Uploaded by Evanila Silvia

Tugas ME-MCDM an EVANILA SILVIA - F361190121

advertisement
TUGAS
SISTEM PENUNJANG KEPUTUSAN
(TIN 713)
NON NUMERIC MULTI PERSONS MULTI CRITERIA DECISION MAKING
(ME-MCDM)
DOSEN : Prof. Dr. Ir. Marimin, M.Sc.
Oleh :
EVANILA SILVIA
F361190121
PROGRAM PASCASARJANA
INSTITUT PERTANIAN BOGOR
2020
NON NUMERIC MULTI PERSONS MULTI CRITERIA DECISION MAKING (ME-MCDM)
Contoh Kasus :
Manajer suatu perusahaan dihadapkan pada usulan beberapa alternatif kajian dan beberapa kriteria.
Alternatif ada 3, yaitu :
Alternatif 1 : Persediaan bahan baku dan JIT
Alternatif 2 : Peningkatan mutu melalui TQC
Alternatif 3 : Efisiensi teknologi melalui grup teknologi
Kriteria ada 6 yaitu :
Kriteria 1 : Urgensi dengan rencana pembangunan perusahaan
Kriteria 2 : Biaya yang diperlukan
Kriteria 3 : Komprehensifitas proposal
Kriteria 4 : Bonafitas pelaksana
Kriteria 5 : Operasionalisasi
Kriteria 6 : Efektifitas
Skala penilaian ada 7, yaitu :
 P : Perfect
 ST : Sangat Tinggi
 T : Tinggi
 S : Sedang
 R : Rendah
 SR : Sangat Rendah
 PR : Paling Rendah
Tingkat Kepentingan Kriteria (berdasarkan
adjustment expert), misal :
 Kriteria 1 : P
 Kriteria 2 : ST
 Kriteria 3 : ST
 Kriteria 4 : S
 Kriteria 5 : R
 Kriteria 6 : R
=7
=6
=5
=4
=3
=2
=1
Tabel 1. Hasil Penilaian Expert
Kriteria Penilaian
Pakar
Expert 1
Expert 2
Expert 3
Expert 4
Alternatif
Kriteria
1
Kriteria
2
Kriteria
3
Kriteria
4
Kriteria
5
Kriteria
6
Alt 1
P
T
R
ST
P
T
Alt 2
ST
P
ST
ST
ST
ST
Alt 3
P
ST
ST
ST
ST
ST
Alt 1
ST
T
R
T
S
T
Alt 2
ST
P
S
R
SR
ST
Alt 3
P
T
ST
P
S
R
Alt 1
P
T
S
R
ST
ST
Alt 2
ST
ST
ST
ST
ST
T
Alt 3
ST
SR
P
S
ST
SR
Alt 1
ST
T
P
S
ST
SR
Alt 2
R
T
S
P
SR
T
Alt 3
P
ST
ST
ST
ST
ST
I. PENGAMBILAN KEPUTUSAN ME-MCDM (AGREGASI KRITERIA – PAKAR)
PROSES AGREGASI KRITERIA
Menentukan Negasi Tingkat Kepentingan Kriteria
Rumus :
𝑵𝒆𝒈 (𝑾𝒌 ) = 𝑾𝒒−𝒌+𝟏
Dimana :
k
= indeks
q
= jumlah skala
Tingkat Kepentingan Kriteria
 Kriteria 1 (P), maka negasi tingkat kepentingan kriteria adalah
𝑵𝒆𝒈 (𝑾𝒌 ) = 𝑾𝒒−𝒌+𝟏
𝑁𝑒𝑔 (𝑊7 ) = 𝑊7−7+1 = 𝑊1 = 𝑃𝑅

Kriteria 2 (ST), maka negasi tingkat kepentingan kriteria adalah
𝑵𝒆𝒈 (𝑾𝒌 ) = 𝑾𝒒−𝒌+𝟏
𝑁𝑒𝑔 (𝑊6 ) = 𝑊7−6+1 = 𝑊2 = 𝑆𝑅

Kriteria 3 (ST), maka negasi tingkat kepentingan kriteria adalah
𝑵𝒆𝒈 (𝑾𝒌 ) = 𝑾𝒒−𝒌+𝟏
𝑁𝑒𝑔 (𝑊6 ) = 𝑊7−6+1 = 𝑊2 = 𝑆𝑅

Kriteria 4 (S), maka negasi tingkat kepentingan kriteria adalah
𝑵𝒆𝒈 (𝑾𝒌 ) = 𝑾𝒒−𝒌+𝟏
𝑁𝑒𝑔 (𝑊4 ) = 𝑊7−4+1 = 𝑊4 = 𝑆

Kriteria 5 (R), maka negasi tingkat kepentingan kriteria adalah
𝑵𝒆𝒈 (𝑾𝒌 ) = 𝑾𝒒−𝒌+𝟏
𝑁𝑒𝑔 (𝑊3 ) = 𝑊7−3+1 = 𝑊5 = 𝑇

Kriteria 6 (R), maka negasi tingkat kepentingan kriteria adalah
𝑵𝒆𝒈 (𝑾𝒌 ) = 𝑾𝒒−𝒌+𝟏
𝑁𝑒𝑔 (𝑊3 ) = 𝑊7−3+1 = 𝑊5 = 𝑇
Sehingga negasi bobot kriteria adalah PR, SR, SR, S, T, T
Alternatif 1 (Persediaan Bahan Baku dan JIT)
Tabel 2. Hasil Penilaian Expert ke-j
Kriteria
Pakar
Alternatif
Kriteria
1
Kriteria
2
Kriteria
3
Kriteria
4
Kriteria
5
Kriteria
6
Expert 1
Alt 1
P
T
R
ST
P
T
Expert 2
Alt 1
ST
T
R
T
S
T
Expert 3
Alt 1
P
T
S
R
ST
ST
Expert 4
Alt 1
ST
T
P
S
ST
SR
Rumus :
𝑽𝒊𝒋 = 𝐦𝐢𝐧 [𝑵𝒆𝒈 (𝑾𝒂𝒌 ) ˅ 𝑽𝒊𝒋 (𝒂𝒌 )]

