa Tunggal sudah optimum. Metode penelitian ini adalah kajian teori menggunakan metode studi pustaka dan kajian terapan menggunakan metode komputerisasi untuk meminimasi biaya pengiriman produk dengan menggunakan program solver. Hasil analisis transportasi dengan program solver pada bulan November 2010 diperoleh biaya pendistribusian untuk semua produk sebesar Rp 10.615.600,-. Sedangkan biaya yang harus dikeluarkan oleh perusahaan sebesar Rp 12.722.600,-. Jadi, diperoleh selisih biaya pendistribusian sebesar Rp 2.107.000,- atau 16,51% dari total biaya yang dikeluarkan. Berarti biaya pendistribusian produk pada periode tersebut dapat diminimumkan. Simpulan dari penelitian ini adalah proses pendistribusian barang di PT. Rajaa Tunggal belum optimal dari segi biaya, namun pada kenyataannya perusahaan masih mempergunakan jalur transportasi yang sudah ditetapkan karena adanya pertimbangan dari faktor-faktor lain yang mempengaruhi proses pendistribusian itu sendiri seperti efisiensi waktu pengiriman. Saran untuk perusahaan hendaknya dapat mengaplikasikan metode transportasi dengan program solver dengan adanya perubahan rute transportasi dari pabrik ke regional maupun dari regional ke kota tujuan agar diperoleh biaya yang minimum. vii DAFTAR ISI Halaman PRAKATA .................................................................................................. vi ABSTRAK .................................................................................................. viii DAFTAR ISI ............................................................................................... ix DAFTAR TABEL ....................................................................................... xii DAFTAR GAMBAR .................................................................................. xv DAFTAR LAMPIRAN ................................................................................ xvii BAB 1. PENDAHULUAN ................................................................................... 1 1.1 Latar Belakang Masalah ………...…………………………………. 1 1.2 Rumusan Masalah ………………………………………………... 4 1.3 Pembatasan Masalah …………………........................................... 5 1.4 Tujuan Penelitian ............................................................................. 5 1.5 Manfaat Penelitian ........................................................................... 6 1.6 Sistematika Penulisan ….................................................................. 7 2. TINJAUAN PUSTAKA ......................................................................... 9 2.1 Riset Operasi ..................................................................................... 9 2.2 Program Linear ................................................................................ . 12 2.3 Biaya ................................................................................................ . 17 2.4 Transportasi .................................................................................... . 21 viii 2.4.1 Metode Transportasi ………………………………................... 24 2.4.2 Prosedur Penyelesaian Metode Trasportasi …………………… 25 2.4.3 Model Transportasi ................................................................... 26 2.4.4 Keseimbangan Model Transportasi ... ...................................... 27 2.4.5 Algoritma Transportasi ... ......................................................... 28 2.4.5.1 Tabel Awal Matriks Tansportasi Denebula ... .............. 35 2.4.5.2 Optimalitas Distribusi Denebula ... .............................. 50 2.4.6 Model Transshipment ... ........................................................... 58 2.5 Program Solver ................................................................................. 64 2.5.1 Cara Menginstal Solver ............................................................ 64 2.5.2 Cara Menjalankan Solver.......................................................... 66 2.5.3 Program Solver untuk Menyelesaikan Masalah Transportasi.. 74 2.6 Gambaran Umum Perusahaan .......................................................... 78 3. METODE PENELITIAN ....................................................................... 81 3.1 Obyek Penelitian ............................................................................... 81 3.2 Jenis Data .......................................................................................... 81 3.3 Teknik Pengumpulan Data ................................................................ 82 3.4 Langkah-langkah Pengolahan Data .................................................. 82 4. HASIL PENELITIAN DAN PEMBAHASAN ...................................... 86 4.1 Hasil Penelitian ................................................................................ 86 4.2 Pembahasan ..................................................................................... 108 5. PENUTUP .............................................................................................. 111 5.1 Simpulan .......................................................................................... 111 ix 5.2 Saran ................................................................................................. 112 DAFTAR PUSTAKA................................................................................... 113 LAMPIRAN.................................................................................................. 114 x DAFTAR TABEL Tabel Halaman Tabel 2.1 Contoh Biaya yang Diestimasi dan Penggerak biaya ............ 19 Tabel 2.2 Variabel Bebas dan Variabel Terikat .................................... 21 Tabel 2.3 Tabel Model Transportasi ..................................................... 26 Tabel 2.4 Matriks Persoalan Transportasi ............................................. 30 Tabel 2.5 Tabel Awal Matriks Transportasi Denebula ......................... 35 Tabel 2.6 Metode NWC, seluruh kapasitas Yogyakarta didistribusikan ke Purwokerto ........................................................................ 36 Tabel 2.7 Metode NWC, permintaan Purwokerto terpenuhi ................. 36 Tabel 2.8 Metode NWC, Magelang memenuhi permintaan Purwokerto dan Semarang ........................................................................ 37 Metode NWC, permintaan Semarang terpenuhi .................... 38 Tabel 2.10 Metode NWC, pemintaan Madiun terpenuhi ......................... 38 Tabel 2.11 Metode NWC ......................................................................... 39 Tabel 2.12 Tabel awal dengan biaya terkecil, C32 = 2 adalah Cij terkecil 40 Tabel 2.9 Tabel 2.13 Tabel awal metode biaya terkecil, C33 = 3 adalah Cij terkecil setelah X32 terpenuhi .............................................................. 40 Tabel 2.14 Tabel awal metode biaya terkecil, setelah X11 terpenuhi, X21 menjadi Cij terkecil selanjutnya ............................................. 41 Tabel 2.15 Tabel awal metode biaya terkecil, C23 = 8 adalah 𝐶𝑖𝑗 terkecil setelah X32, X33, X11 dan X12 terpenuhi .................................. 42 Tabel 2.16 Tabel awal dengan metode biaya terkecil .............................. 42 Tabel 2.17 Matriks transportasi Denebula, VAM alokai pertama (penentuan selisih dua Cij terkecil) ........................................................... 45 Tabel 2.18 Matriks transportasi Denebula, VAM alokasi pertama .......... 45 Tabel 2.19 Matriks transportasi Denebula, VAM alokasi kedua ............. 46 Tabel 2.20 Matriks transportasi Denebula, VAM alokasi ketiga ............. 47 Tabel 2.21 Matriks transportasi Denebula, VAM alokasi keempat ......... 48 xi Tabel 2.22 Matriks transportasi Denebula, VAM alokasi kelima ............ 48 Tabel 2.23 Matriks transportasi Denebula, VAM lengkap ...................... 49 Tabel 2.24 MODI, U1 = 0 utuk menentukan V1 ....................................... 52 Tabel 2.25 MODI, U1 = 0 dan C11 = 4, maka V1 = 4 ............................... 52 Tabel 2.26 MODI, U2 = 2 karena V1 = 4 dan C21 = 6 .............................. 53 Tabel 2.27 MODI, V3 = 6 karena U2 = 2 dan C23 = 8 .............................. 53 Tabel 2.28 MODI, U3 = 3 karena V3 = 6 dan C33 = 3 .............................. 54 Tabel 2.29 MODI, V2 = 5 karena U3 = 3 dan C32 = 2 .............................. 54 Tabel 2.30 Tabel awal yang disusun dengan menggunakan metode sudut barat laut dan VAM diuji dengan MODI ............................... 55 Tabel 2.31 Stepping Stone, pengujian sel 31 dan 32 ................................ 57 Tabel 2.32 Stepping Stone, pengujian sel 21 ............................................ 57 Tabel 2.33 Stepping Stone, pengujian sel 13 ............................................ 58 Tabel 2.34 Unit Biaya Transportasi Perusahaan Teh Kembang .............. 60 Tabel 2.35 Penyelesaian Optimal Kasus Perusahaan Teh Kembang ....... 62 Tabel 2.36 Tabel Transportasi .................................................................. 63 Tabel 2.37 Tabel Peyelesaian Pengiriman Kasus Teh Kembang ............ 64 Tabel 2.38 Tabel Awal ............................................................................. 67 Tabel 4.1 Tabel Jarak (KM) antara Pabrik, Regional dengan Kota Tujuan Pengiriman ............................................................ Tabel 4.2 88 Tabel Jumlah Permintaan Barang untuk Setiap Tujuan ( Bulan November 2010) .................................................................... 89 Tabel 4.3 Tabel Biaya (rupiah) Pengiriman ke Tempat Tujuan ........... 90 Tabel 4.4 Tabel Transportasi Gabungan untuk Semua Produk Rajaa Tunggal .................................................................................. Tabel 4.5 91 Tabel Alokasi Pengiriman Barang Berdasarkan Program . Solver (Semua Produk Rajaa)................................................ xii 94 Tabel 4.6 Tabel Transportasi Gabungan untuk Produk Rajaa Sejati .... Tabel 4.7 Tabel Alokasi Pengiriman Barang Berdasarkan Program 96 Solver (Produk Rajaa Sejati) ................................................. 97 Tabel 4.8 Tabel Transportasi Gabungan untuk Produk DJ ................... 99 Tabel 4.9 Tabel Alokasi Pengiriman Barang Berdasarkan Program Solver (Produk DJ) ................................................................ Tabel 4.10 Tabel Transportasi Gabungan untuk Produk Kalisanga (K9) ....................................................................................... Tabel 4.11 103 Tabel Transportasi Gabungan untuk Produk Rajaa Sejati Premium ................................................................................ Tabel 4.13 102 Tabel Alokasi Pengiriman Barang Berdasarkan Program . Solver (Produk K9) ................................................................ Tabel 4.12 100 105 Tabel Alokasi Pengiriman Barang Berdasarkan Program . Solver (Produk Rajaa Sejati Premium) .................................. 106 Tabel 4.14 Tabel Biaya Pengiriman ke Tempat Tujuan ......................... 108 Tabel 4.15 Tabel Alokasi Pengiriman Barang Berdasarkan Program . Solver (Semua Produk RAJAA) ............................................ xiii 109 DAFTAR GAMBAR Gambar Halaman Gambar 2.1 Flow Chart Algoritma Transportasi ................................... 29 Gambar 2.2 Jaringan Perusahaan Teh kembang .................................... 59 Gambar 2.3 Jaringan Transportasi yang Diturunkan dari Kasus Transit 62 Gambar 2.4 Customize Quick Access Toolbar ........................................ 65 Gambar 2.5 Menu Add-in ....................................................................... 65 Gambar 2.6 Configuration Progress ....................................................... 66 Gambar 2.7 Program Solver sudah ter-install ........................................ 66 Gambar 2.8 Persiapan penyelesaian solver ............................................ 68 Gambar 2.9 Penyelesaian solver ............................................................ 70 Gambar 2.10 Add Constraint ................................................................... 71 Gambar 2.11 Solver Option ..................................................................... 71 Gambar 2.12 Solver Result........................................................................ 72 Gambar 2.13 Lembar Kerja Answer ........................................................ 73 Gambar 2.14 Lembar Kerja Sensitivity .................................................... 73 Gambar 2.15 Lembar Kerja Limits .......................................................... 74 Gambar 2.16 Matriks Transportasi Awal ................................................. 75 Gambar 2.17 Menu Solver ........................................................................ 76 Gambar 2.18 Hasil Perhitungan dengan Solver ....................................... 77 Gambar 4.1 Persiapan Tabel Awal pada Lembar Kerja Excel ................ 92 Gambar 4.2 Solver Parameter ................................................................ 93 xiv Gambar 4.3 Solver Options .................................................................... Gambar 4.4 Penyelesaian dengan Program Solver untuk Semua Produk 93 Rajaa Tunggal .................................................................... 94 Gambar 4.5 Penyelesaian untuk Produk Rajaa Sejati ............................. 97 Gambar 4.6 Penyelesaian untuk Produk DJ ............................................ 100 Gambar 4.7 Penyelesaian untuk Produk K9 ........................................... 103 Gambar 4.8 Penyelesaian untuk Produk Rajaa Sejati Premium ............. 106 xv DAFTAR LAMPIRAN Lampiran Lampiran 1 Halaman Tabel Jarak (KM) antara Pabrik, Regional dengan Kota Tujuan Pengiriman .............................................................. 114 Lampiran 2 Tabel Jumlah Permintaan Barang untuk Setiap Tujuan ( Bulan November 2010) .................................................................... 115 Lampiran 3 Tabel Biaya (rupiah) Pengiriman ke Tempat Tujuan ........... 116 Lampiran 4 Tabel Alokasi Pengiriman Barang Berdasarkan Program . Solver (Semua Produk Rajaa)................................................ Lampiran 5 Tabel Alokasi Pengiriman Barang Berdasarkan Program Solver (Produk Rajaa Sejati) ................................................. Lampiran 6 120 Tabel Alokasi Pengiriman Barang Berdasarkan Program . Solver (Produk K9) ................................................................ Lampiran 8 118 Tabel Alokasi Pengiriman Barang Berdasarkan Program Solver (Produk DJ) ................................................................ Lampiran 7 117 121 Tabel Alokasi Pengiriman Barang Berdasarkan Program . Solver (Produk Rajaa Sejati Premium) .................................. 122 Struktur Organisasi PT. Rajaa Tunggal ................................. 123 Lampiran 10 Foto Pabrik PT. Rajaa Tunggal ............................................ 124 Lampiran 11 Foto Produk PT. Rajaa Tunggal ............................................ 125 Lampiran 12 Surat Ijin Penelitian .............................................................. 126 Lampiran 13 Surat Keterangan PT. Rajaa Tunggal ................................... 127 Lampiran 9 xvi BAB 1 PENDAHULUAN 1.1 Latar Belakang Dengan berkembangnya zaman dan kemajuan teknologi yang semakin canggih banyak sekali perusahaan yang berdiri dan bergerak di bidang jasa maupun manufaktur menyebabkan persaingan yang kompetitif. Untuk tetap bertahan dalam kondisi seperti ini, tentunya diperlukan suatu manajemen yang baik. Salah satunya yaitu permasalahan biaya pengiriman (penyaluran) produk atau barang ke konsumen yang mengalami kenaikan akibat kurs rupiah terhadap dollar. Masalah pendistribusian produk itu sendiri berkaitan langsung dengan masalah transportasi yang merupakan salah satu masalah yang sering dihadapi karena tidak adanya koordinasi dalam pengiriman produk, sehingga memungkinkan terjadinya pembengkakan biaya pengiriman. Jadi, untuk itu perlu dilakukan suatu usaha agar biaya pengiriman produk seminimal mungkin. PT. Rajaa Tunggal merupakan suatu perusahaan yang memproduksi rokok di Surakarta. Kegiatan produksi PT. Rajaa Tunggal dilakukan di pabrik utama yang terletak di Dk. Jembangan Ds. Gagak Sipat Kec. Ngemplak Kab. Boyolali yang akan dipasarkan melalui distributor atau agen pemasaran lalu akan dikirim ke subdistributor dan kemudian dipasarkan ke konsumen. Perusahaan ini mempunyai beberapa perwakilan atau regional yang tersebar di beberapa daerah 1 2 di pulau Jawa. Perwakilan untuk wilayah Jawa bagian tengah yaitu Surakarta, Salatiga, Banyumas, Temanggung dan untuk wilayah Jawa bagian timur yaitu Ponorogo. Sedangkan daerah tujuan pengirimannya yaitu Surakarta, Boyolali, Sukoharjo, Klaten, Karanganyar, Wonogiri, Sragen, Salatiga, Blora, Rembang, Pati, Kendal, Banyumas, Cilacap, Temanggung dan Ponorogo. Perusahaan melakukan pengiriman berdasarkan jumlah permintaan daerah distributor. Jumlah permintaan tersebut tiap periodenya naik turun karena dipengaruhi oleh faktor-faktor seperti kualitas, persaingan pasar, pendapatan masyarakat yang tidak tetap, selera konsumen, pemasaran dan lain-lain. Meskipun daerah pemasaran perusahaan semakin meluas tetapi adanya faktor-faktor tersebut dapat menyebabkan permintaan konsumen mengalami peningkatan pada periode tertentu dan penurunan pada periode lain. Untuk dapat memenuhi setiap permintaan daerah distributor yang dapat meningkat atau menurun setiap saat, pihak perusahaan harus dapat mengalokasikan produksinya secara optimal ke setiap daerah pemasaran dengan tepat waktu sehingga dapat menekan atau meminimumkan biaya transportasi yang dikeluarkan, hal ini dikarenakan di perusahaan tersebut belum digunakan metode transportasi yang sudah ada sehingga biaya transportasi yang dikeluarkan dari produk yang dikirimkan ke distributor belum efektif. Dengan demikian diperlukan analisa tentang sistem pendistribusian yang tepat dari sumber dan tujuan yang ada dengan alternatif jalur untuk rute yang dilewati mampu meminimumkan biaya pengiriman. 