Uploaded by User36582

Course 4 Modeling of dynamic systems in FD (3)

advertisement
Transfer Function (2)
- Rotational Mechanical System TF √
- TF for Systems with Gears √
- Electromechanical System TF √
1
Rotational Mechanical System TF
Units:
T(t): N-m (newton-meters); ๐œƒ ๐‘ก : rad (radians); ๐œ” ๐‘ก : rad/s (radians/second); K: N-m/rad
(newton-meters/radian), J: kg-๐‘š2 (kilograms-meter๐‘  2 - newton-meters-second๐‘  2 /radian).
2
3
Ex.: Find the transfer function
๐œƒ2 ๐‘ 
๐‘‡ ๐‘ 
. The rod is undergoing torsion. A torque is
applied at the left, and the displacement is measured at the right.
Physical system.
Schematic diagram
The system is considered as a lumped parameter system. So that the torsion acts
like a spring concentrated at one particular point in the rod, with an inertia ๐ฝ1 to the
left and an inertia ๐ฝ2 to the right . The damping inside the flexible shaft is negligible.
There are two degrees of freedom, since each inertia can be rotated while the other
is held still. Hence it will take two simultaneous equations to solve the system.
4
Free-body diagram of ๐ฝ1 :
Torques on ๐ฝ1 due
only to motion of
๐ฝ1 . ๐ฝ2 is held still.
Torques on ๐ฝ1 due
only to motion of
๐ฝ2 . ๐ฝ1 is held still.
Final free-body
diagram for ๐ฝ1 .
The same process is repeated for ๐ฝ2 :
5
Free-body diagram of ๐ฝ2 :
Torques on ๐ฝ2 due
only to motion of
๐ฝ2 . ๐ฝ1 is held still.
Torques on ๐ฝ2 due
only to motion of
๐ฝ1 . ๐ฝ2 is held still.
Final free-body
diagram for ๐ฝ2 .
6
Summing torques:
๐ฝ1 ๐‘  2 + ๐ท1 ๐‘  + ๐พ ๐œƒ1 ๐‘  − ๐พ๐œƒ2 ๐‘  = ๐‘‡(๐‘ )
−๐พ๐œƒ1 ๐‘  + ๐ฝ2 ๐‘  2 + ๐ท2 ๐‘  + ๐พ ๐œƒ2 ๐‘  = 0
TF:
๐œƒ2 (๐‘ ) ๐พ
=
๐‘‡(๐‘ )
โˆ†
๐ฝ1 ๐‘  2 + ๐ท1 ๐‘  + ๐พ
โˆ†=
−๐พ
−๐พ
๐ฝ2 ๐‘  2 + ๐ท2 ๐‘  + ๐พ
7
TF for systems with gears
Gear 1 (input gear), radius ๐‘Ÿ1 , ๐‘1 teeth, is rotated through angle ๐œƒ1 ๐‘ก due to
a torque ๐‘‡1 (๐‘ก). Gear 2 (output gear), radius ๐‘Ÿ2 , ๐‘2 teeth, responds by
rotating through angle ๐œƒ2 (๐‘ก) and delivering a torque, ๐œƒ2 ๐‘ก .
Assuming that there is no backlash phenomena.
As the gear turn, the
distance traveled along each
gear’s circumference is the
same:
๐‘Ÿ1 ๐œƒ1 = ๐‘Ÿ2 ๐œƒ2
or
๐œƒ2 ๐‘Ÿ1 ๐‘1
= =
๐œƒ1 ๐‘Ÿ2 ๐‘2
Since the ratio of the
number of teeth along the
circumference is in the same
proportion as the ratio of the
radii.
8
If we assume that the gears are lossless, that is they do not absorb or store
energy, the energy into Gear 1 equals the energy out of Gear 2 (namely inertia
and damping are negligible).
Relationship between the input torque and the delivered torque:
๐‘‡1 ๐œƒ1 = ๐‘‡2 ๐œƒ2
Then
๐‘‡2 ๐œƒ1 ๐‘2
=
=
๐‘‡1 ๐œƒ2 ๐‘1
Thus the torques are directly proportional to the ratio of the number of teeth.