Pakar 1 pada alternatif 1
𝑽𝒊𝒋 = 𝐦𝐢𝐧 [𝑵𝒆𝒈 (𝑾𝒂𝒌 ) ˅ 𝑽𝒊𝒋 (𝒂𝒌 )]
𝑉11 = min [𝑃𝑅 ˅ 𝑃, 𝑆𝑅 ˅ 𝑇, 𝑆𝑅 ˅ 𝑅, 𝑆 ˅ 𝑆𝑇, 𝑇 ˅ 𝑃, 𝑇 ˅ 𝑇]
𝑉11 = min [𝑃, 𝑇, 𝑅, 𝑆𝑇, 𝑃, 𝑇] = 𝑅

Pakar 2 pada alternatif 1
𝑽𝒊𝒋 = 𝐦𝐢𝐧 [𝑵𝒆𝒈 (𝑾𝒂𝒌 ) ˅ 𝑽𝒊𝒋 (𝒂𝒌 )]
𝑉21 = min [𝑃𝑅 ˅ 𝑆𝑇, 𝑆𝑅 ˅ 𝑇, 𝑆𝑅 ˅ 𝑅, 𝑆 ˅ 𝑇, 𝑇 ˅ 𝑆, 𝑇 ˅ 𝑇]
𝑉21 = min [𝑆𝑇, 𝑇, 𝑅, 𝑇, 𝑇, 𝑇] = 𝑅

Pakar 3 pada alternatif 1
𝑽𝒊𝒋 = 𝐦𝐢𝐧 [𝑵𝒆𝒈 (𝑾𝒂𝒌 ) ˅ 𝑽𝒊𝒋 (𝒂𝒌 )]
𝑉31 = min [𝑃𝑅 ˅ 𝑃, 𝑆𝑅 ˅ 𝑇, 𝑆𝑅 ˅ 𝑆, 𝑆 ˅ 𝑅, 𝑇 ˅ 𝑆𝑇, 𝑇 ˅ 𝑆𝑇]
𝑉31 = min [𝑃, 𝑇, 𝑆, 𝑆, 𝑆𝑇, 𝑆𝑇] = 𝑆

Pakar 4 pada alternatif 1
𝑽𝒊𝒋 = 𝐦𝐢𝐧 [𝑵𝒆𝒈 (𝑾𝒂𝒌 ) ˅ 𝑽𝒊𝒋 (𝒂𝒌 )]
𝑉41 = min [𝑃𝑅 ˅ 𝑆𝑇, 𝑆𝑅 ˅ 𝑇, 𝑆𝑅 ˅ 𝑃, 𝑆 ˅ 𝑆, 𝑇 ˅ 𝑆𝑇, 𝑇 ˅ 𝑆𝑅]
𝑉41 = min [𝑆𝑇, 𝑇, 𝑃, 𝑆, 𝑆𝑇, 𝑇] = 𝑆
Sehingga hasil agregasi kriteria untuk alternatif 1 adalah : R, R, S, S
Alternatif 2 (Peningkatan Mutu melalui TQC)
Tabel 3. Hasil Penilaian Expert ke-j
Kriteria
Pakar
Alternatif
Kriteria
1
Kriteria
2
Kriteria
3
Kriteria
4
Kriteria
5
Kriteria
6
Expert 1
Alt 2
ST
P
ST
ST
ST
ST
Expert 2
Alt 2
ST
P
S
R
SR
ST
Expert 3
Alt 2
ST
ST
ST
ST
ST
T
Expert 4
Alt 2
R
T
S
P
SR
T
Rumus :
𝑽𝒊𝒋 = 𝐦𝐢𝐧 [𝑵𝒆𝒈 (𝑾𝒂𝒌 ) ˅ 𝑽𝒊𝒋 (𝒂𝒌 )]

Pakar 1 pada alternatif 2
𝑽𝒊𝒋 = 𝐦𝐢𝐧 [𝑵𝒆𝒈 (𝑾𝒂𝒌 ) ˅ 𝑽𝒊𝒋 (𝒂𝒌 )]
𝑉12 = min [𝑃𝑅 ˅ 𝑆𝑇, 𝑆𝑅 ˅ 𝑃, 𝑆𝑅 ˅ 𝑆𝑇, 𝑆 ˅ 𝑆𝑇, 𝑇 ˅ 𝑆𝑇, 𝑇 ˅ 𝑆𝑇]
𝑉12 = min [𝑆𝑇, 𝑃, 𝑆𝑇, 𝑆𝑇, 𝑆𝑇, 𝑆𝑇] = 𝑆𝑇

Pakar 2 pada alternatif 2
𝑽𝒊𝒋 = 𝐦𝐢𝐧 [𝑵𝒆𝒈 (𝑾𝒂𝒌 ) ˅ 𝑽𝒊𝒋 (𝒂𝒌 )]
𝑉22 = min [𝑃𝑅 ˅𝑆𝑇, 𝑆𝑅 ˅ 𝑃, 𝑆𝑅 ˅ 𝑆, 𝑆 ˅ 𝑅, 𝑇 ˅ 𝑆𝑅, 𝑇 ˅ 𝑆𝑇]
𝑉22 = min [𝑆𝑇, 𝑃, 𝑆, 𝑆, 𝑇, 𝑆𝑇] = 𝑆