3 Riset Operasi adalah salah satu ilmu terapan praktis yang selalu diperlukan dalam peradaban, berkaitan dengan masalah optimalisasi, yaitu berkaitan dengan tujuan untuk memaksimumkan atau meminimumkan sesuatu. Optimalisasi dalam pembuatan keputusan ini dapat dicapai dengan menggunakan analisis kuantitatif yang mendasarkan pada pengalaman dan pertimbangan manajerial, dan analisis kuantitatif yang menggunakan teknik matematika dan statistik. Dalam riset operasi, optimalisasi tujuan pembuatan keputusan didasarkan pada analisis kuantitatif. Ada banyak metode analisis kuantitatif yang dapat digunakan, mulai dari yang sederhana hingga yang kompleks. Banyak model riset operasi yang sudah dikembangkan yang berhubungan dengan matematika. Salah satunya adalah program linear. Program Linear merupakan salah satu alat yang digunakan untuk menyelesaikan masalah optimalisasi suatu model linier dengan keterbatasan-keterbatasan yang tersedia. Masalah program linear berkembang pesat setelah diketemukan oleh George Dantzig pada tahun 1947 (Dwijanto 2008:13). Program linear merupakan model dari riset operasi yang banyak digunakan dalam bidang industri, transportasi, perdagangan, ekonomi dan berbagai bidang lainnya. Tipe khusus persoalan program linier yang paling penting yaitu persoalan transportasi. Persoalan transportasi membahas masalah pendistribusian suatu komoditas atau produk dari sejumlah sumber (supply) kepada sejumlah tujuan (demand) dengan tujuan meminimumkan ongkos pengangkutan yang terjadi. Metode transportasi merupakan salah satu metode program linear untuk memecahkan permasalahan alokasi sumber daya organisasi (modal, waktu 4 penyelesaian pekerjaan, kapasitas mesin, bahan baku, tenaga kerja, dan lain sebagainya) yang terbatas. Seperti halnya metode program linear yang lain, hasil akhir dari metode transportasi adalah suatu solusi optimal dari fungsi tujuan dengan batas yang ada. Penggunaan software dalam menyelesaikan masalah optimasi sangatlah penting. Terutama bila melibatkan banyak iterasi dalam menemukan solusi optimum dari suatu masalah. Program Solver merupakan salah satu software yang banyak digunakan untuk masalah optimasi misalnya dalam menyelesaikan masalah transportasi. Program solver adalah program add in yang berada dibawah program excel. Program solver ini berisi perintah-perintah yang berfungsi untuk melakukan analisis terhadap masalah optimalisasi (Dwijanto 2008:49). Sehubungan dengan latar belakang diatas maka penelitian ini mengambil judul “Aplikasi Transportasi dengan Program Solver dalam Meminimumkan Biaya Pengiriman Produk (Studi Kasus PT. Rajaa Tunggal)”. 1.2 Rumusan Masalah Berdasarkan latar belakang diatas, permasalahan-permasalahan yang akan diangkat dalam penelitian ini adalah sebagai berikut. 1. Bagaimana penerapan metode transportasi dengan program solver dalam meminimumkan biaya pengiriman produk di PT. Rajaa Tunggal? 2. Apakah pembiayaan transportasi yang dikeluarkan PT. Rajaa Tunggal sudah optimum? 5 1.3 Pembatasan Masalah Mengingat banyak dan luasnya permasalahan serta agar tujuan pembahasan lebih terarah, maka dalam penelitian ini dilakukan pembatasan masalah sebagai berikut. 1. Biaya transportasi untuk produk, dari tiap distributor sampai ke subdistributor. 2. Jumlah kebutuhan dari tiap distributor dan permintaan dari tiap subdistributor telah ditentukan oleh perusahaan. 3. Penelitian dilakukan pada distribusi wilayah Pulau Jawa bagian tengah dan timur. a. Agen : Surakarta, Salatiga, Banyumas, Temanggung, Ponorogo. b. Kota Tujuan : Surakarta, Boyolali, Klaten, Wonogiri, Karanganyar, Sukoharjo, Blora, Rembang, Salatiga, Kendal, Pati, Banyumas, Cilacap, Temanggung, Ponorogo. c. Armada kirim dari perusahaan (Truk Ekspedisi). 4. Produk yang diteliti adalah produk Rokok Rajaa Sejati, DJ, Kalisanga, dan Rajaa Sejati Premium. 1.4 Tujuan Penelitian Adapun tujuan yang diharapkan dalam penelitian ini adalah sebagai berikut. 1. Untuk mengetahui penerapan metode transportasi dengan program solver dalam meminimumkan biaya pengiriman produk di PT. Rajaa Tunggal. 6 2. Untuk mengetahui apakah pembiayaan transportasi PT. Rajaa Tunggal sudah optimum atau belum. 1.5 Manfaat Penelitian Adapun manfaat yang dapat diambil dari penelitian ini adalah sebagai berikut. 1. Bagi Peneliti Manfaat yang bisa diambil bagi peneliti adalah peneliti dapat menambah wawasan, pengetahuan, dan mampu menerapkan ilmu-ilmunya, khususnya masalah transportasi dengan program solver, sehingga dapat memantapkan pemahaman mengenai teori-teori yang diperoleh selama mengikuti perkuliahan serta mampu menerapkan ilmunya dalam kehidupan nyata. 2. Bagi Perusahaan Manfaat yang bisa diambil bagi perusahaan adalah sebagai bahan referensi dan memberikan informasi kepada perusahaan dalam melakukan evaluasi untuk meningkatkan dan memperbaiki dalam sistem transportasi. 3. Bagi Pembaca Manfaat yang bisa diambil bagi pembaca adalah menambah pengetahuan tentang masalah transportasi dan dapat menerapkannya dalam kehidupan seharihari. 7 1.6 Sistematika Penulisan Penulisan skripsi ini secara garis besar dibagi menjadi tiga bagian, yaitu bagian awal, bagian isi, dan bagian akhir. Bagian awal, memuat halaman judul, halaman pengesahan, abstraksi, halaman motto dan persembahaan, kata pengantar, daftar isi, daftar tabel dan daftar gambar. Bagian isi terdiri atas 5 bab, yaitu: BAB 1 PENDAHULUAN Pada bab ini berisi latar belakang masalah, rumusan masalah, pembatasan masalah, tujuan penelitian dan manfaat penelitian, serta sistematika penulisan. BAB 2 TINJAUAN PUSTAKA Pada bab ini berisi uraian singkat dari teori-teori yang mendukung penelitian ini meliputi masalah riset operasi, optimalisasi, metode transportasi, program solver, serta gambaran mengenai PT. Rajaa Tunggal. BAB 3 METODE PENELITIAN Pada bab ini berisi tentang objek penelitian, teknik pengumpulan data, perumusan masalah, pemecahan masalah, dan penarikan kesimpulan. BAB 4 HASIL PENELITIAN DAN PEMBAHASAN Pada bab ini berisi tentang deskripsi mengenai objek penelitian, data yang diperoleh dari hasil penelitian, dan pembahasan hasil. BAB 5 PENUTUP Pada bab ini berisi kesimpulan dan saran. 8 Bagian akhir memuat daftar pustaka sebagai acuan penulisan dan lampiranlampiran yang mendukung kelengkapan skripsi. BAB 2 LANDASAN TEORI 2.1 Riset Operasi Istilah Riset Operasi pertama kali digunakan pada tahun 1940 oleh Mc Closky dan Trefthen di suatu kota kecil, Bowdsey, Inggris. Pada masa perang 1939, pemimpin militer Inggris memanggil sekelompok ahli-ahli sipil dari berbagai disiplin dan mengkoordinasi mereka ke dalam suatu kelompok yang diserahi tugas mencari cara-cara efisien untuk menggunakan alat yang baru ditemukan yang dinamakan radar dalam suatu sistem peringatan dini menghadapi serangan udara. Kelompok ahli Inggris ini dan kelompok-kelompok lain berikutnya melakukan penelitian (research) pada operasi-operasi (operations) militer (Mulyono, 2004:1) Menurut teori evolusi managemen, Operation Research sebagai suatu bagian dari ilmu pengetahuan baru mulai berkembang sejak tahun 1945, yaitu pada saat Perang Dunia Kedua. Pendekatan kuantitatif yang digunakan di dalam penyelesaian suatu persoalan, dimana matematika dan statistica memegang peranan yang sangat dominan, telah menempatkan Operations Research secara teoritis sebagai sebuah ilmu pengetahuan yang berakar ke Scientific Management yang dipelopori oleh Taylor pada abad XVII. Di Inggris, Operations Research dikenal sebagai Operational Research (Siswanto, 2007:3). 9 10 Pada masa Perang Dunia II, angkatan perang Inggris membentuk suatu team yang terdiri dari atas para ilmuwan untuk mempelajari persoalan-persoalan strategi dan taktik sehubungan dengan serangan-serangan yang dilancarkan musuh terhadap negaranya. Tujuan mereka adalah untuk menentukan penggunaan sumber-sumber kemiliteran terbatas, seperti radar dan bomber, dengan cara yang paling efektif. Karena team tersebut melakukan research (penelitian) terhadap operasi-operasi militer, maka muncullah nama ”(Military) Operation Research” (Penelitian Operational untuk masalah-masalah kemiliteran), yang semenjak kelahirannya telah ditandai dengan digunakannya pengetahuan ilmiah dalam usaha menentukan penggunaan sumber-sumber yang terbatas (Dimyati dan Dimyati, 2004:1). Dipicu oleh keberhasilan Riset Operasi di dalam operasi-operasi militer, berbagai bidang industri dan usaha secara bertahap menjadi tertarik dengan bidang baru ini. Paling sedikit ada dua faktor yang memainkan peranan penting di dalam perkembangan penerapan Riset Operasi yang sangat pesat di bidang industri (Siswanto, 2007:4). Setelah Perang Dunia II berakhir, Riset Operasi yang lahir di Inggris ini kemudian berkembang pesat di Amerika karena keberhasilan tim Riset Operasi dalam bidang militer ini telah menarik perhatian orang-orang industry. Sedemikian pesat perkembangannya sehingga kini Riset Operasi telah digunakan dalam hampir seluruh bidang (Dimyati dan Dimyati, 2004:1). Secara harfiah kata operations dapat didefinisikan sebagai tindakantindakan yang diterapkan pada beberapa masalah atau hipotesa. Sementara kata 11 research adalah suatu proses yang terorganisasi dalam mencari kebenaran akan masalah atau hipotesa tadi. Kenyatannya, sangat sulit mendefinisikan OR, terutama karena batas-batasnya tidak jelas. OR memiliki bermacam-macam penjelasan, namun hanya beberapa yang biasa digunakan dan diterima secara umum (Mulyono, 2004:2). Riset operasi meliputi ”riset mengenai operasi”. Nama ini menyatakan sesuatu mengenai pendekatan dan bidang aplikasi dari bidang ini. Maka, riset operasi diterapkan kepada masalah-masalah mengenai bagaimiana melaksanakan dan mengkoordinasikan operasi atau kegiatan-kegiatan dalam suatu organisasi (Hillier, 1990:4). OR adalah suatu metode untuk memecahkan masalah optimasi. Model lain dalam riset operasi selain program linear antara lain Pemrograman Dinamik, Analisis Jaringan, Rantai Markov, Teori Permainan, Pemrograman Non Linear, dan Pemrogaman Bilangan Bulat (Suyitno, 1997:1). Riset Operasi adalah penerapan metode-metode ilmiah terhadap masalahmasalah yang muncul dalam pengarahan dan pengelolaan dari suatu sistem besar manusia, mesin, bahan dan uang industri, bisnis, pemerintahan dan pertahanan. Pendekatan khusus ini bertujuan untuk membentuk suatu model ilmiah dari sistem, mengabungkan ukuran-ukuran faktor-faktor seperti kesempatan resiko, untuk meramalkan dan membandingkan hasil-hasil dari beberapa keputusan, strategi atau pengawasa. Tujuannya adalah membantu pengambilan keputusan menentukan kebijaksanaan dan tindakannya secara ilmiah (Operational Research Society of Great Britian) (Mulyono, 2004:2). 12 Dalam riset operasional, masalah optimasi dalam pengambilan keputusan diperoleh dengan menerapkan teknik matematika dan statistika. Model matematika yang menyederhanakan digunakan masalah dalam dan metode membatasi riset operasional faktor-faktor yang bersifat mungkin berpengaruh terhadap suatu masalah. Jika riset operasi akan digunakan untuk memecahkan suatu permasalahan, maka harus dilakukan lima langkah sebagai berikut. 1. Memformulasikan persoalan. 2. Mengobservasi sistem. 3. Memformulasikan model matematis dari persoalan yang dihadapi. 4. Mengevaluasi model dan menggunakannya untuk prediksi. 5. Mengimplementasikan hasil studi. (Dimyati dan Dimyati, 2004:4-5) 2.2 Program Linear Program linear (Linear Programming yang disingkat LP) merupakan salah satu teknik OR yang digunakan paling luas dan diketahui dengan baik. LP merupakan metode matematik dalam mengalokasikan sumber daya yang langka untuk mencapai tujuan tunggal seperti memaksimumkan keuntungan atau meminimumkan biaya. LP banyak diterapkan dalam membantu menyelesaikan masalah ekonomi, industri, militer, social dan lain-lain. LP berkaitan dengan penjelasan suatu dunia nyata sebagai suatu model matematik yang terdiri atas sebuah fungsi tujuan linear dan sistem kendala linear (Mulyono, 2004: 13). 13 George B. Dantzig diakui umum sebagai pioner LP, karena jasanya dalam menemukan metode mencari solusi masalah LP dengan banyak variable keputusan. Dantzig bekerja pada penelitian teknik matematik untuk memecahkan masalah logistic militer ketika ia dipekerjakan oleh angkatan udara Amerika Serikat selama Perang Dunia II. Penelitiannya didukung oleh ahli-ahli lain seperti: J. Von Neumann, L. Hurwicz dan T. C. Koopmans, yang bekerja pada subyek yang sama (Mulyono, 2004:14). Pemrograman linear memakai suatu model matematis untuk menggambarkan masalah yang dihadapi. Kata sifat „linear‟ berarti bahwa semua fungsi matematis dalam model ini harus merupakan fungsi-fungsi linear. Kata „pemrograman‟ disini merupakan sinonim untuk kata perencanaan. Maka, membuat pemrograman linear adalah membuat rencana kegiatan-kegiatan untuk memperoleh hasil yang optimal, ialah suatu hasil mencapai tujuan yang ditentukan dengan cara yang paling baik (sesuai model matematis) di antara semua alternatif yang mungkin (Hillier, 1990:27). Istilah Pemrograman Linear secara eksplisit telah menunjukkan karakteristiknya. Seluruh fungsi matematika model harus berupa fungsi matematika linear dan penyelesaian optimal diturunkan melalui teknik optimasi linear (Siswanto, 2007:24). Contoh untuk permasalahan yang memaksimumkan adalah masalah keuntungan, sedangkan contoh untuk permasalahan meminimumkan adalah masalah biaya, sediaan, dan lain-lain. Kendala-kendala yang sering dijumpai adalah keterbatasan bahan mentah, tenaga kerja, dan lain sebagainya. Kendala- 14 kendala ini dapat diekspresikan dalam bentuk sejumlah persamaan atau pertidaksamaan linear dalam variabel atau peubahnya. Jadi fungsi yang akan dioptimumkan merupakan suatu penyelesaian atatu solusi layak yang mempunyai nilai fungsi tujuan yang dikehendaki. Nilai yang dikehendaki dapat berupa nilai terbesar yaitu fungsi tujuan berupa nilai maksimum sedangkan nilai terkecil yaitu fungsi tujuan berupa nilai minimum. Program linear yang diterjemahkan dari Linear Programming (LP) adalah suatu cara untuk menyelesaikan persoalan pengalokasian sumber-sumber yang terbatas diantara aktifitas yang bersaing, dengan cara yang terbaik yang mungkin dilakukan (Dimyati dan Dimyati, 2004:17). Menurut Suyitno (1997:2), pemecahan masalah program linear melalui tahap-tahap. 1. Memahami masalah di bidang yang bersangkutan, 2. Menyusun model matematika, 3. Menyelesaikan model matematika (mencari jawaban model), 4. Menafsirkan jawaban model menjadi jawaban atas masalah yang nyata. Karakteristik-karakteristik yang biasanya digunakan dalam persoalan program linear adalah sebagai berikut. 1. Variabel keputusan, adalah variabel yang menguraikan secara lengkap keputusan-keputusan yang akan dibuat atau berarti pula sebagai kumpulan variabel yang akan dicari untuk ditentukan nilainya. 2. Fungsi tujuan, merupakan fungsi dari variabel keputusan yang akan dioptimumkan. Fungsi tujuan merupakan pernyataan matematika yang 15 menyatakan hubungan Z (nilai fungsi tujuan) dengan jumlah dari perkalian semua koefisien fungsi tujuan. 3. Pembatas, merupakan kendala yang dihadapi sehingga kita tidak bisa menentukan harga-harga variabel keputusan secara sembarang. Koefisien dari variabel keputusan pada pembatas disebut koefisien teknis, sedangkan bilangan yang ada disisi kanan setiap pembatas disebut ruas kanan pembatas. 4. Pembatas tanda, adalah pembatas yang menjelaskan apakah variabel keputusannya diasumsikan hanya berharga nonegatif atau variabel keputusan tersebut boleh berharaga positif atau negatif (tidak terbatas pada tanda). Tidak semua masalah optimasi dapat diselesaikan dengan metode program linear. Beberapa prinsip mendasari penggunaan metode program linear. Prinsipprinsip utama dalam program linear adalah sebagai berikut. 1. Adanya sasaran. Sasaran dalam model matematiaka masalah program linear berupa fungsi tujuan (fungsi objektif) yang akan dicari nilai optimalnya (maksimum/ minimum). 2. Ada tindakan alternatif, artinya nilai fungsi tujuan dapat diperoleh dengan berbagai cara dan diantaranya alternatif itu memberikan nilai optimal. 3. Adanya keterbatasan sumber daya. Sumber daya atau input dapat berupa waktu, tenaga, biaya, bahan, dsb. Pembatasan sumber daya disebut dengan kendala (constrains) pembatas. 16 4. Masalah harus dapat dituangkan dalam bahasa matematika yang disebut model matematika. Model matematika dalam program linear memuat fungsi tujuan dan kendala. Fungsi tujuan harus berupa fungsi linear dan kendala berupa pertidaksamaan atau persamaan linear. 5. Antar variabel yang membentuk fungsi tujuan dan kendala ada keterikatan, artinya perubahan pada satu peubah akan mempengaruhi nilai peubah yang lain. Menurut Suyitno (1997:4), model matematika merupakan ungkapan suatu masalah dalam bahasa matematika. Sedangkan menurut Dimyati dan Dimyati (2004:3), model matematika adalah penggambaran dunia nyata melalui simbolsimbol matematis. Petunjuk untuk menyusun model matematika adalah sebagai berikut. 