TF for angular
displacement in
lossless gears.
TF for torque in lossless
gears.
9
Mechanical impedances
driven by gears
a. Rotational system driven by gears. Gears
driving a rotational inertia, spring, and viscous
damper.
b. Equivalent system at the output after reflection of
input torque. ๐‘‡1 can be reflected to the output by
๐‘
multiplying by ๐‘2 . The equation of motion:
1
๐‘2
2
๐ฝ๐‘  + ๐ท๐‘  + ๐พ ๐œƒ2 ๐‘  = ๐‘‡1 (๐‘ )
๐‘1
๐‘1
๐‘2
2
๐ฝ๐‘  + ๐ท๐‘  + ๐พ
๐œƒ ๐‘  = ๐‘‡1 (๐‘ )
๐‘2 1
๐‘1
Then
2
2
2
๐‘1
๐‘
๐‘
๐‘1
1
1
๐ฝ
๐‘ 2 + ๐ท
๐‘ +๐พ
๐œƒ ๐‘  = ๐‘‡1 (๐‘ )
๐‘2
๐‘2
๐‘2
๐‘2 1
c. Equivalent system at the input after reflection of
impedances without gears.
Rotational mechanical impedances can be reflected through gear
trains by multiplying the mechanical impedance by the ratio
๐‘๐‘ข๐‘š๐‘๐‘’๐‘Ÿ ๐‘œ๐‘“ ๐‘ก๐‘’๐‘’๐‘กโ„Ž ๐‘œ๐‘“ ๐‘”๐‘’๐‘Ž๐‘Ÿ ๐‘œ๐‘› ๐‘‘๐‘’๐‘ ๐‘ก๐‘–๐‘›๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘ โ„Ž๐‘Ž๐‘“๐‘ก
๐‘๐‘ข๐‘š๐‘๐‘’๐‘Ÿ ๐‘œ๐‘“๐‘ก๐‘’๐‘’๐‘กโ„Ž ๐‘œ๐‘“ ๐‘”๐‘’๐‘Ž๐‘Ž๐‘Ÿ ๐‘œ๐‘› ๐‘ ๐‘œ๐‘ข๐‘Ÿ๐‘๐‘’ ๐‘ โ„Ž๐‘Ž๐‘“๐‘ก
Where the impedance to be reflected is attached to the source shaft
and is being reflected to the destination shaft.
System with lossless gears
Ex.: Find the TF
๐œƒ2 ๐‘ 
๐‘‡1 ๐‘ 
of the rotational mechanical system with gears (a).
First, reflect the impedance ๐ฝ1 and ๐ท1 and torque ๐‘‡1 on the input shaft to the
output (b). Here the impedance are reflected by ๐‘2 /๐‘1 2 and the torque is
reflected by ๐‘2 /๐‘1 . So the equation of motion
๐‘2
๐ฝ๐‘’ ๐‘  + ๐ท๐‘’ ๐‘  + ๐พ๐‘’ ๐œƒ2 ๐‘  = ๐‘‡1 (๐‘ )
๐‘1
2
๐ฝ๐‘’ =
๐‘2 2
๐ฝ1
๐‘1
+ ๐ฝ2
๐ท๐‘’ =
๐‘2 2
๐ท1
๐‘1
+ ๐ท2
TF:
๐œฝ๐Ÿ (๐’”)
๐‘ต๐Ÿ /๐‘ต๐Ÿ
๐‘ฎ ๐’” =
=
๐‘ป๐Ÿ (๐’”) ๐‘ฑ๐’† ๐’”๐Ÿ + ๐‘ซ๐’† ๐’” + ๐‘ฒ๐’†
๐พ๐‘’ = ๐พ2
In orderto eliminate gears with large radii, a gear train (see the figure) is used
to implement large gear ratios by cascading smaller gear ratios. Next to each
rotation, the angular displacement relative to ๐œƒ1 has been calculated. The
equivqlent gear ratio is the product of the individual gear ratios. So:
๐‘1 ๐‘3 ๐‘5
๐œƒ4 =
๐œƒ
๐‘2 ๐‘4 ๐‘6 1
Gears with loss
Ex.: Find the TF ๐œƒ1 (๐‘ )/๐‘‡1 (๐‘ ).