Pakar 3 pada alternatif 2
𝑽𝒊𝒋 = 𝐦𝐢𝐧 [𝑵𝒆𝒈 (𝑾𝒂𝒌 ) ˅ 𝑽𝒊𝒋 (𝒂𝒌 )]
𝑉32 = min [𝑃𝑅 ˅ 𝑆𝑇, 𝑆𝑅 ˅ 𝑆𝑇, 𝑆𝑅 ˅ 𝑆𝑇, 𝑆 ˅ 𝑆𝑇, 𝑇 ˅ 𝑆𝑇, 𝑇 ˅ 𝑇]
𝑉32 = min [𝑆𝑇, 𝑆𝑇, 𝑆𝑇, 𝑆𝑇, 𝑆𝑇, 𝑇] = 𝑇

Pakar 4 pada alternatif 2
𝑽𝒊𝒋 = 𝐦𝐢𝐧 [𝑵𝒆𝒈 (𝑾𝒂𝒌 ) ∪ 𝑽𝒊𝒋 (𝒂𝒌 )]
𝑉42 = min [𝑃𝑅 ˅ 𝑅, 𝑆𝑅 ˅ 𝑇, 𝑆𝑅 ˅ 𝑆, 𝑆 ˅ 𝑃, 𝑇 ˅ 𝑆𝑅, 𝑇 ˅ 𝑇]
𝑉42 = min [𝑅, 𝑇, 𝑆, 𝑃, 𝑇, 𝑇] = 𝑅
Sehingga hasil agregasi kriteria untuk alternatif 2 adalah : ST, S, T, R
Alternatif 3 (Efisiensi Teknologi melalui Grup Teknologi)
Tabel 4. Hasil Penilaian Expert ke-j
Kriteria
Pakar
Alternatif
Kriteria
1
Kriteria
2
Kriteria
3
Kriteria
4
Kriteria
5
Kriteria
6
Expert 1
Alt 3
P
ST
ST
ST
ST
ST
Expert 2
Alt 3
P
T
ST
P
S
R
Expert 3
Alt 3
ST
SR
P
S
ST
SR
Expert 4
Alt 3
P
ST
ST
ST
ST
ST
Rumus :
𝑽𝒊𝒋 = 𝐦𝐢𝐧 [𝑵𝒆𝒈 (𝑾𝒂𝒌 ) ˅ 𝑽𝒊𝒋 (𝒂𝒌 )]

Pakar 1 pada alternatif 3
𝑽𝒊𝒋 = 𝐦𝐢𝐧 [𝑵𝒆𝒈 (𝑾𝒂𝒌 ) ˅ 𝑽𝒊𝒋 (𝒂𝒌 )]
𝑉13 = min [𝑃𝑅 ˅ 𝑃, 𝑆𝑅 ˅ 𝑆𝑇, 𝑆𝑅 ˅ 𝑆𝑇, 𝑆 ˅ 𝑆𝑇, 𝑇 ˅ 𝑆𝑇, 𝑇 ˅ 𝑆𝑇]
𝑉13 = min [𝑃, 𝑆𝑇, 𝑆𝑇, 𝑆𝑇, 𝑆𝑇, 𝑆𝑇] = 𝑆𝑇

Pakar 2 pada alternatif 3
𝑽𝒊𝒋 = 𝐦𝐢𝐧 [𝑵𝒆𝒈 (𝑾𝒂𝒌 ) ˅ 𝑽𝒊𝒋 (𝒂𝒌 )]
𝑉23 = min [𝑃𝑅 ˅ 𝑃, 𝑆𝑅 ˅ 𝑇, 𝑆𝑅 ˅ 𝑆𝑇, 𝑆 ˅ 𝑃, 𝑇 ˅ 𝑆, 𝑇 ˅ 𝑅]
𝑉23 = min [𝑃, 𝑇, 𝑆𝑇, 𝑃, 𝑇, 𝑇] = 𝑇

Pakar 3 pada alternatif 3
𝑽𝒊𝒋 = 𝐦𝐢𝐧 [𝑵𝒆𝒈 (𝑾𝒂𝒌 ) ˅ 𝑽𝒊𝒋 (𝒂𝒌 )]
𝑉33 = min [𝑃𝑅 ˅ 𝑆𝑇, 𝑆𝑅 ˅ 𝑆𝑅, 𝑆𝑅 ˅ 𝑃, 𝑆 ˅ 𝑆, 𝑇 ˅ 𝑆𝑇, 𝑇 ˅ 𝑆𝑅]
𝑉33 = min [𝑆𝑇, 𝑆𝑅, 𝑃, 𝑆, 𝑆𝑇, 𝑆𝑅] = 𝑆𝑅

Pakar 4 pada alternatif 3
𝑽𝒊𝒋 = 𝐦𝐢𝐧 [𝑵𝒆𝒈 (𝑾𝒂𝒌 ) ˅ 𝑽𝒊𝒋 (𝒂𝒌 )]
𝑉43 = min [𝑃𝑅 ˅ 𝑃, 𝑆𝑅 ˅ 𝑆𝑇, 𝑆𝑅 ˅ 𝑆𝑇, 𝑆 ˅ 𝑆𝑇, 𝑇 ˅ 𝑆𝑇, 𝑇 ˅ 𝑆𝑇]
𝑉43 = min [𝑃, 𝑆𝑇, 𝑆𝑇, 𝑆𝑇, 𝑆𝑇, 𝑆𝑇] = 𝑆𝑇
Sehingga hasil agregasi kriteria untuk alternatif 3 adalah : ST, T, SR, ST
PROSES AGREGASI PADA PAKAR
Menentukan bobot nilai
Rumus :
𝑸𝒌 = 𝑰𝒏𝒕 [𝟏 + (𝒌 ∗