1. Menentukan tipe dari masalah (maksimasi atau minimasi). Jika masalahnya menyangkut informasi tentang keuntunga, biasanya masalah memaksimumkan. Jika masalahnya berkaitan dengan biaya, biasanya masalah meminimumkan. 2. Mendefinisikan variabel keputusan. Bilangan dari koefisien kontribusi digunakan untuk menentukan tipe masalah dan untuk membantu mengidentifikasi variabel keputusan. 3. Merumuskan fungsi tujuan. Sesudah menentukan tipe masalah dan variabel keputusan, selanjutnya mengkombinasikan informasi ke rumusan fungsi tujuan. 17 4. Merumuskan kendala. Bagian yang paling sulit dalam memformulasikan masalah program linear adalah merumuskan kendala. Tahap ini lebih merupakan seni dari pada ilmu pengetahuan. Ada dua pendekatan dasar, yaitu: a. Pendekatan ruas kanan, merupakan besar maksimum dari sumber daya yang tersedia dalam masalah maksimum maupun minimum dari sumber daya yang tersedia dalam masalah minimum. b. Pendekatan ruas kiri, merupakan koefisien teknis dari daftar dalam tebel atau baris-baris, meletakkan semua nilai sebagai koefisien teknis dan daftarnya dalam baris dan kolom. 5. Persyaratan nonnegatif. Persyaratan ini harus ada dalam model matematika, karena variabel keputusan biasanya mewakili banyak unit dari beberapa produksi atau sesuatu untuk diproduksi atau suatu pelayanan tertentu. 2.3 Biaya Biaya/ Beban (Expense) adalah semua pengeluaran uang, pengorbanan atau pemakaian aktiva untuk memperoleh pendapatan atau hasil. Hal ini akan mengakibatkan berkurangnya aktiva bukan karena penarikan kembali modal oleh pemilik atau karena pembayaran utang kepada pihak lain (Kusmuriyanto, 2005:12). Biaya sering kali didefinisikan sebagai penggunaan sumber daya yang mempunyai konsekuensi keuangan (Blocher, 2007:4). 18 Langkah pertama yang sangat penting untuk memperoleh keunggulan kompetitif adalah mengidentifikasi penggerak biaya utama dalam perusahaan atau organisasi. Penggerak biaya (cost driver) merupakan faktoryang memberi dampak pada perubahan tingkat biaya total. Perusahaan mengeluarkan biaya (cost) jika menggunakan sumber daya untuk tujuan tertentu. Contohnya, perusahaan yang memproduksi peralatan dapur, mempunyai biaya bahan baku (seperti logam dan baut), biaya tenaga kerja, dan biaya-biaya lainnya. Seringkali biaya dikumpulkan ke dalam kelompok-kelompok tertentu, disebut dengan tempat penampungan biaya (cost pools). Ada banyak cara yang berbeda dalam mengelompokkan biaya-biaya individual. Objek biaya (cost object) adalah berbagai produk, jasa, atau unit organisasi di mana umumnya biaya dibebankan untuk beberapa tujuan manajemen. Informasi manajemen biaya sangat penting dalam merencanakan biaya dan mengambil keputusan (perencanaan untuk produk baru atau perluasan pabrik dan pengambilan keputusan lainnya). Namun demikian, kebutuhan mendasar dari perencanaan biaya yang efektif adalah untuk menggunakan estimasi biaya yang akurat dalam proses perencanaan. Estimasi biaya memfasilitasi manajemen strategi dengan dua cara utama. Pertama, estimasi biaya membantu memperkirakan biaya di masa yang akan datang dengan menggunakan penggerak biaya berdasarkan aktivtas, volume, struktural, atau pelaksanaan yang telah diidentifikasi telebih dahulu. Kedua, estimasi biaya membantu mengidentifikasi penggerak biaya utama suatu objek 19 dan mana dari penggerak-penggerak biaya yang paling berguna dalam memprediksi biaya. Langkah-langkah dari estimasi biaya, yaitu sebagai berikut. 1. Menentukan objek biaya yang berkaitan dengan biaya yang diestimasi. 2. Menentukan penggerak biaya. 3. Mengumpulkan data yang konsisten dan akurat atas objek biaya dan penggerak biaya. 4. Membuat grafik data. 5. Memilih dan menggunakan metode estimasi yang tepat. 6. Mengevaluasi keakuratan dari estimasi biaya. Beberapa contoh biaya yang diestimasi dan penggerak biayanya yang terkait adalah sebagai berikut. Tabel 2.1 Contoh Biaya yang Diestimasi dan Penggerak biaya Biaya yang Diestimasi Penggerak Biaya Biaya bahan bakar untuk kendaraan Jarak tempuh Biaya pemanas ruangan untuk bangunan Suhu yang dipertahankan dalam bangunan Jam kerja mesin, jam kerja tenaga kerja langsung Jumlah desain, perubahan desain Biaya pemeliharaan untuk bangunan pabrik Biaya desain produk Terdapat tiga metode estimasi, yaitu sebagai berikut. 1. Metode titik tinggi rendah (high-low method). 2. Metode pengukuran kerja (work meansurement). 3. Metode analisis regresi (regression analysis). 20 Metode-metode diurutkan dari yang paling rendah tingkat keakuratannya sampai yang paling tinggi keakuratannya. Namun, biaya dan usaha yang diperlukan untuk mengolah ketiga metode tersebut kebalikan urutannya. Pengembangan analisis regresi dimulai dengan memilih objek biaya, yang merupakan variabel terikat. Variabel terikat mungkin disajikan pada tingkat yang sangat luas (agregat), seperti total biaya pemeliharaan untuk seluruh perusahaan, atau bisa saja dalam tingkat yang terinci, seperti biaya pemeliharaan untuk setiap pabrik atau departemen. Pemilihan tingkat agregat tergantung pada tujuan dari estimasi biaya, ketersediaan dan keandalan data, serta pertimbangan biaya dan manfaat. Apabila tujuannya adalah keakuratan, maka sering kali analisis pada tingkat terinci yang dipilih. Untuk menentukan variabel bebas, perlu mempertimbangkan semua data keuangan, operasi, dan ekonomi lainnya yang mungkin relevan. Tujuannya adalah untuk memilih variabel (1) yang paling relevan, yaitu yang berubah ketika variabel terikat berubah; dan (2) bukan merupakan duplikasi variabel bebas lainnya. Tabel berikut menunjukkan beberapa variabel terikat dan variabel bebas. 21 Tabel 2.2 Variabel Bebas dan Variabel Terikat Variabel terikat Data Keuangan - Penjualan - Beban penjualan - Beban iklan - Beban tenaga kerja - Tarif upah - Penjualan - Beban utilitas - Jumlah unit diproduksi - Penjualan - Jumlah unit diproduksi - Beban umum gaji dan perlengkapan kantor, telepon, pencetakan dan duplikasi, serta perbaikan 2.4 - Penjualan - Total beban - Aktiva tetap bersih Variabel Bebas Indikator Ekonomi - Ukuran took - Indeks tingkat harga - Jenis took - Indeks atas kondisi ekonomi local - Jumlah jam - Indeks atas tarif kerja upah local - Variabel dummy untuk perubahan dalam bauran tenaga kerja - Jumlah karyawan - Temperatur harian rata-rata - Variabel dummy untuk perubahan thermostat - Lama toko buka (dalam jam) - Jenis took - Indeks tingkat harga local - Ukuran took - Jumlah karyawan Data Operasi Lainnya - Variabel dummy untuk perubahan kebijakan kredit - Variabel tren - Variabel dummy untuk perubahan tarif pembayaran yang signifikan - Variabel dummy untuk perubahan yang signifikan pada tarif utilitas - Umur took - Variabel dummy untuk perubahan pada otomatisasi kantor Transportasi Pada umumnya, masalah transportasi berhubungan dengan distribusi suatu produk tunggal dari beberapa sumber, dengan penawaran terbatas, menuju beberapa tujuan, dengan permintaan tertentu, pada biaya transportasi minimum. Karena hanya satu macam barang, suatu tempat tujuan dapat memenuhi permintaannya dari satu atau lebih sumber (Mulyono, 2004:114). Masalah transportasi adalah masalah yang khas dan penting dalam masalah ekonomi. Masalah transportasi disebut juga masalah Hitchcock. Pada tahun 1939 L. V. Kantorovich telah menyelidiki masalah transportasi, F. L. 22 Hitchcock pada tahun 1941, dan T. C. Koopmans pada tahun 1947 (Suyitno, 1997:139). Secara khusus model transportasi berkaitan dengan masalah pendistribusian barang-barang dari pusat-pusat pengiriman atau sumber ke pusatpusat penerimaan atau tujuan. Persoalan yang ingin dipecahkan oleh model transportasi adalah penentuan distribusi barang yang akan meminimumkan biaya total distribusi (Siswanto, 2007:265). Asumsi dasar model ini adalah bahwa biaya transportasi pada suatu rute tertentu proporsional dengan banyaknya unit yang dikirimkan. Definisi unit yang dikirimkan sangat tergantung pada jenis produk yang diangkut, yang penting, satuan penawaran dan permintaan akan barang yang diangkut harus konsisten. Masalah transportasi dapat diselesaikan dengan metode simpleks, sebab model matematika dari masalah transportasi merupakan keadaan khusus dari model matematika masalah PL. Kelemahan metode simpleks untuk menyelesaikan masalah transportasi adalah timbulnya masalah kemerosotan. Masalah transportasi dapat juga diselesaikan dengn algoritma transportasi. Adapun langkah-langkah algoritma transportasi sebagai berikut. 1. Menyiapkan tabel untuk masalah transportasi. 2. Menyusun program awal sehingga diperoleh penyelesaian fisibel. 3. Menentukan biaya kesempatan dari sel-sel kosong. 4. Menguji apakah program sudah optimal. 5. Menyusun program perbaikan, apabila belum ditemukan program optimal. 23 Persoalan transportasi membahas masalah pendistribusian suatu komoditas atau produk dari sejumlah sumber (supply) kepada sejumlah tujuan (destination, demand), dengan tujuan meminimumkan ongkos pengangkutan yang terjadi (Dimyati dan Dimyati, 2004:128). Ciri-ciri khusus persoalan transportasi ini adalah sebagai berikut. 1. Terdapat sejumlah sumber dan sejumlah tujuan tertentu. 2. Kuantitas komoditas atau barang yang didistribusikan setiap sumber dan yang diminta oleh setiap tujuan, besarnya tertentu. 3. Komoditas yang dikirim atau diangkut dari suatu sumber ke suatu tujuan, besarnya sesuai dengan permintaan dan atau kapasitas sumber. 4. Ongkos pengangkutan komoditas dari sumber ke suatu tujuan besarnya tertentu. Pengalokasian produk dari sumber ke tujuan bertujuan agar biaya pengangkutannya seminimal mungkin dari seluruh permintaan dari tempat tujuan dipenuhi. Asumsi sumber dalam hal ini adalah tempat asal barang yang hendak dikirim, sehingga dapat berupa pabrik, gudang, grosir, dan sebagainya. Sedangkan tujuan diasumsikan sebagai tujuan pengiriman barang. Dengan demikian informasi yang harus ada dalam masalah transportasi meliputi: banyaknya daerah asal beserta kapasitas barang yang tersedia untuk masing tempat, banyaknya tempat tujuan beserta permintaan (demand) barang untuk masing-masing tempat dan jarak atau biaya angkut untuk setiap unit barang dari suatu tempat asal ke tempat tujuan. 24 2.4.1 Metode Transportasi Metode transportasi adalah suatu metode yang digunakan untuk mengatur distribusi dari sumber-sumber yang menyediakan produk yang sama atau sejenis ke tempat tujuan secara optimal. Distribusi ini dilakukan sedemikian rupa sehingga permintaan dari beberapa tempat tujuan dapat dipenuhi dari beberapa tempat asal yang masing-masing dapat memiliki permintaan atau kapasitas yang berbeda (Dwijanto, 2008:61). Metode transportasi membahas masalah pendistribusian suatu barang dari sejumlah sumber (supply) ke sejumlah tujuan (destination, demand), dengan tujuan meminimumkan ongkos pengangkutan yang terjadi (Dimyati dan Dimyati, 1999 : 128). Distribusi ini dilakukan sedemikian rupa sehingga permintaan dari beberapa tempat tujuan dapat dipenuhi dari beberapa tempat asal yang masingmasing dapat memiliki permintaan atau kapasitas yang berbeda-beda. Dengan menggunakan metode transportasi dapat diperoleh suatu alokasi distribusi barang yang dapat meminimalkan total biaya transportasi. Suatu perusahaan memerlukan pengelolaan data dan analisis kuantitatif yang akurat, cepat serta praktis dalam penggunaannya. Dalam perhitungan secara manual membutuhkan waktu yang lebih lama sementara pertimbangan efisiensi waktu dalam perusahaan sangat diperhatikan. 25 2.4.2 Prosedur Penyelesaian Metode Transportasi Dalam penyelesaian kasus transportasi, langkah-langkah untuk penyelesaian dengan metode transportasi adalah sebagai berikut. 1. Langkah pertama di dalam metode transportasi adalah menyusun matriks transportasi. Langkah ini merupakan kunci keberhasilan kita dalam menyusun langkah berikutnya. Matriks transportasi menunjukan sumber dari mana barang berasal dan kemana tujuan dikirim. 2. Langkah berikutnya adalah menyusun tabel awal. Pada tabel awal diisikan informasi biaya transportasi atau jarak dari suatu sumber ke suatu tujuan tertentu, besar kapasitas sumber, dan besar permintaan. Pada langkah ini, harus dipastikan bahwa besar kapasitas harus sama (seimbang) dengan besar permintaan. Apabila terdapat ketidakseimbangan maka harus dibuat sel dummy yang berisi besarnya ketidakseimbangan antara penawaran dan permintaan. Sel dummy dapat berupa sel baris atau sel kolom. 3. Langkah ketiga adalah melakukan pengalokasian berdasarkan beberapa metode yang ada. Terdapat beberapa metode yang dapat digunakan baik secara manual maupun dengan menggunakan program komputer. 4. Jika telah dilakukan pengalokasian dengan salah satu metode yang sesuai, langkah selanjutnya adalah melihat apakah alokasi tersebut sudah optimal atau belum. Jika alokasi telah optimal maka alokasi tersebut dapat dikatakan telah mencapai nilai yang paling menguntungkan. Sebaliknya jika belum optimal, maka perlu dilakukan revisi atau perbaikan untuk sel yang masih memungkinkan untuk direvisi atau diperbaiki. 26 2.4.3 Model Transportasi Model merupakan penyederhanaan suatu masalah dunia nyata (real world problem) melalui berbagai bentuk sehingga masalah tersebut mudah dipahami, dianalisis, dan diselesaikan. Bentuk model yang dikenal secara luas antara lain rumus (model matematis), prototype, peta, maket, diagram, skema, dan lain-lain. Menurut Arifin (2010:228), model transportasi merupakan suatu bentuk penyederhanaan dari permasalahan yang menyangkut suatu usaha meminimalkan biaya pengiriman (shipping) suatu komoditas dari sejumlah sumber ke sejumlah tujuan. Tabel untuk model transportasi atau tabel algoritma transportasi dapat disusun seperti Tabel 2.1 berikut : Tabel 2.3 Tabel Model Transportasi Keterangan : 𝐴𝑖 : Tempat asal ke-𝑖 27 𝑇𝑗 : Tempat tujuan ke-𝑗 𝑎𝑖 : Kapasitas (persediaan) barang di tempat asal ke-𝑖 𝑡𝑗 : Permintaan tempat tujuan ke-𝑗 𝑐𝑖𝑗 : Biaya pengiriman per unit barang dari tempat asal (𝑖) ke tempat tujuan (𝑗) 𝑥 𝑖𝑗 : Banyaknya unit barang yang dikirim dari 𝐴𝑖 ke 𝑇𝑗 Persyaratan samping adalah : ∑𝑎𝑖 = ∑𝑡𝑗 , 𝑖 = 1, 2, … 𝑚; 𝑗 = 1, 2, … 𝑛. Dengan demikian, formulasi program linearnya adalah sebagai berikut : m Minimumkan : 𝒁 = n c i 1 j 1 ij xij m Berdasarkan pembatas : x ij ai , 𝒊 = 𝟏, 𝟐, 𝟑, . . . , 𝒎 x t j , 𝒋 = 𝟏, 𝟐, 𝟑, . . . , 𝒏 j 1 n i 1 ij xij 0 untuk seluruh 𝒊 dan 𝒋. 2.4.4 Keseimbangan Model Transportasi Suatu model transportasi dikatakan seimbang apabila total supply (sumber) sama dengan total demand (tujuan). Dengan kata lain dapat ditulis sebagai berikut. 𝑚 𝑛 𝑎𝑖 = 𝑖=1 𝑡𝑗 𝑗 =1 Dalam persoalan yang sebenarnya batasan ini tidak selalu terpenuhi atau dengan kata lain, jumlah supply yang tersedia mungkin lebih besar atau lebih kecil dari pada jumlah yang diminta. Jika hal ini terjadi, maka model persoalanya 28 disebut model yang tidak seimbang (unbalanced). Batasan di atas dikemukakan hanya karena menjadi dasar dalam pengembangan teknik transportasi. Namun, setiap persoalan transportasi dapat dibuat seimbang dengan cara memasukan variabel artificial (semu). Jika jumlah demand melebihi jumlah supply, maka dibuat suatu sumber dummy yang akan men-supply kekurangan tersebut, yaitu sebanyak ∑ 𝑗𝑡𝑗 − ∑ 𝑖𝑎𝑖 . Sebaliknya, jika jumlah supply melebihi jumlah demand, maka dibuat suatu tujuan dummy untuk menyerap kelebihan tersebut, yaitu sebanyak ∑ 𝑖𝑎𝑖 − ∑ 𝑗𝑡𝑗 . Biaya transportasi per unit (𝑐𝑖𝑗 ) dari sumber dummy ke seluruh tujuan adalah nol. Hal ini dapat dipahami karena pada kenyataannya dari sumber dummy tidak terjadi pegiriman. Begitu pula dengan biaya transportasi per unit (𝑐𝑖𝑗 ) dari semua sumber ke tujuan dummy adalah nol. Jika pada suatu persoalan transportasi dinyatakan bahwa dari sumber ke 𝑘 tidak dilakukan atau tidak boleh terjadi pengiriman ke tujuan 𝑙, maka nyatakanlah 𝑐kl dengan suatu harga 𝑀 yang besarnya tidak terhingga. Hal ini dilakukan agar dari 𝑘 ke 𝑙 itu benar-benar tidak terjadi pendistribusian barang. 2.4.5 Algoritma Transportasi Model transportasi, pada saat dikenalkan pertama kali, diselesaikan secara manual dengan menggunakan algoritma yang dikenal dengan algoritma transportasi. Flow chart algoritma transportasi ini dapat dilihat pada gambar berikut : 29 Awal Menyusun Matriks Transportasi Menyusun Tabel Awal Alokasi Test Optimalisasi Ya Selesai Tidak Revisi Gambar 2.1 Flow Chart Algoritma Transportasi Pertama, diagnosis masalah dimulai dengan pengenalan sumber, tujuan, parameter dan variabel. Kedua, seluruh informasi tersebut kemudian dituangkan ke dalam matriks transportasi. Dalam hal ini, - Bila kapasitas seluruh sumber lebih besar dari permintaan seluruh tujuan, maka sebuah kolom semu (dummy) perlu ditambahkan untuk menampung kelebihan kapasitas ini. - Bila kapasitas seluruh sumber lebih kecil dari seluruh permintaan tujuan, maka sebuah baris semu perlu ditambahkan untuk menyedikan kapasitas semu yang akan memenuhi kelebihan permintaan itu. Ketiga, setelah matriks transportasi terbentuk kemudian dimulai menyusun tabel awal. Ada tiga metode untuk menyusun tabel awal, yaitu : 30 1. Metode Sudut Barat Laut atau North West Corner Method (NWC) Sesuai nama aturan ini, maka penempatan pertama dilakukan di sel paling kiri dan paling atas (northwest) matriks kemudian bergerak ke kanan ke bawah sesuai permintaan dan kapasitas produksi yang sesuai. Tabel 2.4 Matriks Persoalan Transportasi tujuan (supply) 1 2 c11 sumber (demand) 1 x11 c12 x12 x21 a1 c22 x22 b1 c13 x13 c21 2 3 c23 a2 x23 b2 b3 Mulai dari pojok kiri atas, alokasikan sebesar x11 = min a1 , b1 . Artinya: jika b1 < a1 maka x11 = b1 ; jika b1 > a1 maka x11 = a1 . Kalau x11 = b1 , maka selanjutnya yang mendapat giliran untuk dialokasikan adalah x12 sebesar min a1 − b1 , b2 ; kalau giliran untuk dialokasikan adalah x21 sebesar min b1 − a1 , a2 . Demikian seterusnya. Besar alokasi ini akan mencukupi salah satu, kapasitas tempat asal baris pertama dan atau permukaan tempat tujuan dari kolom pertama. Jika kapasitas tempat asal pertama terpenuhi kita bergerak ke bawah menyusur kolom pertama. Di lain pihak, jka alokasi pertama memenuhi permintaan tempat tujuan di kolom pertama, kita bergerak ke kanan di baris pertama dan kemudian menentukan alokasi yang kedua atau yang memenuhi kapasitas tersisa dari baris satu atau memenuhi permintaan tujuan dari kolom dua dan seterusnya. 