We reflect all the impedance to the input shaft, ๐œƒ1 . The equation of motion:
๐ฝ๐‘’ ๐‘  2 + ๐ท๐‘’ ๐‘  ๐œƒ1 ๐‘  = ๐‘‡1 (๐‘ )
๐ฝ๐‘’ = ๐ฝ1 + ๐ฝ2 + ๐ฝ3
TF:
๐‘ฎ ๐’” =
๐œฝ๐Ÿ (๐’”)
๐‘ป๐Ÿ (๐’”)
=
๐‘1 2
๐‘2
+ ๐ฝ4 + ๐ฝ5
๐‘1 ๐‘3 2
;
๐‘2 ๐‘4
๐ท๐‘’ = ๐ท1 +
๐‘1 2
๐ท2
๐‘2
๐Ÿ
๐‘ฑ๐’† ๐’”๐Ÿ +๐‘ซ๐’† ๐’”
System using a gear train
Equivalent system at
the input
Electromechanical System TF
A motor is an electromechanical component that yields a displacement
(mechanical) output for a voltage (electrical) input.
Armature-controlled dc servomotor.
A magnetic field is developed by
stationnary permanent magnets called the
fixed field. A rotating circuit called the
armature through which current ๐‘–๐‘Ž (๐‘ก) flows,
passes through this magnetic field at right
angles and feels a force,
๐น = ๐ต ๐‘™ ๐‘–๐‘Ž (๐‘ก)
B is the magnetic field strength; ๐‘™ is the
length of the conductor. The resulting
torque turns the rotor, the rotating member
of the motor.
A conductor moving at right angles to a
magnetic field generates a voltage at the
terminals of the conductor equal to
๐‘’=๐ต๐‘™๐‘ฃ
e is the voltage; v is the velocity of the
conductor normal to the magnetic field.
15
Since the current-carrying armature is rotating in a magnetic field, its voltage is
proportional to speed:
๐‘‘๐œƒ๐‘š (๐‘ก)
๐‘ฃ๐‘ ๐‘ก = ๐พ๐‘
๐‘‘๐‘ก
๐‘ฃ๐‘ ๐‘ก : back electromotive force (back emf); ๐พ๐‘ : a constant of proportionality
(the back emf constant);
๐‘‘๐œƒ๐‘š ๐‘ก
๐‘‘๐‘ก
= ๐œ”๐‘š (๐‘ก): angular velocity of the motor.
Laplace transform:
๐‘‰๐‘ ๐‘  = ๐พ๐‘ ๐‘ ๐œƒ๐‘š (๐‘ )
(a)
So the loop equation arround the armature circuit:
๐‘…๐‘Ž ๐ผ๐‘Ž ๐‘  + ๐ฟ๐‘Ž ๐‘ ๐ผ๐‘Ž ๐‘  + ๐‘‰๐‘ ๐‘  = ๐ธ๐‘Ž (๐‘ )
(b)
The torque developed by the motor is proportional to the armature current:
๐‘‡๐‘š ๐‘  = ๐พ๐‘ก ๐ผ๐‘Ž ๐‘  → ๐ผ๐‘Ž ๐‘  =
1
๐‘‡ (๐‘ )
๐พ๐‘ก ๐‘š
(c)
๐‘‡๐‘š is the torque developed by the motor; ๐พ๐‘ก is a constant of proportionality
called the motor torque constant which depends on the motor and magnetic
16
field characteristics. The value of ๐พ๐‘ก is equal to the value of ๐พ๐‘ .