𝒒−𝟏
)]
𝒓
Expert 1
𝒒−𝟏
)]
𝒓
7−1
𝑄1 = 𝐼𝑛𝑡 [1 + (1 ∗
)]
4
𝑄1 = 𝐼𝑛𝑡[1 + (1,5)]
𝑄1 = 𝐼𝑛𝑡 [2,5] = 3 = 𝑅
𝑸𝒌 = 𝑰𝒏𝒕 [𝟏 + (𝒌 ∗

Expert 2
𝒒−𝟏
)]
𝒓
7−1
𝑄2 = 𝐼𝑛𝑡 [1 + (2 ∗
)]
4
𝑄2 = 𝐼𝑛𝑡[1 + (3)]
𝑄2 = 𝐼𝑛𝑡 [4] = 4 = 𝑆
𝑸𝒌 = 𝑰𝒏𝒕 [𝟏 + (𝒌 ∗

Expert 3
𝒒−𝟏
)]
𝒓
7−1
𝑄3 = 𝐼𝑛𝑡 [1 + (3 ∗
)]
4
𝑄3 = 𝐼𝑛𝑡[1 + (4,5)]
𝑄3 = 𝐼𝑛𝑡 [5,5] = 6 = 𝑆𝑇
𝑸𝒌 = 𝑰𝒏𝒕 [𝟏 + (𝒌 ∗

Expert 4
𝒒−𝟏
)]
𝒓
7−1
𝑄4 = 𝐼𝑛𝑡 [1 + (4 ∗
)]
4
𝑄4 = 𝐼𝑛𝑡[1 + (6)]
𝑄4 = 𝐼𝑛𝑡 [7] = 7 = 𝑃
𝑸𝒌 = 𝑰𝒏𝒕 [𝟏 + (𝒌 ∗
Sehingga bobot nilai Q1, Q2, Q3, Q4 = R, S, ST, P
Menentukan penilaian alternatif
Rumus :
𝑽𝒊 = 𝒇(𝑽𝒊 ) = 𝐦𝐚𝐱 [𝑸𝒋 ˄ 𝒃𝒋 ]
Dimana :
𝒃𝒋 : urutan dari nilai terbesar penilaian pakar ke-j

Alternatif 1
𝑽𝒊 = 𝒇(𝑽𝒊 ) = 𝐦𝐚𝐱 [𝑸𝒋 ∩ 𝒃𝒋 ]
𝑿𝒋 = R, R, S, S maka 𝒃𝒋 = S, S, R, R
𝑉1 = max [𝑅 ˄ 𝑆, 𝑆 ˄ 𝑆, 𝑆𝑇 ˄ 𝑅, 𝑃 ˄ 𝑅 ]
𝑉1 = max [𝑅, 𝑆, 𝑅, 𝑅 ] = S

Alternatif 2
𝑽𝒊 = 𝒇(𝑽𝒊 ) = 𝐦𝐚𝐱[𝑸𝒋 ∩ 𝒃𝒋 ]
𝑿𝒋 = ST, S, T, R maka 𝒃𝒋 = ST, T, S, R
𝑉2 = max [𝑅 ˄ 𝑆𝑇, 𝑆 ˄ 𝑇, 𝑆𝑇 ˄ 𝑆, 𝑃 ˄ 𝑅 ]
𝑉2 = max [𝑅, 𝑆, 𝑆, 𝑅 ] = S

Alternatif 3
𝑽𝒊 = 𝒇(𝑽𝒊 ) = 𝐦𝐚𝐱[𝑸𝒋 ∩ 𝒃𝒋 ]
𝑿𝒋 = ST, T, SR, ST maka 𝒃𝒋 = ST, ST, T, SR
𝑉3 = max [𝑅 ˄ 𝑆𝑇, 𝑆 ˄ 𝑆𝑇, 𝑆𝑇 ˄ 𝑇, 𝑃 ˄ 𝑆𝑅 ]
𝑉3 = max [𝑅, 𝑆, 𝑇, 𝑆𝑅 ] = T
Jadi hasil agregasi pakar adalah S, S, T
Sehingga alternatif yang dipilih adalah alternatif ke-3 (T) yaitu Efisiensi Teknologi melalui Grup
Teknologi
Rangkuman Metode Agregasi Kriteria Pakar :
Negasi bobot kriteria adalah
PR
SR
SR
S
Hasil agregasi kriteria untuk alternatif 1 adalah
R
R
S
S
Hasil agregasi kriteria untuk alternatif 2 adalah
ST
S
T
R
Hasil agregasi kriteria untuk alternatif 3 adalah
ST
T
SR
ST
Bobot nilai Q1, Q2, Q3, Q4 adalah
R
S
ST
P
Hasil agregasi pakar adalah
S
S
T
Alternatif terpilih adalah alternatif ke-3 yaitu
T
T
T
II. PENGAMBILAN KEPUTUSAN ME-MCDM (AGREGASI PAKAR – KRITERIA)
PROSES AGREGASI PENILAIAN PAKAR
Menentukan bobot nilai , dengan rumus :
𝑸𝒌 = 𝑰𝒏𝒕 [𝟏 + (𝒌 ∗