31 2. Metode Biaya Terkecil atau Least Cost Method Metode ini digunakan untuk persoalan transportasi berdimensi kecil, hal ini akan memberikan pengurangan waktu. Alokasi pertama dibuat terhadap sel yang berkaitan dengan biaya pengangkutan terendah. Sel dengan biaya terendah ini diisi sebanyak mungkin dengan mengingat persyaratan kapasitas produksi (origin) maupun permintaan tempat tujuan. Kemudian beralih ke sel termurah berikutnya dan mengadakan alokasi dengan memperhatikan kapasitas yang tersisa dari permintaan baris dan kolom. Dalam perhitungannya, metode ini membuat matriks sesuai dengan persyaratan. 3. VAM atau Vogell’s Aproximation Method Metode VAM ini didasarkan atas “beda kolom” dan “beda baris” yang menentukan perbedaan antara dua biaya termurah dalam satu kolom atau satu baris. Setiap perbedaan dapat dianggap sebagai “penalty”, karena menggunakan rute termurah. Beda baris atau beda kolom berkaitan dengan penalty tertinggi, merupakan baris atau kolom yang akan diberi alokasi pertama. Alokasi pertama ini atau menghabiskan tempat kapasitas produksi, atau menghabiskan permintaan tujuan atau kedua-duanya. Ketiga metode di atas masing-masing berfungsi untuk menentukan alokasi distribusi awal yang akan membuat seluruh kapasitas sumber teralokasikan ke seluruh tujuan. Pada umumnya, metode biaya terkecil atau Least Cost Method akan memberikan solusi awal lebih baik (lebih rendah) dibanding dengan metode North West Corner, karena metode Least Cost menggunakan biaya per unit sebagai kriteria alokasi sementara metode North West Corner tidak. Akibatnya, 32 banyak iterasi tambahan yang diperlukan untuk mencapai solusi optimum lebih sedikit. Namun, dapat terjadi meskipun jarang, dimana solusi awal yang sama atau lebih baik dicapai melalui metode North West Corner. Keempat, setelah penyusunan tabel awal selesai maka sebagai langkah selanjutnya adalah pengujian optimalitas tabel untuk mengetahui apakah biaya distribusi total telah minimum. Ada dua macam model pegujian optimalitas algoritma transportasi, yaitu : 1. Stepping Stone Method Metode Stepping Stone bekerja dengan mempertimbangkan “opportunity cost” dari sel kosong, yaitu berkurangnya biaya akibat pemindahan model pengangkutan bila mana sel kosong itu diisi satu barang. Langkah-langkah untuk menghitung 𝑂𝐶 sel kosong dengan menggunakan Metode Stepping Stone secara umum dapat dirumuskan sebagai berikut : (1) Membuat loop dari sel kosong yang akan dihitung 𝑂𝐶 nya (2) Misalkan sel (𝑟, 𝑘) adalah sel yang akan dihitung 𝑂𝐶 nya dan loopnya adalah (𝑟0 , 𝑘0 ) − (𝑟0 , 𝑘1 ) − (𝑟1 , 𝑘1 ) − (𝑟1 , 𝑘2 ) − (𝑟2 , 𝑘2 ) − ⋯ − (𝑟𝑝 , 𝑘𝑝 ) − (𝑟𝑝 , 𝑘0 ), maka 𝑂𝐶 (𝑟, 𝑘) = − 𝐶𝑟0 , 𝑘0 − 𝐶𝑟0 , 𝑘1 + 𝐶𝑟1 , 𝑘1 − 𝐶𝑟1 , 𝑘2 + 𝐶𝑟2 , 𝑘2 − … + 𝐶𝑟𝑝 , 𝑘𝑝 − 𝐶𝑟𝑝 , 𝑘0 . 2. MODI atau Modified Distribution Method Jika pada penyelesaian metode Stepping Stone terlebih dahulu harus membuat loop, maka pada MODI tidak perlu membuat loop. 33 Untuk membahas metode ini perlu diperkenalkan beberapa istilah/ singkatan yang akan digunakan untuk merumuskan masalah transportasi. Misalkan banyaknya tempat asal adalah m dan banyakya tempat tujuan adalah n, dan misalkan Oi = tempat asal ke i, dimana i = 1, 2, …, m Dj = tempat tujuan ke j, dimana j = 1, 2, …, n Cij = besarnya biaya satuan pengiriman barang dari Oi ke Dj Vi = bilangan baris, dimana i = 1, 2, …, m Uj = bilangan kolom, dimana j = 1, 2, …, n Kij = bilangan sel kosong Langkah-langkah membuat OC sel kosong, sebagai berikut : 1. Menghitung Vi dan Uj berdasarkan sel yang telah terisi sehingga dengan hubungan Cij = Vi + Uj. Dimana pertama kali kita dapat memberikan sebarang bilangan pada salah satu Vi atau Uj. 2. Menghitung Kij pada sel kosong dengan ketentuan Kij =Vi + Uj. 3. Menghitung opportunity cost sel kosong dengan ketentuan OC = Kij - Cij. Kelima, atau langkah terakhir adalah revisi tabel bila dalam langkah keempat terbukti bahwa tabel belum optimal atau biaya distribusi total masih mungkin diturukan lagi. Dengan demikian, lagkah kelima ini tidak akan dilakukan apabila pada langkah keempat telah membuktikan bahwa tabel telah optimal. Contoh 1 : Denebula adalah sebuah perusahaan yang menghasilkan suatu jenis jamur. Usaha ini bermula dari sesesorang bernama Denebula di daerah Kaliurang, 34 Yogyakarta. Ketika usahaya semakin besar dan area penyemaian di daerah itu tidak mungkin diperluas, kedua anaknya mulai mencoba mengembangkan usaha serupa di daerah Bandungan, Magelang dan Tawangmangu, Surakarta. Permintaan terhadap jamur itu tidak hanya datang dari daerah sekitar yaitu Yogyakarta, Magelang dan Surakarta tetapai juga datang dari daerah Jawa Barat, Jawa Timur dan luar Jawa. Berhubung permintaan terus meingkat, Denebula kemudian menujuk ketiga anaknya yang lain utuk menjadi agen di Purwokerto untuk melayani daerah Jawa Barat, Semarang untuk melayani permintaan daerah luar Jawa dan Madiun untuk melayani permintaan daerah Jawa Timur. Permintaan ketiga agen tersebut untuk periode yang akan datang adalah, Agen Permintaan Purwokerto 5000 kg Semarang 4500 kg Madiun 5500 kg Kemampuan berproduksi ketiga pabrik jamur itu untuk periode yang akan datang adalah sebagai berikut: Pusat Penyamaian Kapasitas Yogyakarta 4000 kg Magelang 5000 kg Surakarta 6000 kg Selanjutnya diketahui pula biaya angkut per unit dari pusat-pusat penyemaian ke agen-agen, yaitu : 35 Agen Pabrik Purwokerto Semarang Madiun Yogyakarta 4 5 7 Magelang 6 3 8 Surakarta 5 2 3 Bagaimana masing-masing pusat penyemaian harus mendistribusikan jamur agar memenuhi permintaan ke agen-agen dengan biaya yang paling minimum? (Siswanto, 2007:269) 2.4.5.1 Tabel Awal Matriks Tansportasi Denebula Untuk menyelesaikan persoalan di atas, kita perlu menyusun tabel awal Matriks Transportasi Denebula Tabel 2.5 Tabel Awal Matriks Transportasi Denebula Sumber Yogyakarta Tujuan Purwokerto X11 4 Semarang X12 5 X21 X22 Kapasitas Madiun X13 4000 7 Magelang 6 3 X31 Surakarta X23 5000 8 X32 X33 5 2 6000 3 15000 Permintaan 5000 4500 5500 15000 36 Berdasarkan uraian di atas, ada 3 metode untuk penyelesaian awal dalam masalah trasportasi, yaitu : 1. Metode Sudut Barat Laut atau North West Corner Method (NWC) Metode Sudut Barat Laut atau North West Corner Method (NWC) adalah suatu metode untuk menyusun tabel awal dengan cara mengalokasikan distribusi barang mulai dari sel yang terletak pada sudut paling kiri atas, itulah sebabnya dinamakan metode sudut barat laut. Sel matriks 11 (baris = 1, kolom = 1), menurut metode NWC harus memperoleh alokasi terlebih dahulu karena terletak paling kiri atas. Di sel ini seluruh kapasitas Yogyakarta sebanyak 4000 kg didistribusikan ke Purwokerto, namun Purwokerto masih menghendaki tambahan distribusi sebesar 1000 kg agar permintaannya sebesar 5000 kg terpenuhi, lihat Tabel 2.6. Kini, sel 21 menjadi sel yang terletak paling kiri atas setelah alokasi distribusi tidak mugkin lagi dilakukan di baris ke-1 karena seluruh kapasitas Yogyakarta telah dialokasikan ke Purwokerto. Alokasi maksimum di sel 21 adalah 1000 kg, yaitu sesuai dengan permintaan maksimum Purwokerto pada kolom ke-1, lihat Tabel 2.7. 37 Tabel 2.6 Metode NWC, seluruh kapasitas Yogyakarta didistribusikan ke Purwokerto Sumber Yogyakarta Purwokerto 4000 4 Tujuan Semarang X12 5 Kapasitas Madiun X13 4000 7 X21 Magelang X22 3 X31 Surakarta X23 6 5000 8 X32 X33 5 2 6000 3 15000 Permintaan 5000 4500 5500 15000 Tabel 2.7 Metode NWC, permintaan Purwokerto terpenuhi Sumber Yogyakarta Magelang Purwokerto 4000 4 Tujuan Semarang X12 5 1000 X22 6 3 X31 Surakarta Permintaan 5 7 X23 8 X32 2 5000 Kapasitas Madiun X13 X33 3 4500 5500 4000 5000 6000 15000 15000 Sel yang terletak paling kiri atas setelah alokasi distribusi tidak mungkin dilakukan pada baris dan kolom pertama adalah sel 22. Di sel ini alokasi distribusi maksimum adalah 4000 kg, yaitu sesuai dengan kapasitas maksimum Magelang sebanyak 5000 kg, lihat Tabel 2.8. 38 Tabel 2.8 Metode NWC, Magelang memenuhi permintaan Purwokerto dan Semarang Sumber Yogyakarta Tujuan Purwokerto 4000 4 Kapasitas Semarang X12 5 Madiun X13 4000 7 1000 Magelang 4000 3 X31 Surakarta X23 6 5000 8 X32 X33 5 2 6000 3 15000 Permintaan 4500 5000 5500 15000 Setelah alokasi distribusi tidak mungkin lagi dilakukan pada baris pertama dan kedua serta kolom pertama, maka sel 32 kini berada pada posisi paling kiri atas. Oleh karena itu, alokasikan 500 kg agar permintaan Semarang sebesar 4500 kg terpenuhi ke sel ini, lihat Tabel 2.9. Tabel 2.9 Metode NWC, permintaan Semarang terpenuhi Sumber Yogyakarta Tujuan Purwokerto 4000 4 Semarang X12 5 1000 4000 Kapasitas Madiun X13 4000 7 Magelang 6 3 X31 Surakarta X23 5000 8 500 X33 5 2 6000 3 15000 Permintaan 5000 4500 5500 15000 39 Kini, sel 33 merupakan satu-satunya pilihan alokasi distribusi yang akan membuat sisa kapasitas Surakarta digunakan seluruhnya untuk memenuhi permintaan Madiun sebanyak 5500 kg, lihat Tabel 2.10. Tabel 2.10 Metode NWC, pemintaan Madiun terpenuhi Sumber Yogyakarta Purwokerto 4000 4 Tujuan Semarang X12 5 Kapasitas Madiun X13 4000 7 1000 Magelang 4000 6 3 X31 Surakarta X23 5000 8 500 5 5500 3 2 6000 15000 Permintaan 5000 4500 5500 15000 Langkah yang telah dilakukan pada Tabel 2.10 di atas merupakan langkah terakhir penyusunan tabel awal yang menggunakan metode sudut barat laut (NWC). Pada Tabel 2.11 menunjukkan seluruh pengisian sel-sel menurut metode sudut barat laut. 40 Tabel 2.11 Metode NWC Sumber Yogyakarta Tujuan Purwokerto 4000 4 Kapasitas Semarang X12 5 Madiun X13 4000 7 1000 Magelang 4000 3 5000 8 X31 Surakarta X23 6 500 5 5500 3 2 6000 15000 Permintaan 5000 4500 5500 15000 Biaya distribusi berdasar alokasi beban distribusi menurut metode sudut barat laut adalah : Sel Biaya (1,1) 4,- x 4000 (2,1) 6,- x 1000 6.000,- (2,2) 3,- x 4000 12.000,- (3,2) 2,- x 500 1.000,- (3,3) 3,- x 5500 16.500,- Jumlah 2. Biaya x Beban 16.000,- 51.500,- Metode Biaya Terkecil atau Least Cost Method Metode Biaya Terkecil ( Least Cost Method) adalah sebuah metode untuk menyusun tabel awal dengan cara pengalokasian distribusi barang dari sumber ke tujuan mulai dari sel yang memiliki biaya distribusi terkecil. 41 Pada Tabel 2.12, sel matriks 32 yang menunjukkan distribusi barang dari Surakarta ke Semarang memiliki biaya distribusi terkecil, yaitu Rp 2,- per kg. Oleh karena itu, harus dialokasikan distribusi barang sesuai dengan permintaan Semarang ke sel tersebut sebesar 4500 kg, sejauh agen di Surakarta bisa memenuhi permintaan itu. Karena agen Surakarta mampu memenuhi permintaan itu bahkan masih memiliki sisa kapasitas, maka permintaan itu seluruhnya dipenuhi oleh Surakarta. Tabel 2.12 Tabel awal dengan biaya terkecil, C32 = 2 adalah Cij terkecil Sumber Yogyakarta Tujuan Purwokerto X11 4 Kapasitas Semarang X12 5 Madiun X13 4000 7 X21 Magelang X22 3 X31 Surakarta X23 6 8 X33 4500 2 5 5000 6000 3 15000 Permintaan 5000 4500 5500 15000 Sel 33 adalah sel yang memiliki biaya terkecil yaitu Rp 3,- setelah sel 32. Sel ini berada pada kolom permintaan Madiun sebesar 5500 kg, sedangkan sisa kapasitas agen Surakarta tinggal 1500 kg. Jadi, sisa permintaan ini digunakan untuk memenuhi sebagian permintaan Madiun, lihat Tabel 2.13. 42 Tabel 2.13 Tabel awal metode biaya terkecil, C33 = 3 adalah Cij terkecil setelah X32 terpenuhi Sumber Yogyakarta Purwokerto X11 4 Tujuan Semarang X12 5 X21 X22 Kapasitas Madiun X13 4000 7 Magelang 5000 6 3 X31 Surakarta X23 8 1500 4500 2 5 6000 3 15000 Permintaan 5000 4500 5500 15000 Sel berikutnya yang memiliki biaya terkecil adalah sel 11. Sel ini berkaitan dengan agen Yogyakarta yang memiliki kapasitas 4000 kg dan permintaan Purwokerto 5000 kg. Dalam hal ini, Yogyakarta jelas tidak mungkin mampu memenuhi seluruh permintaan Purwokerto. Oleh karena itu, harus dipilih alternatif agen lain yang memiliki biaya distribusi paling sedikit sama dengan biaya distribusi dari Yogyakarta ke Purwokerto. Pilihan sebenarnya jatuh ke agen Surakarta yang memiliki biaya distribusi Rp 5,-, namun karena seluruh kemampuan Surakarta telah digunakan untuk memenuhi Semarang dan Madiun maka pilihan dialihkan ke agen Magelang meskipun memiliki biaya distribusi yang sedikit lebih tinggi yaitu Rp 6,-, lihat Tabel 2.14. Jadi permintaan Purwokerto sebanyak 5000 kg akan dipenuhi oleh Yogyakarta sebanyak 4000 kg dan Magelang sebanyak 1000 kg. 43 Tabel 2.14 Tabel awal metode biaya terkecil, setelah X11 terpenuhi, X21 menjadi Cij terkecil selanjutnya Sumber Yogyakarta Purwokerto 4000 4 Tujuan Semarang X12 5 Kapasitas Madiun X13 4000 7 1000 Magelang X22 6 3 X31 Surakarta X23 5 5000 8 1500 4500 3 2 6000 15000 Permintaan 5000 5500 4500 15000 Kini tinggal permintaan Madiun yang belum terpenuhi. Satu-satunya alternatif yang bisa memenuhi permintaan itu adalah Magelang. Oleh karena itu, sel 23 harus dialokasikan distribusi 4000 kg untuk memenuhi permintaan Madiun. Jumlah ini tepat sama dengan kapasitas maksimum agen Magelang, yaitu 5000 kg. Lihat Tabel 2.15. Tabel 2.15 Tabel awal metode biaya terkecil, C23 = 8 adalah 𝑪𝒊𝒋 terkecil setelah X32, X33, X11 dan X12 terpenuhi Sumber Yogyakarta Purwokerto 4000 4 Tujuan Semarang X12 5 Kapasitas Madiun X13 4000 7 1000 Magelang X22 6 4000 8 5000 3 X31 Surakarta 5 1500 4500 3 2 6000 15000 Permintaan 5000 4500 5500 15000 44 Sampai pada langkah ini, proses penyusunan tabel awal Denebula dengan metode biaya terkecil telah selesai. Tabel 2.16 di bawah ini menunjukkan seluruh proses pengisian sel-sel yang memiliki 𝐶𝑖𝑗 terkecil. Tabel 2.16 Tabel awal dengan metode biaya terkecil Sumber Yogyakarta Tujuan Purwokerto 4000 4 Semarang X12 5 1000 X22 Kapasitas Madiun X13 4000 7 Magelang 6 4000 8 5000 3 X31 Surakarta 1500 4500 2 5 3 6000 15000 Permintaan 5000 4500 5500 15000 Biaya distribusi berdasar alokasi beban distribusi sementara menurut metode biaya terkecil adalah : Sel Biaya x Beban Biaya (1,1) 4,- x 4000 16.000,- (2,1) 6,- x 1000 6.000,- (2,3) 8,- x 4000 32.000,- (3,2) 2,- x 4500 9.000,- (3,3) 3,- x 1500 4.500,- Jumlah 67.500,- 45 3. Vogell’s Aproximation Method atau VAM Vogell’s Aproximation Method atau VAM adalah metode untuk penentuan tabel awal algoritma transportasi. Vogell’s Aproximation Method menentukan alokasi distribusi pada sel yang memiliki 𝐶𝑖𝑗 terkecil dan terletak pada baris atau kolom yang memiliki nilai terbesar dari selisih 𝐶𝑖𝑗 terkecil. Oleh karena itu, ada tiga tahap yang harus ditempuh pada setiap alokasi distribusi, yaitu : 1. Penentuan selisih nilai dua Cij terkecil pada seluruh baris dan kolom. 2. Pemilihan baris atau kolom yang memiliki nilai terbesar dari selisih dua Cij terkecil. 3. Alokasi distribusi biaya maksimum paa baris atau kolom terpilih yang memiliki Cij terkecil. Ketiga tahap itu merupakan sebuah siklus yang berulang pada setiap penentuan alokasi distribusi hingga seluruh kapasitas sumber teralokasikan dan seluruh permintaan tujuan terpenuhi. 1. Penentuan Selisih Nilai Dua Cij Terkecil Tahap pertama dalam penyusunan tabel awal dengan metode VAM adalah penentuan selisih nilai dua 𝐶𝑖𝑗 terkecil. Proses ini dilakukan utuk seluruh baris dan kolom. Pada baris pertama, dua 𝐶𝑖𝑗 terkecil adalah C11 = 4 dan C12 = 5; dengan demikian selisih dua 𝐶𝑖𝑗 itu adalah 5 − 4 = 1. Pada baris ke-2, dua 𝐶𝑖𝑗 terkecil adalah C21 = 6 dan C22 = 3; dengan demikian 46 selisih dua 𝐶𝑖𝑗 itu adalah 6 − 3 . Dengan cara yang sama, seluruh selisih nilai baris dan kolom itu bisa ditentukan, lihat Tabel 2.17. 2. Pemilihan Nilai Terbesar dari Selisih Dua Cij Terkecil Setelah selisih dua 𝐶𝑖𝑗 terkecil pada seluruh baris dan kolom ditemukan, maka sebagai langkah berikutnya adalah pemilihan selisih nilai yang terbesar sebagai dasar alokasi. Pada Tabel 2.17, selisih nilai terbesar dari seluruh baris dan kolom adalah selisih nilai dua 𝐶𝑖𝑗 pada kolom ke-3 antara C13 = 7 dengan C33 = 3, yaitu 4. Oleh karena itu, kolom ke-3 adalah kolom terpilih. 3. Alokasi pada Sel dengan 𝐂𝐢𝐣 Terkecil pada Kolom Terpilih Pada kolom terpilih, yaitu kolom ke-3 kemudian dialokasikan distribusi maksimum pada sel yang memiliki 𝐶𝑖𝑗 terkecil. Di sini 𝐶33 = 3 adalah 𝐶𝑖𝑗 terkecil. Oleh karena itu, distribusi sebesar 5500 dari Surakarta dikirim untuk memenuhi permintaan Madiun, lihat Tabel 2.18. Tiga langkah di atas adalah satu paket langkah untuk menyusun tabel awal dengan meggunakan metode VAM. Setiap kali alokasi distribusi dilakukan, maka tiga langkah itu harus dilakukan. Proses ini berulang hingga seluruh kapasitas teralokasikan dan seluruh permintaan tujuan terpenuhi. Kini, kita akan mengulangi proses itu untuk menentukan alokasi distribusi berikutnya. Pada Tabel 2.19 menayangkan ketiga langkah tersebut sekaligus. Dalam hal ini, kolom ke-3 sudah tidak lagi diperhitungkan. 