Uploaded by Victor Firmana

Utility maximisation rtf

advertisement
WORKSHEET 7. UTILITY MAXIMIZATION
Contoh Worksheet untuk menyusun soal dan jawaban tentang maksimisasi utility dengan kendala budget
constraint.
Level: TE Mikro I
Cobb-Douglass Utility Function
 
U( X Y) A  X  Y
Budget Constraint
I( X Y) p x X p y  Y
Parameter untuk diubah-ubah
A 100
1

2
1

3
px5
p y 10
I 0 250
Lagrange Function
Lg( X Y  ) U( X Y)
  I 0 I( X Y)
First order condition for maximum utility
1
d
Lg ( X  Y  ) 0
dX
d
Lg ( X  Y  ) 0
dY
50 
Y
X
3
5 0
100 
X
10   0
3
2
Y
3
Lg( X  Y  ) 0 250 5 X 10 Y 0
d
Solving for first order condition
d
Lg ( X  Y  ) 0
dX
X
d
1
Lg ( X  Y  ) 0 solve  Y
Z
30 10  30  10
dY
3

d
Lg ( X  Y  ) 0
d
X e Z0  0
d
Ye
Z0  1
 e Z0  2
OPTIMAL SOLUTION
X e  30
Y e  10
 e  3.933
U e U X e Ye
U e  1180.032
1
3
GAMBAR
Untuk membuat gambar kurva indiferens:
U 1 0.8 U e
U 2 1.2 U e
841.30184832793515033
Y u1( X ) U( X  Y) U 1 solve  Y
3
X
2
Kurva indiferens 1
Y ue( X )
U( X  Y) U e solve  Y
30
300
3
X
2
Kurva indiferens saat optimal
Y u2( X )
2839.3937381067811324
U( X  Y) U 2 solve  Y
3
X
2
Kurva indiferense 2
Y bc( X)
1
I( X  Y) I 0 solve  Y
X
25
2
Kurva budget constraint
X 0 2 X e
Menentukan rentang untuk sumbu horisontal
60
Xe
50
40
30
20
Ye
10
0
10
20
30
40
50
60
Download