𝒒−𝟏
)]
𝒓
Expert 1
𝒒−𝟏
)]
𝒓
7−1
𝑄1 = 𝐼𝑛𝑡 [1 + (1 ∗
)]
4
𝑄1 = 𝐼𝑛𝑡[1 + (1,5)]
𝑄1 = 𝐼𝑛𝑡 [2,5] = 3 = 𝑅
𝑸𝒌 = 𝑰𝒏𝒕 [𝟏 + (𝒌 ∗

Expert 2
𝒒−𝟏
)]
𝒓
7−1
𝑄2 = 𝐼𝑛𝑡 [1 + (2 ∗
)]
4
𝑄2 = 𝐼𝑛𝑡[1 + (3)]
𝑄2 = 𝐼𝑛𝑡 [4] = 4 = 𝑆
𝑸𝒌 = 𝑰𝒏𝒕 [𝟏 + (𝒌 ∗

Expert 3
𝒒−𝟏
)]
𝒓
7−1
𝑄3 = 𝐼𝑛𝑡 [1 + (3 ∗
)]
4
𝑄3 = 𝐼𝑛𝑡[1 + (4,5)]
𝑄3 = 𝐼𝑛𝑡 [5,5] = 6 = 𝑆𝑇
𝑸𝒌 = 𝑰𝒏𝒕 [𝟏 + (𝒌 ∗

Expert 4
𝒒−𝟏
)]
𝒓
7−1
𝑄4 = 𝐼𝑛𝑡 [1 + (4 ∗
)]
4
𝑄4 = 𝐼𝑛𝑡[1 + (6)]
𝑄4 = 𝐼𝑛𝑡 [7] = 7 = 𝑃
𝑸𝒌 = 𝑰𝒏𝒕 [𝟏 + (𝒌 ∗
Sehingga bobot nilai Q1, Q2, Q3, Q4 = R, S, ST, P
Penilaian Alternatif 1 (Persediaan Bahan Baku dan JIT)
Tabel 5. Hasil Penilaian Expert ke-j
Kriteria
Pakar
Alternatif
Kriteria
1
Kriteria
2
Kriteria
3
Kriteria
4
Kriteria
5
Kriteria
6
Expert 1
Alt 1
P
T
R
ST
P
T
Expert 2
Alt 1
ST
T
R
T
S
T
Expert 3
Alt 1
P
T
S
R
ST
ST
Expert 4
Alt 1
ST
T
P
S
ST
SR
Agregasi pakar
Rumus :
𝑽𝒊 = 𝒇(𝑽𝒊 ) = 𝐦𝐚𝐱 [𝑸𝒋 ˄ 𝒃𝒋 ]
Dimana :
𝒃𝒋 : urutan dari nilai terbesar penilaian pakar ke-j



Kriteria 1

Kriteria 4
𝑽𝒊 = 𝒇(𝑽𝒊 ) = 𝐦𝐚𝐱 [𝑸𝒋 ∩ 𝒃𝒋 ]
𝑽𝒊 = 𝒇(𝑽𝒊 ) = 𝐦𝐚𝐱 [𝑸𝒋 ∩ 𝒃𝒋 ]
𝑿𝒋 = P, ST, P, ST maka 𝒃𝒋 = P, P, ST, ST
𝑿𝒋 = ST, T, R, S maka 𝒃𝒋 = ST, T, S, R
𝑉1 = max [𝑅 ˄ 𝑃, 𝑆 ˄ 𝑃, 𝑆𝑇 ˄ 𝑆𝑇, 𝑃 ˄ 𝑆𝑇 ]
𝑉1 = max [𝑅, 𝑆, 𝑆𝑇, 𝑆𝑇 ] = ST
𝑉4 = max [𝑅 ˄ 𝑆𝑇, 𝑆 ˄ 𝑇, 𝑆𝑇 ˄ 𝑆, 𝑃 ˄ 𝑅 ]
𝑉4 = max [𝑅, 𝑆, 𝑆, 𝑅 ] = S
Kriteria 2

Kriteria 5
𝑽𝒊 = 𝒇(𝑽𝒊 ) = 𝐦𝐚𝐱[𝑸𝒋 ∩ 𝒃𝒋 ]
𝑽𝒊 = 𝒇(𝑽𝒊 ) = 𝐦𝐚𝐱[𝑸𝒋 ∩ 𝒃𝒋 ]
𝑿𝒋 = T, T, T, T maka 𝒃𝒋 = T, T, T, T
𝑿𝒋 = P, S, ST, ST maka 𝒃𝒋 = P, ST, ST, S
𝑉2 = max [𝑅 ˄ 𝑇, 𝑆 ˄ 𝑇, 𝑆𝑇 ˄ 𝑇, 𝑃 ˄ 𝑇 ]
𝑉2 = max [𝑅, 𝑆, 𝑇, 𝑇 ] = T
𝑉5 = max [𝑅 ˄ 𝑃, 𝑆 ˄ 𝑆𝑇, 𝑆𝑇 ˄ 𝑆𝑇, 𝑃 ˄ 𝑆 ]
𝑉5 = max [𝑅, 𝑆, 𝑆𝑇, 𝑆 ] = ST
Kriteria 3