47 Tabel 2.17 Matriks transportasi Denebula, VAM alokai pertama (penentuan selisih dua Cij terkecil) Sumber Yogyakarta Purwokerto X11 4 Tujuan Semarang X12 5 Kapasitas Madiun X13 4000 Rj 1 7 X21 Magelang X22 X23 6 3 X31 5 3 8 X32 Surakarta 5000 2 X33 6000 3 1 15000 Permintaan 5000 4500 5500 1 1 4 15000 Tabel 2.18 Matriks transportasi Denebula, VAM alokasi pertama Sumber Yogyakarta Purwokerto X11 4 Tujuan Semarang X12 5 Kapasitas Madiun X13 4000 1 7 X12 Magelang X23 X22 3 6 5000 3 8 X31 Surakarta X32 5500 5 2 6000 1 3 15000 Permintaan 5000 4500 5500 1 1 4 15000 Nilai terbesar dari selisih 𝐶𝑖𝑗 terkecil Pada tabel 2.19 terlihat nilai terbesar dari selisih 𝐶𝑖𝑗 terkecil ada dua yaitu baris ke-2 dan ke-3. Dalam kasus semacam ini, tidak ada satu pun pedoman 48 untuk memilih yang bisa digunakan secara konsisten. Kita harus memilih salah satu secara intuitif. Di sini, kita akan memilih baris ke-3 sebagai baris terpilih. Selanjutnya jelas sekali kita harus mendistribusikan sisa kapasitas Surakarta sebesar 500 kg untuk memenuhi sebagian permintaan Semarang. Pilihan ini merupakan pilihan terbaik yang akan memberikan biaya distribusi terendah. Pada alokasi yang ke-3, ditujukkan pada Tabel 2.20, baik baris ke-3 (alokasi pertama) maupun kolom ke-3 (alokasi kedua) tidak lagi diperhitungkan di dalam penentuan selisih nilai dua 𝐶𝑖𝑗 terkecil. Jadi, nilai terbesar dari selisih dua 𝐶𝑖𝑗 terkecil adalah 3 yang terletak pada baris ke-2. Di sini, alokasi distribusi maksimum 4000 kg ditempatkan di sel 23 yang terletak pada baris terpilih dan memiliki 𝐶𝑖𝑗 terkecil. Dengan demikian, seluruh permintaan Semarang akan dipenuhi oleh Magelang dan Surakarta. Tabel 2.19 Matriks transportasi Denebula, VAM alokasi kedua Sumber Yogyakarta Purwokerto X11 4 Tujuan Semarang X12 5 Kapasitas Madiun X13 4000 1 7 X21 Magelang X22 6 3 5000 500 5500 5 2 6000 3 15000 Permintaan 3 8 X31 Surakarta X23 5000 4500 1 1 5500 15000 3 49 Tabel 2.20 Matriks transportasi Denebula, VAM alokasi ketiga Sumber Yogyakarta Purwokerto X11 4 Tujuan Semarang X12 5 Kapasitas Madiun X13 4000 1 7 X21 Magelang 4000 6 3 5000 3 8 X31 Surakarta X23 500 5500 6000 5 2 3 15000 Permintaan 5000 4500 5500 2 2 15000 Selagi selisih dua 𝐶𝑖𝑗 terkecil hanya bisa dihitung untuk selisih antara C11 = 4 dan C21 = 6, yaitu 2 maka alokasi keempat terjadi pada sel 11 yang memiliki 𝐶𝑖𝑗 terkecil. Di sini seluruh kapasitas Yogyakarta sebesar 4000 kg didistribusikan ke Purwokerto, lihat Tabel 2.21. Meskipun Purwokerto meminta 5000 kg, Yogyakarta tidak mungkin memenuhi seluruh permintaan itu karena keterbatasan kapasitas. Sisa permintaan 1000 kg yang belum terpenuhi bagaimanapun juga harus dipenuhi oleh sumber yang lain. Kini sel 21 merupakan pilihan alokasi terakhir yang memungkinkan kita untuk mendistribusikan seluruh kapasitas Magelang 5000 kg dan sekaligus memenuhi seluruh permintaan Purwokerto 5000 kg, lihat Tabel 2.22. Alokasi yang kelima ini merupakan alokasi yang terakhir yang membuat seluruh kapasitas sumber terdistribusikan dan seluruh permintaan tujuan terpenuhi. Meskipun pedoman nilai terbesar dari selisih dua 𝐶𝑖𝑗 terkecil tidak ada namun 50 hal itu tidak perlu dirisaukan karena pilihan distribusi itu merupakan satusatunnya pilihan yang tersedia dan secara sistematis benar. Tabel 2.21 Matriks transportasi Denebula, VAM alokasi keempat Sumber Yogyakarta Purwokerto 4000 4 Tujuan Semarang X12 Kapasitas Madiun X13 5 4000 1 5000 6000 7 X21 Magelang 4000 6 3 X31 Surakarta X23 8 500 5500 5 2 3 15000 Permintaan 5000 4500 2 5500 15000 2 Tabel 2.22 Matriks transportasi Denebula, VAM alokasi kelima Sumber Yogyakarta Purwokerto 4000 4 Tujuan Semarang X12 Kapasitas Madiun X13 5 4000 5000 6000 7 1000 Magelang 4000 3 X31 Surakarta X23 6 8 500 5500 5 2 3 15000 Permintaan 5000 2 4500 5500 15000 51 Vogel’s Approximation Method untuk menentukan tabel awal memerlukan langkah yang lebih panjang. Kerumitan ini tidak menjamin bahwa tabel pasti optimal. Akan tetapi, optimalitas tabel baru bisa diketahui setelah pengujian tabel awal dengan metode Stepping Stone atau MODI dilakukan. Tabel 2.23 mempelihatkan seluruh proses penentuan tabel awal dengan dengan Vogel’s Approximation Method Tabel 2.23 Matriks transportasi Denebula, VAM lengkap Sumber Yogyakarta Purwokerto 4000 4 Tujuan Semarang X12 5 Kapasitas Madiun X13 4000 5000 6000 7 1000 Magelang 4000 6 3 X31 Surakarta X23 8 500 5500 5 2 3 15000 Permintaan 5000 4500 5500 15000 Dengan demikian, biaya distribusi berdasar alokasi beban distribusi sementara menurut VAM adalah : 52 Sel Biaya x Beban Biaya (1,1) 4,- x 4000 16.000,- (2,1) 6,- x 1000 6.000,- (2,3) 3,- x 4000 12.000,- (3,2) 2,- x 500 1.000,- (3,3) 3,- x 5500 16.500,- Jumlah 51.500,- 2.4.5.2 Optimalitas Distribusi Denebula Tujuan dari pengujian tabel awal adalah untuk mengetahui apakah masih ada alteratif alokasi distribusi yang akan membawa beban biaya distribusi total lebih rendah dibanding beban biaya distribusi total menurut alokasi distribusi tabel awal. Ada dua macam metode pengujian tabel awal yang tersedia di dalam algoritma transportasi, yaitu sebagai berikut. 1. Modified Distribution Method MODI atau Modified Distribution menguji optimalitas tabel dengan cara menghitung opportunity cost pada sel-sel yang tidak terkena alokasi distribusi. Opportunity Cost adalah biaya yang harus kita tanggung bila satu alternatif keputusan dipilih. Dalam hal ini, bila sel-sel kosong tersebut ternyata memiliki opportunity cost positif maka menurut metode ini dikatakan bahwa tabel belum optimal berhubung masih ada alternatif distribusi yang akan memberikan biaya total distribusi lebih rendah. Jadi meurut metode MODI, tabel akan dikatakan optimal bila dan haya bila opportunity cost sel-sel kosong adalah negatif atau nol. 53 Bila, 𝑈𝑖 : Angka kunci pada setiap baris 𝑖. 𝑉𝑗 : Angka kuci pada setiap kolom 𝑗. 𝐶𝑖𝑗 : Biaya distribusi yang yata pada sel 𝑖𝑗. 𝑂𝑖𝑗 : Opportunity Cost pada sel 𝑖𝑗. di mana 𝑂𝑖𝑗 = 0 untuk seluruh sel yang telah memperoleh alokasi distribusi. Maka untuk seluruh sel berlaku : 𝑂𝑖𝑗 = 𝑈𝑖 + 𝑉𝑗 − 𝐶𝑖𝑗 [1] Dalam hal ini, persamaan [1] di atas digunakan untuk : 1. Menentuka nilai 𝑈𝑖 dan 𝑉𝑗 utuk seluruh baris dan kolom dengan pedoman 𝑂𝑖𝑗 = 0 untuk seluruh sel-sel yang terisi. 2. Menentukan opportunity cost 𝑂𝑖𝑗 pada seluruh sel-sel kosong. Bila dijumpai paling sedikit satu sel kosong yang memiliki opportunity cost positif atau 𝑂𝑖𝑗 > 0 maka dikatakan bahwa tabel belum optimal sehingga harus direvisi. Dengan kata lain, tabel dikatakan telah optimal bila dan haya bila : Opportunity cost ≤ 0 𝑈𝑖 + 𝑉𝑗 − 𝐶𝑖𝑗 ≤ 0 atau 𝑈𝑖 + 𝑉𝑗 ≤ 𝐶𝑖𝑗 54 a. MODI Menguji Metode Biaya Terkecil (Least Cost) Pada Kasus Denebula Pertama, penentuan nilai 𝑈𝑖 dan 𝑉𝑗 untuk seluruh baris dan kolom dengan meggunakan persamaan [1]. Pada Tabel 2.20 memperlihatkan tambahan atribut 𝑈𝑖 dan 𝑉𝑗 pada tabel awal Denebula yang disusun menggunakan metode biaya terkecil. Dengan berpedoman pada 𝑂𝑖𝑗 = 0 untuk seluruh sel isi maka kita hanya perlu menentukan sebuah angka kunci pada 𝑈𝑖 atau 𝑉𝑗 agar bisa menentukan nilai 𝑈𝑖 dan 𝑉𝑗 yang lain. Angka kunci itu sembarang dan bisa diletakkan di mana saja, pada baris atau kolom. Pada Tabel 2.22, angka kunci itu adalah 0, untuk tujuan memudahkan perhitungan, dan diletakkan pada baris pertama. Karena 𝑂𝑖𝑗 = 0 untuk seluruh sel isi, maka dari [1], 𝑂𝑖𝑗 = 𝑈𝑖 + 𝑉𝑗 − 𝐶𝑖𝑗 𝑂𝑖𝑗 = 0 𝐶𝑖𝑗 = 𝑈𝑖 + 𝑉𝑗 karena 𝑈1 = 0 dan 𝐶11 = 4 maka menurut [2], 4 = 0 + 𝑉1 𝑉1 = 4 (lihat Tabel 2.24) [2] 55 Tabel 2.24 MODI, U1 = 0 utuk menentukan V1 Sumber Yogyakarta Purwokerto 4000 4 Tujuan Semarang X12 5 4000 0 7 1000 6 4000 5000 3 8 4500 Surakarta Ui Madiun X13 X22 Magelang Kapasitas X31 5 2 1500 6000 3 15000 Permintaan 5000 4500 5500 Vj 2 2 15000 Tabel 2.25 MODI, U1 = 0 dan C11 = 4, maka V1 = 4 Sumber Yogyakarta Tujuan Purwokerto Semarang 33 4000 5 4 Kapasitas Ui 4000 0 Madiun 7 4000 Magelang 1000 6 8 4500 Surakarta 5000 3 1500 6000 5 2 3 15000 Permintaan 5000 Vj 4 4500 5500 15000 Selanjutnya, nilai 𝑉1 digunakan untuk menentukan nilai 𝑈2 karena sel 21 adalah sel isi di mana 𝐶21 = 6. Menurut [2], 𝑈2 = 6 − 4 = 2, lihat Tabel 2.26. Dengan cara yang sama, kita bia menentukan nilai 𝑉3 . Karena 𝑈2 = 2 dan sel 23 adalah sel isi maka 𝑉3 = 8 − 2 = 6, lihat Tabel 2.27. 56 Tabel 2.26 MODI, U2 = 2 karena V1 = 4 dan C21 = 6 Sumber Purwokerto Yogyakarta 4000 4 Tujuan Semarang 33 5 7 4000 Magelang 1000 6 3 Ui 4000 0 5000 2 8 4500 Surakarta Kapasitas Madiun 1500 5 2 6000 3 15000 Permintaan 5000 Vj 4 4500 5500 15000 Tabel 2.27 MODI, V3 = 6 karena U2 = 2 dan C23 = 8 Sumber Yogyakarta Magelang Tujuan Purwokerto Semarang 4000 33 4 5 1000 6 3 Kapasitas Ui 4000 0 5000 2 Madiun 7 4000 8 4500 Surakarta 1500 5 2 6000 3 15000 Permintaan 5000 Vj 4 4500 5500 15000 6 Setelah 𝑉3 diketahui, kini kita bia menentukan 𝑈3 karena sel 33 adalah sel isi. Karena 𝑉3 = 6 dan 𝐶33 = 3, maka menurut [2] 𝑈3 = 3 − 6 = −3; 57 lihat Tabel 2.28. Yang terakhir, karena 𝑈3 diketahui dan sel 32 adalah sel isi maka 𝑈2 = 2 − −3 = 5; lihat Tabel 2.39. Tabel 2.28 MODI, U3 = 3 karena V3 = 6 dan C33 = 3 Sumber Purwokerto Yogyakarta 4000 4 Magelang 1000 6 Tujuan Semarang 33 5 Kapasitas Madiun 4000 7 4000 3 8 4500 Surakarta 5000 1500 5 2 6000 5000 Vj 4 0 2 -3 3 15000 5500 Permintaan Ui 4500 15000 6 Tabel 2.29 MODI, V2 = 5 karena U3 = 3 dan C32 = 2 Sumber Yogyakarta Purwokerto 4000 4 Tujuan Semarang 33 5 Kapasitas Madiun 4000 7 4000 Magelang 1000 6 3 8 4500 Surakarta 5000 1500 5 2 6000 3 15000 Permintaan 5000 Vj 4 4500 5500 5 6 15000 Ui 0 2 -3 58 Kedua, menentukan opportunity cost seluruh sel kosong. Dalam hal ini ada empat buah sel kosong. Menurut [1], 𝑂12 = 𝑈1 + 𝑉2 − 𝐶12 atau 𝑂12 = 0 + 5 − 5 = 0 𝑂13 = 𝑈1 + 𝑉3 − 𝐶13 atau 𝑂13 = 0 + 6 − 7 = −1 𝑂22 = 𝑈2 + 𝑉2 − 𝐶22 atau 𝑂22 = 2 + 5 − 3 = +4 ⟸ belum optimal 𝑂31 = 𝑈3 + 𝑉1 − 𝐶31 atau 𝑂31 = −3 + 4 − 5 = −4 Ternyata sel 22 mempunyai opportunity cost positif +4. Ini berarti alternatif alokasi ditribusi pada sel ini akan menghasilkan biaya total distribusi yang lebih rendah. Oleh karena itu, tabel awal Denebula yang disusun dengan menggunakan metode biaya terkecil harus direvisi. b. MODI Menguji Metode Sudut Barat Laut (NWC) dan VAM Denebula Secara kebetulan tabel awal yang disusun menggunakan metode sudut barat laut atau North West Corner (NWC) menghasilkan biaya distribusi total yang sama dengan tabel awal yang disusun dengan VAM. Dengan demikian, kita tidak perlu mengujinya satu per satu. Pada Tabel 2.31 memperlihatkan pengujian MODI secara langsung, mulai dari penentuan angka kunci 𝑈𝑖 dan 𝑉𝑗 hingga perhitungan opportunity cost sel-sel kosong. Ternyata opportunity cost seluruh sel kosong adalah negatif, ini berarti tidak ada kemungkinan untuk biaya total distribusi menjadi lebih rendah, jadi tabel sudah optimal. Dengan demikian, alokasi distribusi yang ditampilkan pada Tabel 2.30 memberikan biaya total distribusi minimum, yaitu Rp 51.500,-. Meskipun demikian, penentuan tabel awal dengan VAM atau metode sudut barat laut belum pasti lebih baik dibanding metode biaya terkecil. Tabel 2.30 Tabel awal yang disusun dengan menggunakan metode sudut barat 59 laut dan VAM diuji dengan MODI Sumber Purwokerto 4000 Tujuan Semarang X12 Kapasitas Madiun X13 4000 -4 Yogyakarta -5 5 4 1000 4000 X23 Magelang 5000 2 8 3 X31 Surakarta 0 7 -4 6 Ui 500 5500 6000 0 5 2 1 3 15000 2. Permintaan 5000 Vj 4 4500 5500 1 2 15000 Stepping Stone Menguji Tabel Awal Denebula Stepping Stone menguji optimalitas tabel awal dengan cara perhitungan 𝐶𝑖𝑗 sel-sel kosong yag dilewati oleh jalur stepping stone. Seperti makna yang terkandung di dalam namanya, metode ini membuat satu jalur tertutup untuk setiap sel kosong di mana sel-sel isi yang lain di dalam jalur tertutup itu dipandang sebagai batu berpijak guna melangkah ke batu berikutnya. Maksud dari pembuatan jalur tertutup ini adalah untuk membuat percobaan guna memindahkan satu unit beban distribusi sepanjang jalur tertutup itu. Perhitungan untuk memindahkan satu unit beban itu menggunakan dasar jalur tertutup (+) atau (-) di mana tanda (+) pertama kali diberikan kepada sel kosong dan selanjutnya tanda (-) diberikan kepada sel berikutnya. Pemberian 60 tanda itu kemudian diteruskan secara bergantian kepada sel-sel isi berikutnya hingga kembali ke sel kosong. Dalam hal ini, tanda (+) menandai penambahan beban distribusi satu unit yang tentu saja akan berakibat pada penambahan biaya distribusi sebesar 𝐶𝑖𝑗 , sedangkan tanda(-) menandai pegurangan beban distribusi satu unit yang akan berakibat pada pegurangan biayadistribusi sebesar 𝐶𝑖𝑗 . Kini, perhatikan tabel awal Denebula yang disusun dengan menggunakan metode sudut barat laut atau VAM, Tabel 2.31. Pertama, kita membuat jalur tertutup + 𝟑𝟏 → − 21 → + 22 → − 32. Pemindahan satu unit distribusi sepanjang jalur tersebut teryata akan membuat biaya distribusi naik dengan +5 − 6 + 3 − 2 = 0 untuk setiap unit distribusi yang dipindahkan. Kedua, kita membuat jalur tertutup + 12 → − 22 → + 21 → − 11. Pemindahan satu unit distribusi sepanjang jalur tersebut ternyata akan membuat biaya distribusi naik dengan +5 − 3 + 6 − 4 = +4 untuk setiap unit distribusi yag dipindahkan, lihat Tabel 2.30. Ketiga, kita membuat jalur tertutup + 13 → − 33 → + 31 → − 11. Pemindahan satu unit distribusi sepanjang jalur tersebut ternyata akan membuat biaya distribusi naik dengan +7 − 3 + 2 − 3 + 6 − 4 = +5 untuk setiap unit distribusi yang dipindahkan, lihat Tabel 2.33. Tabel 2.31 Stepping Stone, pengujian sel 31 dan 32 Sumber Purwokerto 4000 Kapasitas Tujuan Semarang X12 Madiun X13 4000 Yogyakarta 4 5 7 +5 -6 +3 -2 0 sel 31, 32 61 1000 4000 - Magelang X23 + 6 3 + X31 5000 8 - 500 5500 6000 Surakarta 5 3 2 15000 Permintaan 5000 4500 5500 15000 Tabel 2.32 Stepping Stone, pengujian sel 21 Sumber Yogyakarta Purwokerto 4000 4 - Tujuan Semarang X12 5 Kapasitas Madiun X13 4000 +5 -3 +6 -4 + 7 + 1000 Magelang - 4000 5000 6 3 8 X31 Surakarta X23 500 +4 sel 12 5500 6000 5 3 2 15000 Permintaan 5000 4500 5500 15000 Tabel 2.33 Stepping Stone, pengujian sel 13 Sumber Purwokerto 4000 Tujuan Semarang X12 - Yogyakarta 4000 + 4 5 + 1000 Magelang 6 Surakarta Kapasitas Madiun X13 3 7 - 4000 + 8 X31 X23 5000 - 500 + +7 -3 +2 -3 +6 -4 sel 13 5500 - +5 6000 62 2 5 3 15000 Permintaan 5000 4500 Sel 11, 4000 x Rp. 4,- = Rp. 16.000,- Sel 21, 1000 x Rp. 6,- = Rp. 6.000,- Sel 22, 4000 x Rp. 3,- = Rp. 12.000,- Sel 32, 500 x Rp. 2,- = Rp. 1.000,- Sel 33, 5500 x Rp. 3,- = Rp. 16.500,- 5500 15000 Rp. 51.500,- 2.4.6 Model Transshipment Model Transshipment merupakan perluasan dari masalah transportasi. Model Transshipment adalah model transportasi yang memungkinkan dilakukannya pengiriman barang (komoditas) cara tidak langsung, di mana barang dari suatu sumber dapat berada pada sumber lain atau tujuan lain sebelum mencapai tujuan akhirnya (Dimyati & Dimyati, 1999 : 146). Jadi, pada model transshipment ini suatu sumber sekaligus dapat berperan sebagai tujuan dan sebaliknya, suatu tujuan dapat juga berperan sebagai sumber. Dengan kata lain, proses pendistribusian barang dari suatu sumber ke tujuan harus melalui agen terlebih dahulu. Dalam model ini, setiap sumber maupun tujuan dipandang sebagai titik-titik potensial bagi demand maupun supply. Oleh karena itu, untuk menjamin bahwa tiap titik potensial tersebut mampu menampung total barang di samping jumlah 63 barang yang telah ada pada titik-titik tersebut, maka perlu ditambahkan kepada titik-titik tersebut kuantitas supply dan demand-nya masing-masing sebesar B. 𝑚 𝐵≥ 𝑛 𝑎𝑖 = 𝑖=1 𝑡𝑗 𝑗 =1 Untuk lebih jelasnya dapat dilihat pada contoh di bawah ini : 600 400 Pabrik Gudang Agen (titik sumber) (titik transit) (titik tujuan) KOTA A KOTA B KOTA E 250 KOTA F 350 KOTA G 400 KOTA C 350 250 KOTA D Gambar 2.2 Jaringan Perusahaan Teh kembang Adapun unit biaya transportasi dari satu kota ke kota lain disajikan dalam tabel 2.34 di bawah ini Tabel 2.34 Unit Biaya Transportasi Perusahaan Teh Kembang Gudang penyimpanan Pabrik Kota A Kota B Kota C Kota D 3 4 2 1 64 Gudang Penyimpanan Kota C Kota D Agen Kota E Kota F Kota G 4 2 3 1 5 6 Apabila kasus perusahaan Teh Kembang ini diselesaikan dengan metode transportasi, maka dapat dilakukan dengan cara mengubah kasus tersebut ke dalam formulasi kasus transportasi, sehingga kita dapat menggunakan algoritma transportasi untuk mencari penyelesaian optimalnya. Prosedur pertama untuk mengubah kasus transshipment ke dalam kasus transportasi adalah menentukan rute dengan biaya kirim paling kecil dari titik sumber ke titik tujuan. Di sini kita akan mennggunakan simbol Si untuk menunjukkan titik sumber i, Ii untuk titik transit i, dan Ti untuk titik tujuan i. Mula-mula kita mencari jalur dengan biaya terkecil dari titik sumber ke titik tujuan, biaya per unit masing-masing rute adalah : 1. Ada dua rute yang dapat ditempuh untuk mengirim barang dari titik sumber 1 (S1 = pabrik di kota A) ke tujuan 1 (T1 = agen di kota E), yaitu : 2. 1) S1 I1 T1 = 3 +4 = 7 2) S1 I2 T1 = 2 + 2 = 4 Ada dua rute yang dapat ditempuh untuk mengirim barang dari titik sumber 1 (S1 = pabrik di kota A) ke tujuan 2 (T2 = agen di kota F), yaitu : 3. 1) S1 I1 T2 = 3 + 3 = 6 2) S1 I2 T2 = 2 + 1 = 3 Ada dua rute yang dapat ditempuh untuk mengirim barang dari titik sumber 1 (S1 = pabrik di kota A) ke tujuan 3 (T3 = agen di kota G), yaitu : 65 4. 