Substituting (a) and (c) into (b):
๐‘…๐‘Ž +๐ฟ๐‘Ž ๐‘  ๐‘‡๐‘š (๐‘ )
+
๐พ๐‘ก
๐พ๐‘ ๐‘ ๐œƒ๐‘š ๐‘  = ๐ธ๐‘Ž (๐‘ )
(d)
We must now find ๐‘‡๐‘š ๐‘  in term of ๐œƒ๐‘š (๐‘ ). The figure shows a typical equivalent
mechanical loading on a motor. ๐ฝ๐‘š is the equivalent inertia at the armature and
includes both the armature inertia and the load inertia reflected to the armature.
๐ท๐‘š is the equivalent viscous damping at the armature and includes both the
armature viscous damping and the load viscous damping reflected to the
armature. Then
๐‘‡๐‘š ๐‘  = ๐ฝ๐‘š ๐‘  2 + ๐ท๐‘š ๐‘  ๐œƒ๐‘š (๐‘ )
(e)
(e) → (d):
๐‘…๐‘Ž + ๐ฟ๐‘Ž ๐‘  ๐ฝ๐‘š ๐‘  2 + ๐ท๐‘š ๐‘  ๐œƒ๐‘š (๐‘ )
+ ๐พ๐‘ ๐‘ ๐œƒ๐‘š ๐‘  = ๐ธ๐‘Ž (๐‘ )
17
๐พ๐‘ก
๐ฟ๐‘Ž , the armature inductance, is assumed to be small compared to the armature
resistance, ๐‘…๐‘Ž , which is usual for a dc motor, so
๐‘…๐‘Ž
๐ฝ ๐‘  + ๐ท๐‘š + ๐พ๐‘ ๐‘ ๐œƒ๐‘š ๐‘  = ๐ธ๐‘Ž (๐‘ )
๐พ๐‘ก ๐‘š
TF:
๐‘ฒ๐’•
๐‘ฎ ๐’” =
๐œฝ๐’Ž (๐’”)
(๐‘น๐’‚ ๐‘ฑ๐’Ž )
=
๐‘ฌ๐’‚ (๐’”) ๐’” ๐’” + ๐Ÿ ๐‘ซ + ๐‘ฒ๐’• ๐‘ฒ๐’ƒ
๐‘ฑ๐’Ž ๐’Ž
๐‘น๐’‚
This equation can be expressed as
๐œƒ๐‘š (๐‘ )
๐พ
=
๐ธ๐‘Ž (๐‘ ) ๐‘ (๐‘  + ๐›ผ)
with ๐พ =
๐พ๐‘ก
(๐‘…๐‘Ž ๐ฝ๐‘š )
๐›ผ=
1
๐ฝ๐‘š
๐ท๐‘š +
How to determine the constant parameters?
๐พ๐‘ก ๐พ๐‘
๐‘…๐‘Ž
18
Mechanical constants ๐ฝ๐‘š and ๐ท๐‘š .
Consider a motor with inertia ๐ฝ๐‘Ž
and damping ๐ท๐‘Ž at the armature
driving a load consisting of inertia
๐ฝ๐ฟ and damping ๐ท๐ฟ .
๐ฝ๐ฟ and ๐ท๐ฟ can be reflected back to the armature as some equivalent inertia
and damping ratio to be added to ๐ฝ๐‘Ž and ๐ท๐‘Ž respectively. Thus the
equivalent inertia ๐ฝ๐‘š and equivalent damping ๐ท๐‘š at the armature are
๐ฝ๐‘š = ๐ฝ๐‘Ž +
๐‘1 2
๐ฝ๐ฟ
;
๐‘2
๐ท๐‘š = ๐ท๐‘Ž +
๐‘1 2
๐ท๐ฟ
๐‘2
Electrical constants.