Kriteria 6
𝑽𝒊 = 𝒇(𝑽𝒊 ) = 𝐦𝐚𝐱[𝑸𝒋 ∩ 𝒃𝒋 ]
𝑽𝒊 = 𝒇(𝑽𝒊 ) = 𝐦𝐚𝐱[𝑸𝒋 ∩ 𝒃𝒋 ]
𝑿𝒋 = R, R, S, P maka 𝒃𝒋 = P, S, R, R
𝑿𝒋 = T, T, ST, SR maka 𝒃𝒋 = ST, T, T, SR
𝑉3 = max [𝑅 ˄ 𝑃, 𝑆 ˄ 𝑆, 𝑆𝑇 ˄ 𝑅, 𝑃 ˄ 𝑅 ]
𝑉3 = max [𝑅, 𝑆, 𝑅, 𝑅 ] = S
𝑉6 = max [𝑅 ˄ 𝑆𝑇, 𝑆 ˄ 𝑇, 𝑆𝑇 ˄ 𝑇, 𝑃 ˄ 𝑆𝑅 ]
𝑉6 = max [𝑅, 𝑆, 𝑇, 𝑆𝑅 ] = T
Sehingga hasil agregasi pakar adalah ST, T, S, S, ST, T
Penilaian Alternatif 2 (Peningkatan Mutu melalui TQC)
Tabel 6. Hasil Penilaian Expert ke-j
Kriteria
Pakar
Alternatif
Kriteria
1
Kriteria
2
Kriteria
3
Kriteria
4
Kriteria
5
Kriteria
6
Expert 1
Alt 2
ST
P
ST
ST
ST
ST
Expert 2
Alt 2
ST
P
S
R
SR
ST
Expert 3
Alt 2
ST
ST
ST
ST
ST
T
Expert 4
Alt 2
R
T
S
P
SR
T
Agregasi pakar
Rumus :
𝑽𝒊 = 𝒇(𝑽𝒊 ) = 𝐦𝐚𝐱 [𝑸𝒋 ˄ 𝒃𝒋 ]
Dimana :
𝒃𝒋 : urutan dari nilai terbesar penilaian pakar ke-j



Kriteria 1

Kriteria 4
𝑽𝒊 = 𝒇(𝑽𝒊 ) = 𝐦𝐚𝐱 [𝑸𝒋 ∩ 𝒃𝒋 ]
𝑽𝒊 = 𝒇(𝑽𝒊 ) = 𝐦𝐚𝐱 [𝑸𝒋 ∩ 𝒃𝒋 ]
𝑿𝒋 = ST, ST, ST, R maka 𝒃𝒋 = ST, ST, ST, R
𝑿𝒋 = ST, R, ST, P maka 𝒃𝒋 = P, ST, ST, R
𝑉1 = max[𝑅 ˄ 𝑆𝑇, 𝑆 ˄ 𝑆𝑇, 𝑆𝑇 ˄ 𝑆𝑇, 𝑃 ˄ 𝑅 ]
𝑉1 = max [𝑅, 𝑆, 𝑆𝑇, 𝑅 ] = ST
𝑉4 = max [𝑅 ˄ 𝑃, 𝑆 ˄ 𝑆𝑇, 𝑆𝑇 ˄ 𝑆𝑇, 𝑃 ˄ 𝑅 ]
𝑉4 = max [𝑅, 𝑆, 𝑆𝑇, 𝑅 ] = ST
Kriteria 2

Kriteria 5
𝑽𝒊 = 𝒇(𝑽𝒊 ) = 𝐦𝐚𝐱[𝑸𝒋 ∩ 𝒃𝒋 ]
𝑽𝒊 = 𝒇(𝑽𝒊 ) = 𝐦𝐚𝐱[𝑸𝒋 ∩ 𝒃𝒋 ]
𝑿𝒋 = P, P, ST, T maka 𝒃𝒋 = P, P, ST, T
𝑿𝒋 = ST,SR,ST,SR maka 𝒃𝒋 = ST,ST, SR, SR
𝑉2 = max [𝑅 ˄ 𝑃, 𝑆 ˄ 𝑃, 𝑆𝑇 ˄ 𝑆𝑇, 𝑃 ˄ 𝑇 ]
𝑉2 = max [𝑅, 𝑆, 𝑆𝑇, 𝑇 ] = ST
𝑉5 = max[𝑅 ˄ 𝑆𝑇, 𝑆 ˄ 𝑆𝑇, 𝑆𝑇 ˄ 𝑆𝑅, 𝑃 ˄ 𝑆𝑅 ]
𝑉5 = max [𝑅, 𝑆, 𝑆𝑅, 𝑆𝑅 ] = S
Kriteria 3

Kriteria 6
𝑽𝒊 = 𝒇(𝑽𝒊 ) = 𝐦𝐚𝐱[𝑸𝒋 ∩ 𝒃𝒋 ]
𝑽𝒊 = 𝒇(𝑽𝒊 ) = 𝐦𝐚𝐱[𝑸𝒋 ∩ 𝒃𝒋 ]
𝑿𝒋 = ST, S, ST, S maka 𝒃𝒋 = ST, ST, S, S
𝑿𝒋 = ST, ST, T, T maka 𝒃𝒋 = ST, ST, T, T
𝑉3 = max [𝑅 ˄ 𝑆𝑇, 𝑆 ˄ 𝑆𝑇, 𝑆𝑇 ˄ 𝑆, 𝑃 ˄ 𝑆 ]
𝑉3 = max [𝑅, 𝑆, 𝑆, 𝑆 ] = S
𝑉6 = max [𝑅 ˄ 𝑆𝑇, 𝑆 ˄ 𝑆𝑇, 𝑆𝑇 ˄ 𝑇, 𝑃 ˄ 𝑇 ]
𝑉6 = max [𝑅, 𝑆, 𝑇, 𝑇 ] = T
Sehingga hasil agregasi pakar adalah ST, ST, S, ST, S, T
Penilaian Alternatif 3 (Efisiensi Teknologi melalui Grup Teknologi)
Tabel 7. Hasil Penilaian Expert ke-j
Kriteria
Pakar
Alternatif
Kriteria
1
Kriteria
2
Kriteria
3
Kriteria
4
Kriteria
5
Kriteria
6
Expert 1
Alt 3
P
ST
ST
ST
ST
ST
Expert 2
Alt 3
P
T
ST
P
S
R
Expert 3
Alt 3
ST
SR
P
S
ST
SR
Expert 4
Alt 3
P
ST
ST
ST
ST
ST
Agregasi pakar
Rumus :
𝑽𝒊 = 𝒇(𝑽𝒊 ) = 𝐦𝐚𝐱 [𝑸𝒋 ˄ 𝒃𝒋 ]
Dimana :
𝒃𝒋 : urutan dari nilai terbesar penilaian pakar ke-j