1) S1 I1 T3 = 3 + 5 = 8 2) S1 I2 T3 = 2 + 6 = 8 Ada dua rute yang dapat ditempuh untuk mengirim barang dari titik sumber 2 (S2 = pabrik di kota B) ke tujuan 1 (T1 = agen di kota E), yaitu : 5. 1) S2 I1 T1 = 4 + 4 = 8 2) S2 I2 T1 = 1 + 2 = 3 Ada dua rute yang dapat ditempuh untuk mengirim barang dari titik sumber 2 (S2 = pabrik di kota B) ke tujuan 2 (T2 = agen di kota F), yaitu : 6. 1) S2 I1 T2 = 4 + 3 = 7 2) S2 I2 T2 = 1 + 1 = 2 Ada dua rute yang dapat ditempuh untuk mengirim barang dari titik sumber 2 (S2 = pabrik di kota B) ke tujuan 3 (T3 = agen di kota G), yaitu : 1) S2 I1 T3 = 4 + 5 = 9 2) S2 I2 T3 = 1 + 6 = 7 Dari penyelesaian di atas, diperoleh penyelesaian optimalnya sebagai berikut : Tabel 2.35 Penyelesaian Optimal Kasus Perusahaan Teh Kembang Pabrik Gudang Agen Biaya per unit S1 I2 T1 2+2=4 S1 I2 T2 2 + 1 =3 S1 I1 atau I2 T3 3 + 5 = 8 atau 2 + 6 = 8 S2 I2 T1 1+2=3 S2 I2 T2 1+1=2 S2 I2 T3 1+6=7 66 Dari Tabel 2.35, kita dapat menggambarkan rute langsung dari titik sumber ke titik tujuan yang menjadi syarat bagi model transportasi. Jaringan yang dapat menunjukkan rute langsung dari pabrik ke agen ditunjukkan pada Gambar 2.2, sedangkan tabel transportasi yang dapat dibentuk dari kasus ini disajikan dalam Tabel 2.4. 600 Kota E 250 Kota F 350 Kota A Kota B 400 400 Kota G Gambar 2.3 Jaringan Transportasi yang Diturunkan dari Kasus Transit Tabel 2.36 Tabel Transportasi Tujuan Sumber T1 Supply T2 4 T3 3 8 600 7 400 S1 200 400 3 2 S2 50 Demand 350 250 350 350 400 1000 67 Secara singkat hasil di atas dapat dituliskan sebagai berikut : 1. S1 T1 200 unit 2. S1 T3 400 unit 3. S2 T1 4. S2 T2 350 unit 50 unit Total Biaya = (4 x 200) + (8 x 400) + (3 x 50) + (2 x 350) = 800 + 3200 + 150 + 700 = 4850 Jadi total biaya yang harus dikeluarkan perusahaan Teh Kembang untuk mendistribusikan produknya ke tempat tujuan sebesar 4850 satuan. Hasil di atas menujukkan bahwa unit yang dikirim dari S1 ke T1 sebesar 200 unit yang sebelumnya telah diketahui dari penentuan rute yang menghasilkan biaya terendah menyatakan bahwa pengiriman dari S1 ke T1 ini melalui I2, yaitu mula-mula dikirim ke I2 baru kemudian disalurkan ke T1. Hal yang sama juga terjadi pada penyelesaian yang lain, sehingga untuk lebih jelasnya dapat dilihat pada Tabel 2.37 berikut. Tabel 2.37 Tabel Penyelesaian Pengiriman Kasus Teh Kembang Dari Tujuan Kuantitas S1 I2 600 S2 I2 400 I2 T1 I2 T2 I2 T3 250 350 400 68 2.5 Program Solver Program solver adalah program add-in yang berada dibawah program excel. Program solver ini berisi tentang perintah-perintah yang berfungsi untuk melakukan analisis terhadap masalah optimalisasi. Kalau kita install microsoft excel tidak secara otomatis solver ini ter-install, jadi harus diinstall secara khusus setelah program excel terinstall dalam komputer. Program solver dapat digunakan di Windows 98, Windows 2000, Microsoft XP, Millenium, Windows Vista, dan Windows 7. 2.5.1 Cara Menginstall Program Solver Langkah-langkah untuk menginstall solver adalah sebagai berikut. 1. Buka program excel sehingga muncul tampilan seperti di atas, Jika tampilan excel sudah muncul, maka langkah selanjutnya adalah klik customize quick access toolbar yang berada dibagian pojok kiri atas. 2. Kemudian klik more comands. Seperti di bawah ini. Gambar 2.4 Customize Quick Access Toolbar 69 3. Setelah klik more comands akan muncul tampilan seperti di bawah ini, kemudian pilih menu add-in dan pilih solver add-in di bagian paling bawah, sehingga akan muncul tampilan seperti di bawah ini. Gambar 2.5 Menu Add-in 4. Klik Go. 5. Kemudian centang solver add-in. 6. Jika sudah muncul gambar seperti di bawah ini. Tunggu beberapa detik. 70 Gambar 2.6 Configuration Progress 7. Jika sudah selesai, pilih menu data. Maka solver sudah ter-install di bagian atas paling kanan. Gambar 2.7 Program Solver sudah ter-install 2.5.2 Cara Menjalankan Program Solver Untuk menjalankan solver kita ambil contoh sebagai berikut. Toko “Arif” akan membuat 3 macam paket murah “akhir tahun atau lebaran” yaitu paket A, B, dan C. Paket tersebut berisi sirup, biskuit, dan permen. Paket A berisi 1 botol sirup, 2 bungkus biskuit, dan 3 bungkus permen dan dijual dengan harga Rp 85.000,00 per paket. Paket B berisi 1 botol sirup, 2 bungkus biskuit, dan 2 bungkus permen dijual Rp 75.000,00. Paket C berisi 2 botol sirup, 1 biskuit, dan 2 bungkus permen dijual Rp 70.000,00. Banyaknya sirup, biskuit, dan permen yang tersedia berturut-turut adalah 17 botol sirup, 22 bungkus biskuit, dan 30 bungkus permen. Toko Arif ingin memperoleh hasil penjualan yang sebesar- 71 besarnya. Tentukan banyaknya masing-masing paket dengan asumsi semua paket terjual habis (Dwijanto, 2008:50). Jawaban: Buat tabel masalah di atas sebagai berikut: Tabel 2.38 Tabel Awal Jumlah Paket A Paket B Paket C Barang Sirup 1 1 2 17 Biskuit 2 2 1 22 Permen 3 2 2 30 Harga 85 75 70 Dalam tabel ini, kita buat pada lembar kerja (worksheet) Excel, selanjutnya kita mulai dengan memberi nilai awal 0 untuk semua paket yang akan dibuat. Selain tabel ini, kita buat pula tabel kebutuhan bahan yang akan digunakan untuk membuat paket. Tampilan Excel adalah sebagai berikut. 72 Gambar 2.8 Persiapan penyelesaian solver Pertama-tama kita masukan 0 untuk banyak paket, dengan demikian sel B6, C6, dan D6 kita isi dengan 0. Pada tabel “kebutuhan bahan pembuatan paket” adalah merupakan perkalian antara kebutuhan tiap paket terhadap banyaknya paket yang akan dibuat, sehingga pada sel B11 diisi dengan formula “=B3*B7”, selanjutnya untuk sel yang lain diisi formula sebagai berikut: Sel Formula Sel Formula C13 =C5*B7 B12 =B4*B7 D11 =D3*B7 B13 =B5*B7 D12 =D4*B7 C11 =C3*B7 D13 =D5*B7 C12 =C4*B7 Untuk lebih praktisnya penulisan rumus di atas digunakan perintah copy paste saja. Untuk itu pada B10 kita isi formula “=B3*B7” kemudian sel ini kita 73 copy, kemudian kita blok (sorot) pada sel B10 sampai D13 lalu kita paste, maka sel B11 sampai D13 terisi nilai 0. Jumlah barang merupakan jumlah antara kebutuhan paket A, paket B, dan paket C, sehingga pada sel E11 kita isi dengan formula “=B11+C11+D11” atau dengan formula “=SUM (B11:D11) selanjutnya formula tersebut kita copykan ke dalam sel D12 dan D13. Pendapatan merupakan hasil kali antara banyaknya barang (paket) dan harga satuan barang. Jadi sel C15 kita isikan formula “=B6*B7+C6*C7+D6*D7 atau dengan formula “SUMPRODUCT (B6:D6;B7:D7). Dengan demikian persiapan untuk menjalankan solver selesai. Kemudian tinggal menjalankan program solver, untuk office 2007 solver berada di menu data bagian paling kanan. Jadi lakukan klik pada data, kemudian klik solver. Maka akan keluar menu berikut. Gambar 2.9 Penyelesaian solver 74 Pada Set Target Cell kita isi pendapatan, yaitu cukup meng-klik sel C15, maka pada Set Target Cell akan terisi $C$15. Equal To kita isi fungsi tujuan yaitu memaksimumkan, jadi kita pilih max. By Changing Sells kita isi variabel yang kita cari, yaitu banyaknya barang (paket), jadi kita isi sel B7 sampai D7 yaitu dengan melakukan drag pada sel B7 sampai D7. Subject to the Constraints kita isi dengan ketentuan bahwa jumlah bahan yang akan dipakai paling banyak sama dengan persediaan. Oleh karena itu sel E11≤E3, E12≤E4, dan E13≤E5 yaitu dengan cara meng-klik add dan muncul menu berikut. Gambar 2.10 Add Constraint Isikan Cell Refference dengan men-drag sel E11 sampai E13 dan pada Constraint dengan men-drag sel E3 sampai E5 kemudian pilih OK, maka akan kembali ke menu solver. Kemudian pilih Option dengan meng-klik pada Option, sehingga muncul menu berikut. 75 Gambar 2.11 Solver Options Pilihlah Assume Linear Model dan Assume Non_Negatif, kemudian pilih OK, maka akan kembali ke menu solver. Selanjutnya pilih solve, maka diperoleh. Gambar 2.12 Solver Result Kita lihat hasil perhitungan, bahwa banyaknya paket A sebanyak 4 buah, paket B sebanyak 5 buah, dan paket C sebanyak 4 buah, dengan pendapatan 995. 76 Selanjutnya apabila kita pilih OK maka pekerjaan selesai, tetapi jika kita meng-klik answer, sensitivity, dan limits kemudian OK, maka akan kita peroleh kesimpulan atau uraian tentang jawaban (Answer), Analisis sensitivitas, dan hasil Limitnya yang dituliskan pada lembar kerja sisipan (di depan sheet yang kita pakai). Lembar-lembar kerja ini apabila kita buka maka akan terlihat sebagai berikut. Gambar 2.13 Lembar Kerja Answer Dari hasil Answer terlihat bahwa pendapatan Rp 995.000,00- banyaknya paket A adalah 4 buah, banyaknya paket B adalah 5 buah dan banyaknya paket C adalah 4 buah. Sirup sebanyak 17 botol dipakai habis, demikian pula biskuit 22 kaleng dan permen 30 bungkus dipakai habis, yaitu terlihat pada slack terisi 0. 77 Gambar 2.14 Lembar Kerja Sensitivity Gambar 2.15 Lembar Kerja Limits Dari tabel limits di atas, terlihat bahwa pendapatan maksimum adalah 995, jika tidak membuat paket A yaitu dengan paket A adalah 0, paket B = 5, dan paket C = 4 maka diperoleh pendapatan sebesar 655, demikian pula jika tidak 78 membuat paket B, pendapatannya sebesar 620, dan jika tidak membuat paket C maka pendapatannya adalah sebesar 715. 2.5.3 Program Solver untuk Menyelesaikan Masalah Transportasi Dengan berkembangnya teknologi komputer, maka bermunculan pula perangkat lunak (software) yang dapat digunakan untuk menyelesaikan masalah Riset Operasi. Perangkat lunak ini dibuat dengan tujuan untuk membantu manusia (user) dalam mempermudah menyelesaikan masalah atau pekerjaannya. Softwaresoftware itu dirancang sesuai dengan kebutuhan dan keperluan masing-masing. Untuk keperluan penyelesaian Riset Operasi sudah tersedia beberapa program khusus, antara lain Lindo, Lingo, dan Solver yang berada di bawah program Excel (Dwijanto, 2008 : 36). Untuk menyelesaikan masalah transportasi dengan solver, maka kita buat tabel biaya, kapasitas, dan permintaan pada lembar excel sebagai berikut. 79 Gambar 2.16 Matriks Transportasi Awal Langkah awal adalah membuat tabel biaya pengiriman, kapasitas produksi dan permintaan. Tabel ini kita copy dan diletakan dibawahnya, dengan mengganti kapasitas menjadi banyaknya pengiriman barang. Nilai awal yang diberikan kepada banyaknya barang yang dikirim dari Oi ke Dj adalah 0. Sedangkan banyaknya barang yang dikirim dari Oi adalah jumlah banyaknya barang yang dikirim dari Oi ke Dj untuk suatu i. Jadi dalam hal ini G16 ditulis dengan formula “=SUM(B16:F16)”. Formula ini dicopykan ke sel G17 sampai G19. Selanjutnya banyaknya penerimaan barang adalah jumlah barang yang diterima dari Oi ke Dj untuk suatu j. Jadi dalam hal ini sel B20 ditulis dengan formula “=SUM(B16:B19)”. Formula ini dicopykan ke sel C20 sampai F20. Biaya pengiriman merupakan kelipatan yang seletak antara banyaknya barang yang dikirim dengan biaya satuan pengiriman. Oleh karena itu pada sel B22 kita tuliskan formula “=SUMPRODUCT (B6:F9,B16:F19)”. Setelah persiapan pada lembar excel selesai, saatnya menjalankan solver, yaitu klik solver, maka akan keluar menu solver sebagai brikut. 80 Gambar 2.17 Menu Solver Hasil perhitungan total biaya kita letakan pada sel B2, dan ini tidak diubah ke sel lain oleh karena itu semua hasil kita tetapkan dengan menambahkan tanda $ pada tempat perumusan hasil atau sumber. Sehingga untuk sel set target cell kita ini dengan $B$22. Masalah yang kita cari adalah masalah meminimumkan biaya transportasi, sehingga pada equal to kita pilih min. Selanjutnya pada By Changing cells meminta bagian (kelompok) sel yang merupakan variabel. Pada masalah ini adalah menentukan banyaknya barang pada sistem transportasi, oleh karena itu kita isikan B18 sampai F19 sehingga kita tulis $B$16:$F$19. Subject to the contsraints meminta syarat pembatas. Dalam masalah ini ada dua syarat pembatas yaitu pembatas permintaan (penerimaan barang) dan kapasitas pabrik (banyaknya barang yang dikirim), oleh karena itu pembatas 81 permintaan yaitu permintaan harus dipenuhi, jadi permintaan kurang dari atau sama dengan penerimaan barang. Sehingga $B10:$F$10 ≤ $B20:$F$20. Pembatas kapasitas menyatakan bahwa barang yang dikirim akan kurang dari atau sama dengan kapasitas pabrik. Sehingga $G$16:$G$29 ≤ $G$6:$G$9. Selanjutnya dengan memilih atau mengisikan keterangan berikut pada menu solver, dan mengisi options asumsi linear dan non-negative variable. Maka setelah dijalankan atau mengklik solve akan diperoleh hasil berikut. Gambar 2.18 Hasil Perhitungan dengan Solver Hasil ini menunjukan bahwa biaya pengiriman sebesar 1.230 dengan sistem pengiriman. Produksi dari Oi sebanyak 100 unit, dikirim ke D2 sebanyak 40 unit, dan dikirim ke D4 sebanyak 60 unit. Produksi dari O2sebanyak 90 unit, dikirim ke D1 sebanyak 10 unit, ke D2 sebanyak 10 unit, dan ke D3 sebanyak 70 unit. Produksi dari O3 sebanyak 70 unit, dikirim semuanya ke D3 yaitu sebanyak 70 unit. 82 Produksi dari O4 sebayak 90 unit, dikirim ke D3 sebanyak 20 unit dan ke D5 sebanyak 70 unit. 2.6 Gambaran Umum Perusahaan PT. Rajaa Tunggal berdiri pada tahun 2007, didirikan oleh Sunarjo Dharmanto, Sietyana Yadi, Sindhu Wardhana, Herry Santoso, dan Sukrianto. Dengan Bapak Herry Santoso sebagai Direktur Utama, Bapak Sukrianto sebagai Direktur Produksi dan Bapak Sunarjo Dharmanto sebagai Komisaris Perusahaan. PT. Rajaa Tunggal merupakan perusahaan rokok yang masih baru di Indonesia dan memiliki pasaran di daerah Jawa. Pada mulanya hanya memproduksi 3 jenis rokok kretek yaitu Rajaa Sejati, DJ, Kalisanga (K9), kemudian perusahaan menambah produk rokok jenis filter dengan merk Rajaa Sejati Filter. Harga jual konsumen untuk kretek merk Rajaa Sejati yaitu Rp. 3.900,00, untuk merk DJ Rp. 3.900,00, untuk merk Kalisanga (K9) Rp. 3.900,00 dan filter Rp. 4.500,00. Dengan jumlah kendaraan 14 yaitu 3 mobil Grandmax, 1 mobil Carry, dan 10 mobil Box. Produk rokok yang diproduksi oleh pabrik utama yang terletak di Dk. Jembangan Ds. Gagak Sipat Kec. Ngemplak Kab.Boyolali akan dipasarkan melalui distributor pemasaran yang kemudian akan disupply ke sub distributor dan kemudian dipasarkan. Pengiriman produk dari distributor menggunakan mobil box. Dalam 1 bulan perusahaan melakukan pengiriman sebanyak dua kali pengiriman ke regional-regional. 83 PT. Rajaa Tunggal mempunyai 4 regional/ perwakilan di Jawa Tengah dan 1 regional di Jawa Timur yaitu: 1. Surakarta, meliputi 7 wilayah yaitu: Solo, Boyolali, Klaten, Wonogiri, Sragen, Karanganyar, Sukoharjo. 2. Salatiga, meliputi 5 wilayah yaitu: Blora, Rembang, Salatiga, Kendal, Pati. 3. Banyumas, meliputi Banyumas dan Cilacap. 4. Temanggung, meliputi Kab. Temanggung. 5. Ponorogo, meliputi Kab. Ponorogo. PT. Rajaa Tunggal sempat menjadikan Magelang sebagai salah satu regional tetapi karena tidak ada prospek yang bagus maka Magelang diganti Temanggung. Jumlah karyawan PT. Rajaa Tunggal, yaitu: 1. Borongan, yaitu: - Linting: 37 orang - Packing: 16 orang - Ketok: 14 orang 2. Pra Produksi: 11 orang 3. Produksi SKT: 3 orang 4. Produksi SKM: 4 orang 5. Kantor Produksi: 5 orang 6. Kantor Pemasaran: 4 orang 7. Sales: 43 orang 8. Driver: 14 orang BAB 3 METODE PENELITIAN Metode penelitian merupakan suatu cara yang digunakan dalam penelitian ini sehingga pelaksanaan penelitian dapat dipertanggungjawabkan secara ilmiah. Dengan metode penelitian data yang diperoleh semakin lengkap untuk memecahkan masalah yang dihadapi. Pada penelitian ini prosedur yang digunakan adalah sebagai berikut. 3.1 Obyek Penelitian Penelitian ini dilakukan di PT. Rajaa Tunggal yang beralamat di Jalan Dk. Jembangan Ds. Gagak Sipat Kec. Ngemplak Kab. Boyolali. Data pengiriman produk rokok diambil per lokasi pengiriman rokok. Data yang diambil adalah data pengiriman produk Rajaa Sejati, DJ, Kalisanga (K9), dan Rajaa Sejati Filter selama satu bulan yaitu pada bulan November 2010. 3.2 Jenis Data Dalam penelitian ini jenis data yang digunakan adalah sebagai berikut. 1. Data Primer, yaitu data yang diperoleh dari hasil wawancara dengan pihak managemen perusahaan yang mempunyai keterkaitan dengan penelitian ini. 2. Data Sekunder, yaitu data yang diperoleh dari perusahaan berupa laporan, dokumen, dan data yang diperoleh dari sumber kepustakaan. 84 85 3.3 Teknik Pengumpulan Data Adapun teknik pengumpulan data untuk penyusunan skripsi ini adalah sebagai berikut. 1. Observasi Yaitu pengumpulan data dengan melakukan suatu pengamatan secara langsung pada perusahaan yang akan menjadi objek penelitian. 2. Wawancara (interview) Yaitu pengumpulan data dengan cara mengadakan tanya jawab secara langsung dengan pihak-pihak yang berhubungan permasalahan yang diangkat dalam penelitian ini, dengan tujuan untuk mendapatkan data yang tidak bisa didapatkan dengan cara lain. 3. Dokumentasi Yaitu metode yang digunakan untuk mengumpulkan dan mendapatkan sejumlah informasi yang berasal dari data-data masa lalu perusahaan. Data perusahaan yang yang meliputi profil perusahaan, jenis-jenis rokok, dan datadata lain yang berhubungan dengan permasalahan yang sedang diteliti. 3.4 Langkah-Langkah Pengolahan Data Tahap-tahap yang harus dilakukan dalam menyelesaikan penelitian ini adalah sebagai berikut. 1. Penelitian Pendahuluan Tahap ini bertujuan untuk mengetahui secara lebih dekat aktivitasaktivitas usaha dan operasional di PT. Rajaa Tunggal pada penelitian di 86 bagian distribusi. Uraian penelitian adalah pengumpulan data, analisa data dengan metode yang sesuai dengan bentuk permasalahan dan membuat kesimpulan akhir. 