Uploaded by User28462

6002 l16

advertisement
6.002
CIRCUITS AND
ELECTRONICS
Sinusoidal Steady State
Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].
6.002 Fall 2000
Lecture
16
Review
„
We now understand the why of:
v
5V
R
L
C
„Today, look at response of networks
to sinusoidal drive.
Sinusoids important because signals can be
represented as a sum of sinusoids. Response to
sinusoids of various frequencies -- aka frequency
response -- tells us a lot about the system
Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].
6.002 Fall 2000
Lecture
16
Motivation
For motivation, consider our old friend,
the amplifier:
V
S
+
–
vi
VBIAS
+
–
vO
vC
R
Demo
CGS
Observe vo amplitude as the frequency of the
input vi changes. Notice it decreases with
frequency.
Also observe vo shift as frequency changes
(phase).
Need to study behavior of networks for
sinusoidal drive.
Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].
6.002 Fall 2000
Lecture
16
Sinusoidal Response of RC Network
Example:
vI +
–
iC
R
vI (t ) = Vi cos ω t
=0
vC (0) = 0
+
vC
–
for t ≥ 0 (Vi real)
for t < 0
for t = 0
vI
t
0
Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].
6.002 Fall 2000
Lecture
16
Our Approach
Example:
vI +
–
iC
R
+
vC
–
Effort
Determine vC(t)
agony
Usual
approach
sneaky approach
very
sneaky
t
Th
is
le
ct
ur
11 e
:0
0
11
:2
0
12
N
ex
:0
0
t
le
ct
ur
e
easy
!
e
m
e
g
l
u
d
In
Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].
6.002 Fall 2000
Lecture
16
Let’s use the usual approach…
1
Set up DE.
2
Find vp.
3
Find vH.
4
vC = vP + vH,
solve for unknowns
using initial conditions
Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].
6.002 Fall 2000
Lecture
16
Usual approach…
1
Set up DE
RC
dvC
+ vC = vI
dt
= Vi cos ω t
That was easy!
Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].
6.002 Fall 2000
Lecture
16
2
Find vp
dvP
RC
+ vP = Vi cos ωt
dt
First try:
Æ nope
vP = A
Second try:
vP = A cos ωt
Third try:
vP = A cos(ωt + φ ) frequency
amplitude phase
Æ nope
− RCAω sin(ωt + φ ) + A cos(ωt + φ ) = Vi cos ωt
− RCAω sin ωt cos φ − RCAω cos ωt sin φ +
A cos ωt cos φ − A sin ωt sin φ
= Vi cos ωt
..
.
gasp !
works, but trig nightmare!
Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].
6.002 Fall 2000
Lecture
16
Let’s get sneaky!
Find particular solution to another input…
dvPS
+ vPS = vIS
RC
dt
= Vi e st
st
Try solution vPS = V p e
RC
dV p e st
(S: sneaky :-))
+ V p e st = Vi e st
dt
sRCV p e st + V p e st = Vi e st
Nice
property
of
exponentials
( sRC + 1 )V p = Vi
Vp =
Vi
1 + sRC
Vi
⋅ e st
Thus, vPS =
1 + sRC
is particular solution to Vi e st
ly
Vi
⋅ e jω t
1 + jωRC
easy!
jω t
solution for Vi e
where we replace s = jω
complex amplitude
Vp
Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].
6.002 Fall 2000
Lecture
16
2
Fourth try to find vP…
using the sneaky approach
Fact 1: Finding the response to
Vi e jω t
was easy.
Fact 2: vI = Vi cos ωt
= real[Vi e jω t ] = real[vIS ]
from Euler relation,
e jω t = cos ωt + j sin ωt
real
part
vI response vP
vIS response vPS
real
part
an inverse superposition argument,
assuming system is real, linear.
Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].
6.002 Fall 2000
Lecture
16
2 Fourth try to find vP…
so,
complex
vP = Re[vPS ] = Re[V p e jωt ]
⎡ Vi
⎤
= Re ⎢
⋅ e jω t ⎥
⎣1 + jωRC
⎦
Vi (1 − jωRC ) jω t ⎤
⎡
= Re
⋅e
⎢⎣ 1 + ω 2 R 2C 2
⎥⎦
Vi
⎡
j φ jω t ⎤
= Re ⎢
⋅ e e ⎥ , tan φ = −ωRC
2 2 2
⎣ 1+ω R C
⎦
Vi
⎡
j ( ωt +φ ) ⎤
= Re ⎢
⋅
e
⎥⎦
⎣ 1 + ω 2 R 2C 2
vP =
Vi
1+ω R C
2
2
2
⋅ cos( ωt + φ )
Recall, vP is particular response to Vi cos ωt .
Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].
6.002 Fall 2000
Lecture
16
3
Find vH
Recall,
vH = Ae
−t
RC
Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].
6.002 Fall 2000
Lecture
16
4
Find total solution
vC = vP + vH
vC =
Vi
1+ω R C
2
2
2
cos( ωt + φ ) + Ae
−
t
RC
where φ = tan −1 ( −ωRC )
Given vC(0) = 0 for t = 0
so,
Vi
A=−
cos(φ )
2 2 2
1+ ω R C
Done!
Phew !
Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].
6.002 Fall 2000
Lecture
16
Sinusoidal Steady State
We are usually interested only in the
particular solution for sinusoids,
i.e. after transients have died.
Notice when t → ∞, vC → vP as e
vC =
Vi
1+ω R C
2
2
2
−
t
RC
cos( ωt + φ ) + Ae
−
→0
t
RC
0
where φ = tan −1 ( −ωRC )
Vi
A=−
cos(φ )
2 2 2
1+ ω R C
Vp
∠Vp
Described as
SSS: Sinusoidal Steady State
Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].
6.002 Fall 2000
Lecture
16
Sinusoidal Steady State
All information about SSS is contained
in Vp , the complex amplitude!
Steps 3 , 4
were a waste of
time!
Vi
Vp =
1 + jωRC
Recall
Vp
1
=
Vi 1 + jωRC
Vp
Vi
magnitude
=
Vp
phase φ : ∠
Vi
Vp
Vi
1
1 + ω 2 R 2C 2
=
e jφ where
φ = tan −1 − ωRC
1
1 + ω 2 R 2C 2
= − tan −1 ωRC
Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].
6.002 Fall 2000
Lecture
16
Sinusoidal Steady State
Visualizing the process of finding the
particular solution vP
Vi cos ωt
drive
D.E.
+
nightmare
trig.
V p cos[ωt + ∠V p ]
particular
solution
algebraic
take
equation
real
+
part
complex
algebra V p e jω t
sneak
in
Vi e jωt
drive
the sneaky path!
Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].
6.002 Fall 2000
Lecture
16
Magnitude Plot
transfer function
Vp
H ( jω ) =
Vi
Vp
Vi
Vp
Vi
=
1
1 + ω 2 R 2C 2
1
log
scale
log
scale
1
ω=
RC
ω
From demo: explains vo fall off
for high frequencies!
Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].
6.002 Fall 2000
Lecture
16
Phase Plot
φ = tan −1 − ωRC
φ =∠
Vp
Vi
ω=
0
−
−
1
RC
ω
log scale
π
4
π
2
Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].
6.002 Fall 2000
Lecture
16
Download