Kriteria 1

Kriteria 4
𝑽𝒊 = 𝒇(𝑽𝒊 ) = 𝐦𝐚𝐱 [𝑸𝒋 ∩ 𝒃𝒋 ]
𝑽𝒊 = 𝒇(𝑽𝒊 ) = 𝐦𝐚𝐱 [𝑸𝒋 ∩ 𝒃𝒋 ]
𝑿𝒋 = P, P, ST, P maka 𝒃𝒋 = P, P, P, ST
𝑿𝒋 = ST, P, S, ST maka 𝒃𝒋 = P, ST, ST, S
𝑉1 = max[𝑅 ˄ 𝑃, 𝑆 ˄ 𝑃, 𝑆𝑇 ˄ 𝑃, 𝑃 ˄ 𝑆𝑇 ]
𝑉1 = max [𝑅, 𝑆, 𝑆𝑇, 𝑆𝑇 ] = ST
𝑉4 = max [𝑅 ˄ 𝑃, 𝑆 ˄ 𝑆𝑇, 𝑆𝑇 ˄ 𝑆𝑇, 𝑃 ˄ 𝑆 ]
𝑉4 = max [𝑅, 𝑆, 𝑆𝑇, 𝑆 ] = ST
Kriteria 2

Kriteria 5
𝑽𝒊 = 𝒇(𝑽𝒊 ) = 𝐦𝐚𝐱[𝑸𝒋 ∩ 𝒃𝒋 ]
𝑽𝒊 = 𝒇(𝑽𝒊 ) = 𝐦𝐚𝐱[𝑸𝒋 ∩ 𝒃𝒋 ]
𝑿𝒋 = ST, T, SR, ST maka 𝒃𝒋 = ST, ST, T, SR
𝑿𝒋 = ST,S,ST,ST maka 𝒃𝒋 = ST,ST, ST, S
𝑉2 = max [𝑅 ˄ 𝑆𝑇, 𝑆 ˄ 𝑆𝑇, 𝑆𝑇 ˄ 𝑇, 𝑃 ˄ 𝑆𝑅 ]
𝑉2 = max [𝑅, 𝑆, 𝑇, 𝑆𝑅 ] = T
𝑉5 = max[𝑅 ˄ 𝑆𝑇, 𝑆 ˄ 𝑆𝑇, 𝑆𝑇 ˄ 𝑆𝑇, 𝑃 ˄ 𝑆 ]
𝑉5 = max [𝑅, 𝑆𝑇, 𝑆𝑇, 𝑆𝑇 ] = ST
Kriteria 3

Kriteria 6
𝑽𝒊 = 𝒇(𝑽𝒊 ) = 𝐦𝐚𝐱[𝑸𝒋 ∩ 𝒃𝒋 ]
𝑽𝒊 = 𝒇(𝑽𝒊 ) = 𝐦𝐚𝐱[𝑸𝒋 ∩ 𝒃𝒋 ]
𝑿𝒋 = ST, ST, P, ST maka 𝒃𝒋 = P, ST, ST, ST
𝑿𝒋 = ST, R, SR, ST maka 𝒃𝒋 = ST, ST, R, SR
𝑉3 = max [𝑅 ˄ 𝑃, 𝑆 ˄ 𝑆𝑇, 𝑆𝑇 ˄ 𝑆𝑇, 𝑃 ˄ 𝑆𝑇 ]
𝑉3 = max [𝑅, 𝑆, 𝑆𝑇, 𝑆𝑇 ] = ST
𝑉6 = max [𝑅 ˄ 𝑆𝑇, 𝑆 ˄ 𝑆𝑇, 𝑆𝑇 ˄ 𝑅, 𝑃 ˄ 𝑆𝑅 ]
𝑉6 = max [𝑅, 𝑆, 𝑅, 𝑆𝑅 ] = S
Sehingga hasil agregasi pakar adalah ST, T, ST, ST, ST, S
PROSES AGREGASI KRITERIA
Menentukan Negasi Tingkat Kepentingan Kriteria
Rumus :
𝑵𝒆𝒈 (𝑾𝒌 ) = 𝑾𝒒−𝒌+𝟏
Dimana :
k
= indeks
q
= jumlah skala
Tingkat Kepentingan Kriteria
 Kriteria 1 (P), maka negasi tingkat kepentingan kriteria adalah
𝑵𝒆𝒈 (𝑾𝒌 ) = 𝑾𝒒−𝒌+𝟏
𝑁𝑒𝑔 (𝑊7 ) = 𝑊7−7+1 = 𝑊1 = 𝑃𝑅