2. Identifikasi Gambaran Awal Masalah Identifikasi gambaran awal masalah perlu dilakukan mengingat bahwa model optimalisasi distribusi yang akan diusulkan adalah melihat dari metode yang belum pernah digunakan atau diterapkan oleh perusahaan. 3. Studi Literatur Untuk menyelesaikan masalah optimalisasi dengan menggunakan metode transportasi, dalam hal ini menggunakan metode transportasi berbantu program solver, maka digunakan beberapa buku sebagai studi literatur yang dapat membantu dalam menyelesaikan permasalahan dalam penelitian ini. 4. Observasi Sistem Yaitu dengan melakukan pengamatan dan pencatatan secara langsung terhadap sistem yang diteliti untuk mendapatkan data dan informasi yang dibutuhkan untuk mengambarkan karakteristik dari sitem yang diteliti. Dengan pertimbangan data permintaan, biaya kirim, kapasitas produksi, biaya jarak antar distributor, dan kapasitas armada kirim. Sebagai acuan menggambarkan karakterisrik sistem. 5. Analisis Sistem Setelah mengadakan pengamatan terhadap sistem yang diteliti, kemudian data hasil pengamatan tersebut dianalisis. Analisis sitem ini 87 dilakukan untuk mengetahui apakah karakterristik sistem yang akan diteliti memungkinkan untuk dibuat model. Sebagai data parameternya adalah jumlah produk pesanan, biaya kirim ke masing-maisng tujuan distribusi, kapasitas produksi, dan kapasitas armada kirim. Analisis yang digunakan harus sesuai dengan tujuan penelitian dan jenis sistem yang akan dianalisis, sehingga dapat menguji kebenaran atau menjawab pertanyaan penelitian yang diajukan. 6. Pengolahan dan Analisa Data Dari data yang diperoleh dari pengamatan di atas maka langkah selanjutnya adalah melakukan pengolahan dan analisis data dan langkahlangkahnya sebagai berikut. a. Membentuk tabel awal Tabel awal adalah tabel yang menunjukan bahwa semua fungsi kendala dimasukan dalam suatu tabel. Tabel ini dibuat untuk lebih memudahkan dalam dalam penyelesaian masalah traansportasi tersebut. b. Analisis dengan metode transportasi Dalam metode transportasi karena permintaan dari konsumen sering mengalami fluktuasi (berubah-ubah) terkadang permintaan tidak selamanya sama dengan kapasitas produksi perusahaan sehingga terkadang terdapat masalah yang sering terjadi diantaranya penawaran lebih besar dari permintaan atau sebaliknya permintaan lebih besar. Maka agar penyelesaian dengan metode transportasi bisa berjalan dengan baik 88 maka harus di analisis dengan baikpula supaya tidak ada kesalahan dalam perhitungan. c. Penyelesaian dengan Program Solver Setelah tabel awal dibuat dan sudah dianalisis dan layak untuk dilakukan perhitungan, maka langkah terakhir tinggal menjalankan dengan program solver. d. Penarikan Simpulan Tahap ini berisi pokok-pokok dari hasil penelitian yang telah dilakukan. BAB 4 HASIL PENELITIAN DAN PEMBAHASAN 4.1 Hasil Penelitian PT. Rajaa Tunggal memproduksi produk-produk rokok yaitu jenis rokok kretek dan filter. Rokok-rokok tersebut dikirim sebanyak dua kali dalam satu bulan, dalam penelitian ini data yang diambil yaitu pengiriman produk Rokok selama satu bulan. Produk rokok yang menjadi objek penelitian yaitu berupa Rokok Rajaa Sejati, Rokok DJ, Rokok Kalisanga (K9) dan Rokok Rajaa Sejati Premium. Rokok-rokok tersebut dimuat dalam kardus. Jenis rokok kretek yaitu rokok Rajaa Sejati, rokok DJ, dan rokok Kalisanga (K9), sedangkan jenis rokok filter yaitu Rajaa Sejati Premium. Produk Rokok Rajaa Sejati dalam 1 kardus berisi sebanyak 2 karton yaitu 1600 pak. Begitu juga untuk produk DJ, produk Kalisanga (K9) dan produk Rajaa Sejati Premium. Pengiriman produk-produk rokok ini dilakukan melalui beberapa distributor. Untuk wilayah Jawa bagian tengah yaitu Solo, Salatiga, Banyumas dan Temanggung. Untuk wilayah Jawa bagian timur yaitu Ponorogo. Pengiriman produk dari distributor adalah menggunakan truk ekspedisi. Sedangkan daerah tujuan pengirimannya yaitu Solo, Boyolali, Sukoharjo, Klaten, Karanganyar, Wonogiri, Sragen, Salatiga, Blora, Rembang, Pati, Kendal, Banyumas, Cilacap, Temanggung, dan Ponorogo. 89 90 PT. Rajaa Tunggal memiliki beberapa kota besar sebagai Agen yang berfungsi sebagai pemasok produk-produk rokok ke kota-kota disekitarnya. Pengiriman produk dari Pabrik menggunakan truk ekspedisi yang dapat memuat sekitar 200 dus produk rokok. Adapun daerah Lokasi Pabrik dan Kapasitasnya adalah dari Surakarta, Salatiga, Banyumas, Temanggung dan Ponorogo. Dengan kapasitas supply tiap-tiap kota yaitu untuk Rokok Rajaa Sejati sebanyak 80 dus, Rokok DJ sebanyak 30 dus, Rokok Kalisanga sebanyak 35 dus, dan Rokok Rajaa Sejati Premium sebanyak 55 dus. Sedangkan kota tujuan pengiriman yaitu 1. Toko Pojok Jl. Tanjung No.31 Solo. 2. Toko Sido Makmur Jl. Pandanaran (Kios Pasar) Boyolali. 3. PT. Anom Prima Jl. Sukawati 28 Klaten. 4. Toko Sederhana Jl. Merbabu No.11 Wonogiri. 5. Toko 88 Jl. Anggrek No.5 Sragen. 6. Toko Sumber Rejeki Jl. Gading No.17 Karanganyar. 7. Toko Bati Jl. Pandawa No.3 Sukoharjo. 8. Toko Trio Jl. Fatmawati Salatiga. 9. PT. Makmur Jaya Jl. Diponegoro Pati. 10. Toko Surya Jl. Asri No.43 Rembang. 11. Toko Arifin Jl. Kartini No.38 Blora. 12. Toko Jaya Kencana Jl. Asia No.19 Kendal. 13. Toko Berlian Jl. Salak No.32-33 Banyumas. 14. PT. Lesmana Mandiri Jl. Imam Bonjol No.106 Cilacap. 91 15. Toko Bintang Abadi Jl. Patimura No.74 Temanggung. 16. Toko Simpang Tiga Jl. Benteng No.7 Ponorogo Berdasarkan data yang diperoleh pada penelitian, kemudian disusun alur pengiriman barang dari pabrik sampai ke tempat tujuan pengiriman. Data-data pendistribusian produk Rokok Rajaa pada Bulan November 2010, meliputi: Tabel 4.1 Tabel Jarak (KM) antara Pabrik, Regional dan Kota Tujuan Pengiriman Tujuan Pengiriman Lokasi Solo SLTG BMS TMG PNG 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Pabrik 2 50 235 110 140 6 25 30 30 30 25 15 105 145 50 130 110 235 265 110 140 Solo 0 50 235 110 140 6 25 30 30 30 25 15 105 145 50 130 110 235 265 110 140 Sltiga 50 0 280 60 190 50 25 75 80 80 75 65 140 135 BMS 235 280 0 110 384 235 255 205 265 265 260 250 362 306 280 270 328 TMG 110 60 110 0 PNG 140 149 384 210 5 80 110 280 330 60 4 53 110 384 210 110 95 125 140 140 135 135 337 285 60 245 302 110 210 0 7 140 167 175 115 162 155 128 250 288 190 268 250 384 260 210 Keterangan: Angka pada kolom 1 sampai 16 adalah nama kota tujuan pengiriman: 1) Solo; 2) Boyolali; 3) Klaten; 4) Wonogiri; 5) Sragen; 6) Karanganyar; 7) Sukoharjo;8) Blora; 9) Rembang; 10) Salatiga; 11) Kendal; 12) Pati; 13) Banyumas; 14) Cilacap; 15) Temanggung; 16) Ponorogo. 190 210 5 92 Tabel 4.2 Tabel Jumlah Permintaan Barang untuk Setiap Tujuan ( Bulan November 2010) Jenis Produk Jumlah Kota Tujuan Rajaa Sejati DJ Kalisanga (K9) RS Filter dus pack dus pack dus pack Dus pack dus pack Solo 18 28800 15 24000 12 19200 25 40000 70 112000 Boyolali 21 33600 13 20800 10 16000 21 33600 65 104000 Klaten 17 27200 17 27200 9 14400 18 28800 61 97600 Wonogiri 19 30400 9 14400 16 25600 17 27200 61 97600 Sragen 14 22400 8 12800 11 17600 16 25600 49 78400 Karanganyar 15 24000 15 24000 12 19200 17 27200 59 94400 Sukoharjo 19 30400 12 19200 8 12800 25 40000 64 102400 Blora 16 25600 14 22400 9 14400 27 43200 66 105600 Rambang 17 27200 13 20800 11 17600 31 49600 72 115200 Salatiga 15 24000 10 16000 13 20800 22 35200 60 96000 Kendal 18 28800 15 24000 8 12800 18 28800 59 94400 Pati 16 25600 9 14400 11 17600 15 24000 51 81600 Banyumas 19 30400 11 17600 14 22400 23 36800 67 107200 Cilacap 15 24000 8 12800 9 14400 28 44800 60 96000 Tamanggung 20 32000 14 22400 12 19200 15 24000 61 97600 Ponorogo 16 25600 17 27200 10 16000 32 51200 75 120000 Jumlah 275 440000 200 320000 175 280000 350 560000 1000 1600000 1. Biaya pendistribusian tiap kota diperoleh dari Biaya = jarak × 4500 + uang makan + uang harian + biaya operasional 5 Keterangan : a. Setiap 1 liter solar mempunyai jarak tempuh sejauh 5 KM b. Uang makan @Rp 8.000,-/hari c. Uang harian @Rp 30.000,-/hari 93 d. Biaya operasional : 2. Luar daerah = Rp 350.000,- Satu daerah = Rp 175.000,- Satu kota = Rp 100.000,- Biaya pendistribusian per dus sampai ke tujuan dihitung dalam rupiah yaitu diperoleh dari biaya angkut tiap kota dibagi jumlah barang yang dikirim. Tabel 4.3 Tabel Biaya (rupiah) Pengiriman ke Tempat Tujuan Asal Kota tujuan Biaya (Rp) Biaya per dus (Rp) Solo 279.600 280 Salatiga 516.000 516 1.199.000 1199 974.000 974 1.028.000 1028 1 286.800 287 2 471.000 471 3 480.000 480 4 480.000 480 5 480.000 480 6 471.000 471 7 453.000 453 8 1.028.000 1028 9 1.019.000 1019 10 285.000 285 11 920.000 920 12 974.000 974 13 283.200 283 14 521.400 521 Temanggung 15 288.600 289 Ponorogo 16 285.000 285 Pabrik Banyumas Temanggung Ponorogo Solo Salatiga Banyumas Jumlah 12.722.600 94 3. Biaya total pendistribusian produk RAJAA TUNGGAL ke tempat tujuan pada Bulan November 2010 adalah sebesar Rp 12.722.600,- Untuk menyelesaikan masalah transportasi ini dengan Solver, maka langkah awal adalah membuat tabel transportasi, tabel transportasi dibuat dengan menggabungkan Tabel 4.1 dan Tabel 4.2 serta memberikan biaya yang cukup besar (M), dalam hal ini nilai M dimisalkan 10.000 kepada semua yang tidak mempunyai jalur transportasi, sehingga diperoleh tabel biaya, kapasitas, dan permintaan. Tabel ini dibuat untuk memudahkan penyelesaian dalam masalah transportasi tersebut dan dibuat secara feasible (layak). Pada masalah di atas diperoleh tabel transportasi sebagai berikut. Tabel 4.4 Tabel Transportasi Gabungan untuk Semua Produk Rajaa Tunggal Tujuan Pengiriman Lokasi kpsts Solo SLTG BMS TMG PNG 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Pabrik 1000 2 50 235 110 140 M M M M M M M M M M M M M M M M 0 M M M M 6 25 30 30 30 25 15 M M 50 M M M M M M M 0 M M M 50 25 M M M M M 140 135 5 80 110 M M 60 M M M 0 M M M M M M M M M M M M M M 4 53 110 M M M M 0 M M M M M M M M M M 60 M M M M 7 M M M M M 0 M Demand 1000 1000 1000 1000 1000 70 M 65 M 115 M 61 61 49 M 59 M 64 M M M 66 72 60 M 59 M 51 M 67 M 60 M 61 5 75 Solo 1000 SLTG 1000 BMS 1000 TMG 1000 PNG 1000 Angka yang ada dibawah kolom nama kota adalah angka jarak antara pabrik, regional, dan kota tujuan dalam kilometer (KM). 1000 95 Untuk menyelesaikan masalah pada Tabel 4.4, dapat dibuat tabel awal untuk seluruh produk berupa tabel persiapan di lembar kerja Excel berikut. Gambar 4.1 Persiapan Tabel Awal pada Lembar Kerja Excel Biaya pengiriman merupakan kelipatan yang seletak antara banyaknya barang yang dikirim dengan jarak pengiriman. Oleh karena itu pada sel B22 dituliskan formula “=SUMPRODUCT(B5:Q9,B15:U19)”. Setelah persiapan tabel awal selesai, kemudian Solver dijalankan maka akan keluar menu Solver Parameter dan isikan menu-menu yang ada di dalamnya seperti yang terlihat pada Gambar 4.2 . 96 Gambar 4.2 Solver Parameter Gambar 4.3 Solver Options Selanjutnya dengan memilih menu Options pada Solver Parameter dan mengisi keterangan seperti Gambar 4.3. Diperoleh hasil sebagai berikut. 97 Gambar 4.4 Penyelesaian dengan Program Solver untuk Semua Produk Rajaa Tunggal Tabel 4.5 Tabel Alokasi Pengiriman Barang Berdasarkan Program Solver (Semua Produk RAJAA) Tujuan Pengiriman Lokasi Solo SLTG BMS TMG PNG 1 Pabrik 489 Solo SLTG BMS TMG PNG 309 127 2 3 4 5 6 7 kpsts 8 9 10 11 12 13 14 15 16 75 511 1000 70 65 61 61 49 59 64 691 60 66 72 873 1000 59 51 61 1000 67 60 1000 1000 1000 925 Demand 1000 1000 1000 1000 1000 70 65 61 61 49 59 64 66 72 60 59 51 67 60 61 75 75 1000 98 Hasil penyelesaian keseluruhan dengan menggunakan Program Solver di atas, dapat diartikan sebagai berikut : 1. Biaya minimum yang diperlukan untuk pengangkutan semua produk RAJAA TUNGGAL adalah sebesar 106.156 x Rp 100,- = Rp 10.615.600,-. 2. Alokasi pengiriman barang yang diperlukan agar biaya yang ditanggung oleh perusahaan minimal pada bulan November 2010 adalah sebagai berikut. a) Dari lokasi pabrik dengan kapasitas pengiriman 1000 dus dikirim ke Regional Solo sebanyak 489 dus, dikirim ke Regional Salatiga sebanyak 309 dus, dikirim ke Regional Banyumas sebanyak 127 dus, dan dikirim ke Regional Ponorogo sebanyak 75 dus b) Regional Solo mendapat kiriman dari pabrik sebanyak 489 dus, untuk memenuhi kebutuhan Kota Solo 70 dus, dikirim ke Agen Boyolali 65 dus, dikirim ke Agen Klaten 61 dus, dikirim ke Agen Wonogiri 61 dus, dikirim ke Agen Sragen 49 dus, dikirim ke Agen Karanganyar 59 dus, dikirim ke Agen Sukoharjo 64 dus, dan dikirim ke Agen Salatiga 60 dus. c) Regional Salatiga mendapat kiriman dari pabrik sebanyak 309 dus, dikirim ke Agen Blora 66 dus, dikirim ke Agen Rembang 72 dus, dikirim ke Agen Kendal 59 dus, dikirim ke Agen Pati 51 dus, dan dikirim ke Agen Temanggung 61 dus. d) Regional Banyumas mendapat kiriman dari pabrik sebanyak 127 dus, untuk memenuhi kebutuhan Kabupaten Banyumas 67 dus dan dikirim ke Agen Cilacap 60 dus. 99 e) Dari Regional Ponorogo mendapat kiriman dari pabrik sebanyak 75 dus, untuk memenuhi kebutuhan Kabupaten Ponorogo 75 dus. Dengan cara yang sama seperti di atas, Tabel Transportasi dan penyelesaiannya dengan menggunakan Program Solver untuk masing-masing jenis produk RAJAA TUNGGAL, yaitu Rajaa Sejati, DJ, Kalisanga(K9), dan Rajaa Sejati Premium adalah sebagai berikut. 1. Rajaa Sejati Tabel 4.6 Tabel Transportasi Gabungan untuk Produk Rajaa Sejati kpsts Tujuan Pengiriman Lokasi Solo SLTG BMS TMG PNG 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 140 M M M M M M M M M M M M M M M M 275 25 30 30 30 25 15 M M 50 M M M M M M 275 Pabrik 2 50 235 110 Solo 0 M M M M 6 Salatiga M 0 M M M 50 25 M M M M M 140 135 5 BMS M M 0 M M M M M M M M M M M M M M TMG M M M 0 M M M M M M M M M M 60 M M M M 7 M 275 PNG M M M M 0 M M M 115 M M M M M M M M M M M 5 275 Demand 275 275 275 275 80 110 M M 60 M 4 53 110 M 275 275 275 18 21 17 19 14 15 19 16 17 15 18 16 19 15 20 16 275 Dari tabel di atas jika dimasukkan ke dalam program Solver akan menghasilkan alur pendistribusian seperti pada Gambar 4.5 berikut. 100 Gambar 4.5 Penyelesaian untuk Produk Rajaa Sejati Tabel 4.7 Tabel Alokasi Pengiriman Barang Berdasarkan Program Solver (Produk Rajaa Sejati) Tujuan Pengiriman Lokasi Kpsts Solo SLTG BMS TMG PNG Pabrik 138 Solo 137 SLTG 87 34 2 3 4 5 6 7 8 9 10 11 12 14 15 16 275 21 17 19 14 15 19 188 15 16 17 275 18 16 241 TMG 13 16 18 BMS 20 19 275 15 275 275 PNG Demand 275 1 275 259 275 275 275 275 16 275 18 21 17 19 14 15 19 16 17 15 18 16 19 15 20 16 101 Hasil penyelesaian keseluruhan dengan menggunakan Program Solver di atas, dapat diartikan sebagai berikut. 1. Biaya minimum yang diperlukan untuk pengangkutan produk Rajaa Sejati adalah sebesar 28.285 x Rp 100,- = Rp 2.828.500,-. 2. Alokasi pengiriman barang yang diperlukan agar biaya yang ditanggung oleh perusahaan minimal pada bulan November 2010 adalah sebagai berikut. a) Dari lokasi pabrik dengan kapasitas pengiriman 275 dus dikirim ke Regional Solo sebanyak 138 dus, dikirim ke Regional Salatiga sebanyak 87 dus, dikirim ke Regional Banyumas sebanyak 34 dus, dan dikirim ke Regional Ponorogo sebanyak 16 dus. b) Regional Solo mendapat kiriman dari pabrik sebanyak 138 dus, untuk memenuhi kebutuhan Kota Solo 18 dus, dikirim ke Agen Boyolali 21 dus, dikirim ke Agen Klaten 17 dus, dikirim ke Agen Wonogiri 19 dus, dikirim ke Agen Sragen 14 dus, dikirim ke Agen Karanganyar 15 dus, dikirim ke Agen Sukoharjo 19 dus, dan dikirim ke Agen Salatiga 15 dus. c) Regional Salatiga mendapat kiriman dari pabrik sebanyak 87 dus, dikirim ke Agen Blora 16 dus, dikirim ke Agen Rembang 17 dus, dikirim ke Agen Kendal 18 dus, dikirim ke Agen Pati 16 dus, dan dikirim ke Agen Temanggung 20 dus. d) Regional Banyumas mendapat kiriman dari pabrik sebanyak 34 dus, untuk memenuhi kebutuhan Kabupaten Banyumas 19 dus dan dikirim ke Agen Cilacap 15 dus. 102 e) Dari Regional Ponorogo mendapat kiriman dari pabrik sebanyak 16 dus, untuk memenuhi kebutuhan Kabupaten Ponorogo 16 dus. 2. DJ Tabel 4.8 Tabel Transportasi Gabungan untuk Produk DJ kpsts Tujuan Pengiriman Lokasi Solo SLTG BMS TMG PNG Pabrik 2 50 235 110 140 Solo 0 M M M M 0 M M M M Salatiga BMS TMG PNG Demand 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 M M M M M M M M M M M M M M M M 200 M 6 M M M M M 200 M M 50 25 M M M M M 140 135 5 80 110 M M 60 M 200 0 M M M M M M M M M M M M M M 4 M M 0 M M M M M M M M M M 60 M M M M 7 M 200 M M M M 0 M M M 115 M M M M M M M M M M M 5 200 200 200 200 200 200 15 13 17 9 11 25 30 30 30 25 15 M M 50 M 9 8 15 12 14 13 10 15 53 110 M 8 14 17 Dari tabel di atas jika dimasukkan ke dalam program Solver akan menghasilkan alur pendistribusian seperti pada Gambar 4.6 berikut. 200 200 103 Gambar 4.6 Penyelesaian untuk Produk DJ Tabel 4.9 Tabel Alokasi Pengiriman Barang Berdasarkan Program Solver (Produk DJ) Tujuan Pengiriman Lokasi Solo SLTG BMS TMG PNG Pabrik 89 Solo 111 SLTG 61 19 2 3 4 5 6 7 8 9 10 11 12 13 13 17 9 8 200 15 9 181 200 11 8 186 200 14 183 200 200 16 15 12 14 13 10 PNG 15 200 139 TMG 14 17 15 BMS Demand 200 14 1 Kpsts 200 200 200 17 15 13 17 9 8 15 12 14 13 10 15 9 11 8 14 17 200 104 Hasil penyelesaian keseluruhan dengan menggunakan Program Solver di atas, dapat diartikan sebagai berikut. 1. Biaya minimum yang diperlukan untuk pengangkutan produk DJ adalah sebesar 20.081 x Rp 100,- = Rp 2.008.100,-. 