Substituting (a) and (c) to (b) with ๐ฟ๐‘Ž = 0 gives
๐‘…๐‘Ž
๐‘‡ ๐‘  + ๐พ๐‘ ๐‘ ๐œƒ๐‘š ๐‘  = ๐ธ๐‘Ž (๐‘ )
๐พ๐‘ก ๐‘š
By the inverse Laplace transform, we get
19
๐‘…๐‘Ž
๐‘‘๐œƒ๐‘š (๐‘ก)
๐‘‡๐‘š ๐‘ก + ๐พ๐‘
= ๐ธ๐‘Ž (๐‘ก)
๐พ๐‘ก
๐‘‘๐‘ก
๐‘…๐‘Ž
๐‘‡ ๐‘ก + ๐พ๐‘ ๐œ”๐‘š (๐‘ก) = ๐‘’๐‘Ž (๐‘ก)
๐พ๐‘ก ๐‘š
If a dc voltage ๐‘’๐‘Ž is applied, the motor will turn at a constant angular velocity
๐œ”๐‘š with a constant torque ๐‘‡๐‘š . So when a motor is operating at a steady
state with a dc input,
๐‘…๐‘Ž
๐‘‡๐‘š + ๐พ๐‘ ๐œ”๐‘š = ๐‘’๐‘Ž
๐พ๐‘ก
Torque – speed curve
or
๐พ๐‘ ๐พ๐‘ก
๐พ๐‘ก
๐‘‡๐‘š = −
๐œ” +
๐‘’
๐‘…๐‘Ž ๐‘š ๐‘…๐‘Ž ๐‘Ž
๐พ๐‘ก
๐‘ฒ๐’• ๐‘ป๐’”๐’•๐’‚๐’๐’
๐‘‡๐‘ ๐‘ก๐‘Ž๐‘™๐‘™ =
๐‘’ →
=
๐‘…๐‘Ž ๐‘Ž ๐‘น๐’‚
๐‘น๐’‚
๐‘’๐‘Ž
๐’†๐’‚
๐œ”๐‘›๐‘œ−๐‘™๐‘œ๐‘Ž๐‘‘ =
→ ๐‘ฒ๐’ƒ =
๐พ๐‘
๐Ž๐’๐’−๐’๐’๐’‚๐’…
A dynamometer test of the motor would yield
๐‘‡๐‘ ๐‘ก๐‘Ž๐‘™๐‘™ and ๐œ”๐‘›๐‘œ−๐‘™๐‘œ๐‘Ž๐‘‘ for a given ๐‘’๐‘Ž .
20
Ex.: Given the system and torque-speed curve (a) and (b), find the TF
๐œƒ๐ฟ ๐‘ 
๐ธ๐‘Ž ๐‘ 
.
Mechanical constants ๐ฝ๐‘š and ๐ท๐‘š
๐ฝ๐‘š = ๐ฝ๐‘Ž + ๐ฝ๐ฟ
๐‘1
๐‘2
2
1
= 5 + 700
10
Electrical constants
From the curve:
๐พ๐‘ก
๐‘…๐‘Ž
2
= 12
๐ท๐‘š = ๐ท๐‘Ž + ๐ท๐ฟ
๐‘1
๐‘2
2
1
= 2 + 800
10
2
= 10
๐พ๐‘ก
, ๐พ๐‘
๐‘…๐‘Ž
=
๐‘‡๐‘ ๐‘ก๐‘Ž๐‘™๐‘™
๐‘’๐‘Ž
=
500
100
= 5 and ๐พ๐‘ =
๐‘’๐‘Ž
๐œ”๐‘›๐‘œ−๐‘™๐‘œ๐‘Ž๐‘‘
=
100
50
=2
21
Then
๐พ๐‘ก
๐œƒ๐‘š (๐‘ )
(๐‘…๐‘Ž ๐ฝ๐‘š )
=
๐ธ๐‘Ž (๐‘ ) ๐‘  ๐‘  + 1 ๐ท + ๐พ๐‘ก ๐พ๐‘
๐ฝ๐‘š ๐‘š
๐‘…๐‘Ž
We know that
๐‘1
๐‘2
=
1
,
10
5
=
๐‘  ๐‘ +
12
1
10 + (5)(2)
12
0.417
=
๐‘ (๐‘  + 1.667)
so the TF:
๐œƒ๐ฟ (๐‘ )
0.0417
=
๐ธ๐‘Ž (๐‘ ) ๐‘ (๐‘  + 1.667)
22
HW
• Problems no. 33 and 44 Chapter 2 [Nise]
23
Download