Kriteria 2 (ST), maka negasi tingkat kepentingan kriteria adalah
𝑵𝒆𝒈 (𝑾𝒌 ) = 𝑾𝒒−𝒌+𝟏
𝑁𝑒𝑔 (𝑊6 ) = 𝑊7−6+1 = 𝑊2 = 𝑆𝑅

Kriteria 3 (ST), maka negasi tingkat kepentingan kriteria adalah
𝑵𝒆𝒈 (𝑾𝒌 ) = 𝑾𝒒−𝒌+𝟏
𝑁𝑒𝑔 (𝑊6 ) = 𝑊7−6+1 = 𝑊2 = 𝑆𝑅

Kriteria 4 (S), maka negasi tingkat kepentingan kriteria adalah
𝑵𝒆𝒈 (𝑾𝒌 ) = 𝑾𝒒−𝒌+𝟏
𝑁𝑒𝑔 (𝑊4 ) = 𝑊7−4+1 = 𝑊4 = 𝑆

Kriteria 5 (R), maka negasi tingkat kepentingan kriteria adalah
𝑵𝒆𝒈 (𝑾𝒌 ) = 𝑾𝒒−𝒌+𝟏
𝑁𝑒𝑔 (𝑊3 ) = 𝑊7−3+1 = 𝑊5 = 𝑇

Kriteria 6 (R), maka negasi tingkat kepentingan kriteria adalah
𝑵𝒆𝒈 (𝑾𝒌 ) = 𝑾𝒒−𝒌+𝟏
𝑁𝑒𝑔 (𝑊3 ) = 𝑊7−3+1 = 𝑊5 = 𝑇
Sehingga negasi bobot kriteria adalah PR, SR, SR, S, T, T
Penilaian Alternatif
Tabel 6. Hasil Penilaian Expert ke-j
Kriteria
Pakar
Kriteria
1
Kriteria
2
Kriteria
3
Kriteria
4
Kriteria
5
Kriteria
6
Negasi Bobot T. Kepentingan Kriteria
PR
SR
SR
S
T
T
Hasil Agregasi Expert (Alt 1)
ST
T
S
S
ST
T
Hasil Agregasi Expert (Alt 2)
ST
ST
S
ST
S
T
Hasil Agregasi Expert (Alt 3)
ST
T
ST
ST
ST
S
Rumus :
𝑽𝒊𝒋 = 𝐦𝐢𝐧 [𝑵𝒆𝒈 (𝑾𝒂𝒌 ) ˅ 𝑽𝒊𝒋 (𝒂𝒌 )]

Alternatif 1
𝑽𝒊𝒋 = 𝐦𝐢𝐧 [𝑵𝒆𝒈 (𝑾𝒂𝒌 ) ˅ 𝑽𝒊𝒋 (𝒂𝒌 )]
𝑉11 = min [𝑃𝑅 ˅ 𝑺𝑻 , 𝑆𝑅 ˅ 𝑻, 𝑆𝑅 ˅ 𝑺, 𝑆 ˅ 𝑺, 𝑇 ˅ 𝑺𝑻, 𝑇 ˅ 𝑻]
𝑉11 = min [𝑆𝑇, 𝑇, 𝑆, 𝑆, 𝑆𝑇, 𝑇] = 𝑆

Alternatif 2
𝑽𝒊𝒋 = 𝐦𝐢𝐧 [𝑵𝒆𝒈 (𝑾𝒂𝒌 ) ˅ 𝑽𝒊𝒋 (𝒂𝒌 )]
𝑉21 = min [𝑃𝑅 ˅ 𝑺𝑻, 𝑆𝑅 ˅ 𝑺𝑻, 𝑆𝑅 ˅ 𝑺, 𝑆 ˅ 𝑺𝑻, 𝑇 ˅ 𝑺, 𝑇 ˅ 𝑻]
𝑉21 = min [𝑆𝑇, 𝑆𝑇, 𝑆, 𝑆𝑇, 𝑇, 𝑇] = 𝑆

Alternatif 3
𝑽𝒊𝒋 = 𝐦𝐢𝐧 [𝑵𝒆𝒈 (𝑾𝒂𝒌 ) ˅ 𝑽𝒊𝒋 (𝒂𝒌 )]
𝑉31 = min [𝑃𝑅 ˅ 𝑺𝑻, 𝑆𝑅 ˅ 𝑻, 𝑆𝑅 ˅ 𝑺𝑻, 𝑆 ˅ 𝑺𝑻, 𝑇 ˅ 𝑺𝑻, 𝑇 ˅ 𝑺]
𝑉31 = min [𝑆𝑇, 𝑇, 𝑆𝑇, 𝑆𝑇, 𝑆𝑇, 𝑇] = 𝑇
Jadi hasil agregasi kriteria untuk alternatif adalah : S, S, T
Sehingga alternatif terpilih adalah alternative ke-3 (T) yaitu Efisiensi Teknologi melalui Grup
Teknologi
Rangkuman Metode Agregasi Pakar – Kriteria :
Bobot nilai Q1, Q2, Q3, Q4 adalah
R
S
ST
P
Hasil agregasi pakar untuk alternatif 1 adalah
ST
T
S
S
ST
T
Hasil agregasi pakar untuk alternatif 2 adalah
ST
ST
S
ST
S
T
Hasil agregasi pakar untuk alternatif 3 adalah
ST
T
ST
ST
ST
S
Negasi bobot kriteria adalah
PR
SR
SR
S
T
T
Hasil agregasi kriteria untuk alternatif adalah
S
S
T
Alternatif terpilih adalah alternatif ke-3 yaitu
T
Download