2. Alokasi pengiriman barang yang diperlukan agar biaya yang ditanggung oleh perusahaan minimal pada bulan November 2010 adalah sebagai berikut. a) Dari lokasi pabrik dengan kapasitas pengiriman 200 dus dikirim ke Regional Solo sebanyak 99 dus, dikirim ke Regional Salatiga sebanyak 65 dus, dikirim ke Regional Banyumas sebanyak 19 dus, dan dikirim ke Regional Ponorogo sebanyak 17 dus. b) Regional Solo mendapat kiriman dari pabrik sebanyak 99 dus, untuk memenuhi kebutuhan Kota Solo 15 dus, dikirim ke Agen Boyolali 13 dus, dikirim ke Agen Klaten 17 dus, dikirim ke Agen Wonogiri 9 dus, dikirim ke Agen Sragen 8 dus, dikirim ke Agen Karanganyar 15 dus, dikirim ke Agen Sukoharjo 12 dus, dan dikirim ke Agen Salatiga 10 dus. c) Regional Salatiga mendapat kiriman dari pabrik sebanyak 65 dus, dikirim ke Agen Blora 14 dus, dikirim ke Agen Rembang 13 dus, dikirim ke Agen Kendal 15 dus, dikirim ke Agen Pati 9 dus, dan dikirim ke Agen Temanggung 14 dus. d) Regional Banyumas mendapat kiriman dari pabrik sebanyak 19 dus, untuk memenuhi kebutuhan Kabupaten Banyumas 11 dus dan dikirim ke Agen Cilacap 8 dus. 105 e) Dari Regional Ponorogo mendapat kiriman dari pabrik sebanyak 17 dus, untuk memenuhi kebutuhan Kabupaten Ponorogo 17 dus. 3. Kalisanga (K9) Tabel 4.10 Tabel Transportasi Gabungan untuk Produk Kalisanga (K9) kpsts Tujuan Pengiriman Lokasi Solo SLTG BMS TMG PNG 1 2 3 4 5 6 7 8 9 Pabrik 2 50 Solo 0 M M M M 6 M 0 M M M 50 25 M M M M M 140 135 5 M M 0 M M M M M M M M M M M 60 M M 4 M M M 0 M M M M 115 M M M M M M M M M M M M M M 0 M M M M M M M M M M M M M M M 175 175 SLTG BMS TMG PNG Demand 235 110 140 M M M M M M M M M 10 11 12 13 14 15 16 M M M M M M M 175 25 30 30 30 25 15 M M 50 M M M M M M 175 175 175 175 12 10 9 16 11 12 8 9 80 110 M M 60 M 175 11 13 8 11 14 53 110 M 175 9 7 5 175 12 10 175 Dari tabel di atas jika dimasukkan ke dalam program Solver akan menghasilkan alur pendistribusian seperti pada Gambar 4.7 berikut. M 175 106 Gambar 4.7 Penyelesaian untuk Produk K9 Tabel 4.11 Tabel Alokasi Pengiriman Barang Berdasarkan Program Solver (Produk K9) Tujuan Pengiriman Lokasi kpsts Solo SLTG BMS TMG PNG Pabrik Solo 91 51 23 3 4 5 6 7 8 9 10 11 12 13 9 16 11 12 8 124 15 16 175 13 9 11 8 152 TMG 14 175 12 10 BMS 11 175 12 14 175 9 175 175 PNG Demand 2 10 84 SLTG 1 165 175 175 175 175 175 10 12 10 9 16 11 12 8 9 11 13 8 11 14 9 12 10 175 107 Hasil penyelesaian keseluruhan dengan menggunakan Program Solver di atas, dapat diartikan sebagai berikut. 1. Biaya minimum yang diperlukan untuk pengangkutan produk Kalisanga (K9) adalah sebesar 17.907 x Rp 100,- = Rp 1.790.700,-. 2. Alokasi pengiriman barang yang diperlukan agar biaya yang ditanggung oleh perusahaan minimal pada bulan November 2010 adalah sebagai berikut. a) Dari lokasi pabrik dengan kapasitas pengiriman 175 dus dikirim ke Regional Solo sebanyak 91 dus, dikirim ke Regional Salatiga sebanyak 51 dus, dikirim ke Regional Banyumas sebanyak 23 dus, dan dikirim ke Regional Ponorogo sebanyak 10 dus. b) Regional Solo mendapat kiriman dari pabrik sebanyak 91 dus, untuk memenuhi kebutuhan Kota Solo 12 dus, dikirim ke Agen Boyolali 10 dus, dikirim ke Agen Klaten 9 dus, dikirim ke Agen Wonogiri 16 dus, dikirim ke Agen Sragen 11 dus, dikirim ke Agen Karanganyar 12 dus, dikirim ke Agen Sukoharjo 8 dus, dan dikirim ke Agen Salatiga 13 dus c) Regional Salatiga mendapat kiriman dari pabrik sebanyak 51 dus, dikirim ke Agen Blora 9 dus, dikirim ke Agen Rembang 11 dus, dikirim ke Agen Kendal 8 dus, dikirim ke Agen Pati 11 dus, dan dikirim ke Agen Temanggung 12 dus. d) Regional Banyumas mendapat kiriman dari pabrik sebanyak 23 dus, untuk memenuhi kebutuhan Kabupaten Banyumas 14 dus dan dikirim ke Agen Cilacap 9 dus. 108 e) Dari Regional Ponorogo mendapat kiriman dari pabrik sebanyak 10 dus, untuk memenuhi kebutuhan Kabupaten Ponorogo 10 dus. 4. Rajaa Sejati Premium Tabel 4.12 Tabel Transportasi Gabungan untuk Produk Rajaa Sejati Premium kpsts Tujuan Pengiriman Lokasi Solo SLTG BMS TMG PNG 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 140 M M M M M M M M M M M M M M M M 350 Pabrik 2 50 235 110 Solo 0 M M M M 6 50 M M M M M M 350 SLTG M 0 M M M 50 25 M M M M M 140 135 5 80 110 M M 60 M 350 BMS M M 0 M M M M M M M M M M M M M M 4 53 110 M 350 TMG M M M 0 M M M M M M M M M M 60 M M M M 7 M 350 PNG M M M M 0 M M M 115 M M M M M M M M M M M 5 350 Demand 350 350 350 350 350 25 21 18 17 16 17 25 27 31 22 18 15 23 28 15 32 350 25 30 30 30 25 15 M M Dari tabel di atas jika dimasukkan ke dalam program Solver akan menghasilkan alur pendistribusian seperti pada Gambar 4.8 berikut. 109 Gambar 4.8 Penyelesaian untuk Produk Rajaa Sejati Premium Tabel 4.13 Tabel Alokasi Pengiriman Barang Berdasarkan Program Solver (Produk Rajaa Sejati Premium) Tujuan Pengiriman Lokasi Solo SLTG BMS TMG PNG Pabrik Solo 161 106 51 3 4 5 6 7 8 9 10 11 12 244 14 15 16 Kpsts 350 22 27 31 18 15 299 TMG 13 350 25 21 18 17 16 17 25 BMS 350 15 350 23 28 350 350 PNG Demand 350 2 32 189 SLTG 1 32 350 318 350 350 350 350 25 21 18 17 16 17 25 27 31 22 18 15 23 28 15 32 110 Hasil penyelesaian keseluruhan dengan menggunakan Program Solver di atas, dapat diartikan sebagai berikut. 1. Biaya minimum yang diperlukan untuk pengangkutan produk Rajaa Sejati Premium adalah sebesar 39.883 x Rp 100,- = Rp 3.988.300,2. Alokasi pengiriman barang yang diperlukan agar biaya yang ditanggung oleh perusahaan minimal pada bulan November 2010 adalah sebagai berikut. a) Dari lokasi pabrik dengan kapasitas pengiriman 350 dus dikirim ke Regional Solo sebanyak 161 dus, dikirim ke Regional Salatiga sebanyak 106 dus, dikirim ke Regional Banyumas sebanyak 51 dus, dan dikirim ke Regional Ponorogo sebanyak 32 dus. b) Regional Solo mendapat kiriman dari pabrik sebanyak 161 dus, untuk memenuhi kebutuhan Kota Solo 25 dus, dikirim ke Agen Boyolali 21 dus, dikirim ke Agen Klaten 18 dus, dikirim ke Agen Wonogiri 17 dus, dikirim ke Agen Sragen 16 dus, dikirim ke Agen Karanganyar 17 dus, dikirim ke Agen Sukoharjo 25 dus, dan dikirim ke Agen Salatiga 22 dus. c) Regional Salatiga mendapat kiriman dari pabrik sebanyak 106 dus, dikirim ke Agen Blora 27 dus, dikirim ke Agen Rembang 31 dus, dikirim ke Agen Kendal 18 dus, dikirim ke Agen Pati 15 dus, dan dikirim ke Agen Temanggung 15 dus. d) Regional Banyumas mendapat kiriman dari pabrik sebanyak 51 dus, untuk memenuhi kebutuhan Kabupaten Banyumas 23 dus dan dikirim ke Agen Cilacap 28 dus. 111 e) Dari Regional Ponorogo mendapat kiriman dari pabrik sebanyak 32 dus, untuk memenuhi kebutuhan Kabupaten Ponorogo 32 dus. 4.2 Pembahasan Berdasarkan hasil penelitian akan dibahas biaya pengiriman yang optimal. Biaya pengiriman yang optimal adalah biaya terendah yang dikeluarkan oleh perusahaan untuk mendistribusikan barang. Alur pengiriman barang yang dilakukan perusahaan untuk mendistribusikan barang dapat dilihat pada Tabel 4.14 dengan biaya pendistribusian barang sebesar Rp 12.722.600,-. Tabel 4.14 Tabel Biaya Pengiriman ke Tempat Tujuan Asal Kota tujuan Solo Salatiga Banyumas Temanggung Ponorogo 1 2 3 4 5 Pabrik Solo 6 7 8 9 10 11 12 13 14 15 16 Salatiga Banyumas Temanggung Ponorogo Jumlah Biaya (Rp) 279600 516000 1199000 974000 1028000 286800 471000 480000 480000 480000 471000 453000 1028000 1019000 285000 920000 974000 283200 521400 288600 285000 12722600 112 Dari tabel tersebut jika dimasukkan ke dalam program Solver akan menghasilkan alur pendistribusian seperti pada Tabel 4.15 berikut. Tabel 4.15 Tabel Alokasi Pengiriman Barang Berdasarkan Program Solver (Semua Produk RAJAA) Tujuan Pengiriman Lokasi Solo SLTG BMS TMG PNG Pabrik Solo SLTG BMS TMG 489 309 127 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 75 511 1000 70 65 61 61 49 59 64 691 60 66 72 1000 59 51 873 61 1000 67 60 1000 1000 1000 925 PNG kpsts Demand 1000 1000 1000 1000 1000 70 75 65 61 61 49 59 64 66 72 60 59 51 67 60 61 75 Berdasarkan Tabel 4.14 dan Tabel 4.15 terlihat bahwa terdapat perbedaan pengalokasian barang pada masalah transportasi yang diterapkan oleh perusahaan dengan pengalokasian barang pada masalah transportasi yang mengunakan Program Solver. Dari hasil analisis transportasi dengan program solver di atas diperoleh biaya pendistribusian untuk seluruh produk RAJAA (Rajaa Sejati, DJ, K9, dan Rajaa Sejati Premium) adalah sebesar Rp 10.615.600,-. Sedangkan biaya yang harus dikeluarkan oleh perusahaan untuk mendistribusikan seluruh produk RAJAA (Rajaa Sejati, DJ, K9, dan Rajaa Sejati Premium) adalah sebesar Rp 12.722.600,-. Ini berarti terdapat selisih antara biaya pendistribusian yaitu sebesar 1000 113 Rp 2.107.000,-. Jadi, biaya pendistribusian pada PT. Rajaa Tunggal masih bisa diminimalkan 16,51% dari jumlah biaya keseluruhan dengan alokasi seperti pada Tabel 4.15 yang berarti perlu adanya perubahan rute transportasi dari pabrik ke regional maupun dari regional ke kota tujuan agar diperoleh biaya yang minimum. Analisis di atas menunjukkan bahwa proses pendistribusian barang di PT. Rajaa Tunggal belum optimal dari segi biaya, namun pada kenyataannya perusahaan masih mempergunakan jalur transportasi yang sudah ditetapkan karena adanya pertimbangan dari faktor-faktor lain yang mempengaruhi proses pendistribusian itu sendiri seperti efisiensi waktu pengiriman. BAB 5 PENUTUP 5.1 Simpulan Dari hasil penelitian dan pembahasan pada penelitian ini, maka simpulan yang dapat diperoleh adalah sebagai berikut: 3. Berdasarkan hasil analisis dengan program Solver pada bulan November 2010 diperoleh biaya pendistribusian untuk seluruh produk RAJAA (Rajaa Sejati, DJ, K9, dan Rajaa Sejati Premium) adalah sebesar Rp 10.615.600,-. Sedangkan biaya yang harus dikeluarkan oleh perusahaan untuk mendistribusikan seluruh produk RAJAA adalah sebesar Rp 12.722.600,-. Jadi, diperoleh selisih biaya pendistribusian antara PT. Rajaa Tunggal dengan biaya pendistribusian yang dilakukan dengan program Solver adalah sebesar Rp 2.107.000,- atau 16,51% dari total biaya yang dikeluarkan. Dengan kata lain biaya pendistribusian produk pada bulan November 2010 yang dilakukan oleh PT. Rajaa Tunggal dapat diminimumkan dengan alokasi seperti pada Gambar 4.10 yang berarti perlu adanya perubahan rute transportasi dari pabrik ke regional maupun dari regional ke kota tujuan agar diperoleh biaya yang minimum. 4. Berdasarkan hasil analisis menunjukkan bahwa proses pendistribusian barang di PT. Rajaa Tunggal belum optimal dari segi biaya, namun pada kenyataannya perusahaan masih mempergunakan jalur transportasi yang 114 115 sudah ditetapkan karena adanya pertimbangan dari faktor-faktor lain yang mempengaruhi proses pendistribusian itu sendiri seperti efisiensi waktu pengiriman. 5.2 Saran Dari hasil penelitian dan pembahasan pada penelitian ini, maka saran yang dapat diberikan adalah sebagai berikut. 1. Dari hasil penelitian ini diharapkan dapat memberikan sumbangan kepada PT. Rajaa Tunggal, bahwa dalam pengiriman barang selanjutnya dapat mengaplikasikan metode Transportasi dengan menggunakan bantuan Program Solver sehingga biaya yang dikeluarkan minimum. Ini berarti perlu adanya perubahan rute transportasi dari pabrik ke regional maupun dari regional ke kota tujuan agar diperoleh biaya yang minimum. 2. Diharapkan pada penelitian selanjutnya dapat mengkaji mengenai Transportasi dengan menggunakan bantuan software lain agar diperoleh hasil yang optimum. 3. Diharapkan pada penelitian selanjutnya dapat permasalahan lain seperti Travelling Salesman Problem. mengkaji mengenai 116 DAFTAR PUSTAKA Arifin, Johar. 2010. Mengungkap Kedahsyatan Pivottable dan Solver Microsoft Excel. Jakarta: PT Elex Media Komputindo. Blocher, Edwar J. 2007. Manajemen Biaya Penekanan Strategis Edisi 3 Buku 1. Jakarta: Salemba Raya. Dimyati, T dan Dimyati, A. 2004. Operation Research Model-Model Pengambilan Keputusan. Bandung: Sinar Baru Algensindo. Dwijanto. 2008. Program Linear Berbantuan Komputer: Lindo, Lingo dan Solver. Semarang: Universitas Negeri Semarang Press. Guzel, Nuran. 2010. Fuzzy Transportation Problem with Fuzzy Amounts and the Fuzzy Costs. World Applied Sciences Journal, 8(5): 543-549. Hillier, F.S. et al. 1990. Pengantar Riset Operasi Edisi Kelima Jilid 1. Jakarta: Erlangga. Imam, Taghrid, G.Elsharawy, M. Gomah, & I. Sany. 2009. Solving Transportation Problem Using Object-Oriented Model. IJCSNS International Journal of Computer Science and Network Secyrity, 9(2): 353-361. Kusmuriyanto, 2005. Akuntansi Keuangan Dasar. Semarang: UPT.UNNES Press. Mulyono, S. 2002. Riset Operasi. Jakarta: Lembaga Penerbit Fakultas Ekonomi Universitas Indonesia. Siang, J. J. 2002. Matematika Diskrit dan aplikasinya Pada Ilmu Komputer. Yogyakarta: Andi. Siswanto. 2007. Operation Research Jilid 1. Jakarta: Erlangga. Sutarno, H dkk. 2005. Matematika Diskrit. Malang: Universitas Negeri Malang. Suyitno, H. 1999. Pengantar Program Linear. Semarang: IKIP Semarang. 117 Lampiran 118 Lampiran 1 Tabel 4.1 Tabel Jarak (KM) antara Pabrik, Regional dan Kota Tujuan Pengiriman Tujuan Pengiriman Lokasi Solo SLTG BMS TMG PNG 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Pabrik 5 50 235 110 140 6 25 30 30 30 25 15 105 145 50 130 110 235 265 110 140 Solo 0 50 235 110 140 6 25 30 30 30 25 15 105 145 50 130 110 235 265 110 140 Sltiga 50 0 280 60 190 50 25 75 80 80 75 65 140 135 BMS 235 280 0 110 384 235 255 205 265 265 260 250 362 306 280 270 328 TMG 110 60 110 0 PNG 140 149 384 210 5 80 110 280 330 60 4 53 110 384 210 110 95 125 140 140 135 135 337 285 60 245 302 110 210 0 Angka pada kolom 1 sampai 16 adalah nama kota tujuan pengiriman: 2) Boyolali; 7) Sukoharjo; 3) Klaten; 8) Blora; 7 140 167 175 115 162 155 128 250 288 190 268 250 384 260 210 Keterangan: 1) Solo; 4) Wonogiri; 5) Sragen; 6) Karanganyar; 9) Rembang; 10) Salatiga; Pati; 13) Banyumas; 14) Cilacap; 15) Temanggung; 16) Ponorogo. 11) Kendal; 190 12) 210 5 119 Lampiran 2 Tabel Jumlah Permintaan Barang untuk Setiap Tujuan ( Bulan November 2010) Jenis Produk Jumlah Kota Tujuan Rajaa Sejati DJ Kalisanga (K9) RS Filter dus pack dus pack dus pack dus pack dus pack Solo 18 28800 15 24000 12 19200 25 40000 70 112000 Boyolali 21 33600 13 20800 10 16000 21 33600 65 104000 Klaten 17 27200 17 27200 9 14400 18 28800 61 97600 Wonogiri 19 30400 9 14400 16 25600 17 27200 61 97600 Sragen 14 22400 8 12800 11 17600 16 25600 49 78400 Karanganyar 15 24000 15 24000 12 19200 17 27200 59 94400 Sukoharjo 19 30400 12 19200 8 12800 25 40000 64 102400 Blora 16 25600 14 22400 9 14400 27 43200 66 105600 Rambang 17 27200 13 20800 11 17600 31 49600 72 115200 Salatiga 15 24000 10 16000 13 20800 22 35200 60 96000 Kendal 18 28800 15 24000 8 12800 18 28800 59 94400 Pati 16 25600 9 14400 11 17600 15 24000 51 81600 Banyumas 19 30400 11 17600 14 22400 23 36800 67 107200 Cilacap 15 24000 8 12800 9 14400 28 44800 60 96000 Tamanggung 20 32000 14 22400 12 19200 15 24000 61 97600 Ponorogo 16 25600 17 27200 10 16000 32 51200 75 120000 Jumlah 275 440000 200 320000 175 280000 350 560000 1000 1600000 120 Lampiran 3 Tabel Biaya (rupiah) Pengiriman ke Tempat Tujuan Asal Kota tujuan Biaya (Rp) Biaya per dus Solo 279600 280 Salatiga 516000 516 Banyumas 1199000 1199 Temanggung 974000 974 Ponorogo 1028000 1028 1 286800 287 2 471000 471 3 480000 480 4 480000 480 5 480000 480 6 471000 471 7 453000 453 8 1028000 1028 9 1019000 1019 10 285000 285 11 920000 920 12 974000 974 13 283200 283 14 521400 521 Temanggung 15 288600 289 Ponorogo 16 285000 285 Pabrik Solo Salatiga Banyumas Jumlah 12722600 121 Lampiran 4 Tabel Alokasi Pengiriman Barang Berdasarkan Program Solver (Semua Produk RAJAA) Tujuan Pengiriman Lokasi Solo SLTG BMS TMG PNG 1 Pabrik 429 308 Solo SLTG BMS TMG PNG 127 61 2 3 4 5 6 7 kpsts 8 9 10 11 12 13 14 15 16 75 571 1000 70 65 61 61 49 59 64 692 1000 66 72 60 59 51 873 1000 67 60 939 1000 61 925 1000 75 Demand 1000 1000 1000 1000 1000 70 65 61 61 49 59 64 66 72 60 59 51 67 60 61 75 1000 122 Lampiran 5 Tabel Alokasi Pengiriman Barang Berdasarkan Program Solver (Produk Rajaa Sejati) Tujuan Pengiriman Lokasi kpsts Solo SLTG BMS TMG PNG Pabrik 123 Solo 82 34 20 3 4 5 6 7 8 9 10 11 12 13 14 15 16 275 18 21 17 19 14 15 19 193 BMS 275 16 17 15 18 16 241 TMG 275 19 15 255 PNG Demand 275 2 16 152 SLTG 1 20 259 275 275 275 275 275 275 16 275 18 21 17 19 14 15 19 16 17 15 18 16 19 15 20 16 123 Lampiran 6 Tabel Alokasi Pengiriman Barang Berdasarkan Program Solver (Produk DJ) Tujuan Pengiriman Lokasi Solo SLTG BMS TMG PNG 1 Pabrik 89 Solo 111 SLTG 61 14 3 4 5 6 7 8 9 10 11 14 8 200 14 13 10 15 9 200 11 8 186 200 14 183 200 16 15 12 181 PNG 15 200 139 TMG 12 13 17 15 13 17 9 BMS Demand 200 19 2 kpsts 200 200 200 15 13 17 9 200 17 8 15 12 14 13 10 15 9 11 8 14 17 200 124 Lampiran 7 Tabel Alokasi Pengiriman Barang Berdasarkan Program Solver (Produk K9) Tujuan Pengiriman Lokasi kpsts Solo SLTG BMS TMG PNG 1 Pabrik 78 Solo 97 SLTG 52 23 3 4 5 6 7 8 9 10 11 12 13 14 15 175 123 16 11 12 8 175 9 11 13 8 11 152 TMG 175 14 9 163 PNG 175 12 165 175 16 10 12 10 9 BMS Demand 175 12 2 175 175 175 12 10 9 175 10 16 11 12 8 9 11 13 8 11 14 9 12 10 175 125 Lampiran 8 Tabel Alokasi Pengiriman Barang Berdasarkan Program Solver (Produk Rajaa Sejati Premium) Tujuan Pengiriman Lokasi Solo SLTGBMSTMGPNG 1 Pabrik Solo SLTG BMS TMG PNG 139 113 51 15 2 3 4 5 6 7 Kpsts 8 9 10 11 12 13 14 15 16 32 211 350 25 21 18 17 16 17 25 237 350 27 31 22 18 15 299 350 23 28 335 350 15 318 350 32 350 Demand 350 350 350 350 350 25 21 18 17 16 17 25 27 31 22 18 15 23 28 15 32 126 Lampiran 9 127 Lampiran 10 Pabrik tampak depan Bagian depan PT. Rajaa Tunggal Tempat parkir PT. Rajaa Tunggal 128 Lampiran 11 Produk Rajaa Sejati Produk Kalisanga (K9) Produk DJ Produk Rajaa Sejati Premium