Uploaded by lonnymc91

FLUIDA DINAMIS

advertisement
FLUIDA DINAMIS
PENGERTIAN FLUIDA
Fluida adalah zat yang dapat mengalir.
Kata Fluida mencakup zat car, air dan gas karena kedua zat ini dapat mengalir, sebaliknya
batu dan benda-benda keras atau seluruh zat padat tidak digolongkan kedalam fluida karena
tidak bisa mengalir.
Susu, minyak pelumas, dan air merupakan contoh zat cair. dan Semua zat cair itu
dapat dikelompokan ke dalam fluida karena sifatnya yang dapat mengalir dari satu tempat ke
tempat yang lain.
Selain zat cair, zat gas juga termasuk fluida. Zat gas juga dapat mengalir dari satu satu tempat
ke tempat lain. Hembusan angin merupakan contoh udara yang berpindah dari satu tempat ke
tempat lain.
Fluida merupakan salah satu aspek yang penting dalam kehidupan sehari-hari. Setiap
hari manusia menghirupnya, meminumnya, terapung atau tenggelam di dalamnya. Setiap hari
pesawat udara terbang melaluinya dan kapal laut mengapung di atasnya. Demikian juga kapal
selam dapat mengapung atau melayang di dalamnya. Air yang diminum dan udara yang
dihirup juga bersirkulasi di dalam tubuh manusia setiap saat meskipun sering tidak disadari.
Fluida ini dapat kita bagi menjadi dua bagian yakni:
1. Fluida Statis
2. Fluida Dinamis
Tapi kali ini yang kan kita bahas adalah Fluida Dinamis.
1
FLUIDA DINAMIS
Pengertian Fluida Dinamis
Fluida dinamis adalah fluida (bisa berupa zat cair, gas) yang bergerak. Untuk memudahkan
dalam mempelajari, fluida disini dianggap steady (mempunyai kecepatan yang konstan
terhadap waktu), tak termampatkan (tidak mengalami perubahan volume), tidak kental, tidak
turbulen (tidak mengalami putaran-putaran).
Dalam kehidupan sehari-hari, banyak sekali hal yang berkaitan dengan fluida dinamis ini.
Besaran-besaran dalam fluida dinamis
Debit aliran (Q)
Jumlah volume fluida yang mengalir persatuan waktu, atau:
Dimana :
Q = debit aliran (m3/s)
A = luas penampang (m2)
V = laju aliran fluida (m/s)
Aliran fluida sering dinyatakan dalam debit aliran
Dimana :
Q = debit aliran (m3/s)
V = volume (m3)
t = selang waktu (s)
2
Persamaan Kontinuitas
Air yang mengalir di dalam pipa air dianggap mempunyai debit yang sama di
sembarang titik. Atau jika ditinjau 2 tempat, maka:
Debit aliran 1 = Debit aliran 2, atau :
Hukum Bernoulli
Hukum Bernoulli adalah hukum yang berlandaskan pada hukum kekekalan energi
yang dialami oleh aliran fluida. Hukum ini menyatakan bahwa jumlah tekanan (p), energi
kinetik per satuan volume, dan energi potensial per satuan volume memiliki nilai yang sama
pada setiap titik sepanjang suatu garis arus. Jika dinyatakan dalam persamaan menjadi :
Dimana :
p = tekanan air (Pa)
v = kecepatan air (m/s)
g = percepatan gravitasi
h = ketinggian air
Penerapan dalam teknologi
Pesawat Terbang
Gaya angkat pesawat terbang bukan karena mesin, tetapi pesawat bisa terbang karena
memanfaatkan hukum bernoulli yang membuat laju aliran udara tepat di bawah sayap, karena
laju aliran di atas lebih besar maka mengakibatkan tekanan di atas pesawat lebih kecil
daripada tekanan pesawat di bawah.
Akibatnya terjadi gaya angkat pesawat dari hasil selisih antara tekanan di atas dan di bawah
di kali dengan luas efektif pesawat.
3
Keterangan:
ρ = massa jenis udara (kg/m3)
va= kecepatan aliran udara pada bagian atas pesawat (m/s)
vb= kecepatan aliran udara pada bagian bawah pesawat (m/s)
F = Gaya angkat pesawat (N)
Penyemprot Parfum dan Obat Nyamuk
Prinsip kerja yang dilakukan dengan menghasilkan laju yang lebih besar pada ujung atas
selang botol sehingga membuat tekanan di atas lebih kecil daripada tekanan di bawah.
Akibatnya cairan dalam wadah tersebut terdesak ke atas selang dan lama kelamaan akan
menyembur keluar.
4
Soal dan pembahasan
Fluida Dinamis
Contoh Soal dan Pembahasan tentang Fluida Dinamis.
Mencakup debit, persamaan kontinuitas, Hukum Bernoulli dan Toricelli.
Rumus Minimal
Debit
Q = V/t
Q = Av
Keterangan :
Q = debit (m3/s)
V = volume (m3)
t = waktu (s)
A = luas penampang (m2)
v = kecepatan aliran (m/s)
1 liter = 1 dm3 = 10−3 m3
Persamaan Kontinuitas
Q1 = Q2
A1v1 = A2v2
Persamaan Bernoulli
P + 1/2 ρv2 + ρgh = Konstant
P1 + 1/2 ρv12 + ρgh1 = P2 + 1/2 ρv22 + ρgh2
Keterangan :
P = tekanan (Pascal = Pa = N/m2)
ρ = massa jenis cairan (kg/m3)
g = percepatan gravitasi (m/s2)
Tangki Bocor Mendatar
v = √(2gh)
X = 2√(hH)
t = √(2H/g)
Keterangan :
v = kecepatan keluar cairan dari lubang
X = jarak mendatar jatuhnya cairan
h = jarak permukaan cairan ke lubang bocor
H = jarak tempat jatuh cairan (tanah) ke lubang bocor
t = waktu yang diperlukan cairan menyentuh tanah
5
Conso :
Soal No.1
Ahmad mengisi ember yang memiliki kapasitas 20 liter dengan air dari sebuah kran seperti
gambar berikut!
Jika luas penampang kran dengan diameter D2 adalah 2 cm2 dan kecepatan aliran air di kran
adalah 10 m/s tentukan:
a) Debit air
b) Waktu yang diperlukan untuk mengisi ember
Pembahasan
Data :
A2 = 2 cm2 = 2 x 10−4 m2
v2 = 10 m/s
a) Debit air
Q = A2v2 = (2 x 10−4)(10)
Q = 2 x 10−3 m3/s
b) Waktu yang diperlukan untuk mengisi ember
Data :
V = 20 liter = 20 x 10−3 m3
Q = 2 x 10−3 m3/s
t=V/Q
t = ( 20 x 10−3 m3)/(2 x 10−3 m3/s )
t = 10 sekon
Soal No. 2
Pipa saluran air bawah tanah memiliki bentuk seperti gambar berikut!
Jika luas penampang pipa besar adalah 5 m2 , luas penampang pipa kecil adalah 2 m2 dan
6
kecepatan aliran air pada pipa besar adalah 15 m/s, tentukan kecepatan air saat mengalir pada
pipa kecil!
Pembahasan
Persamaan kontinuitas
A1v1 = A2v2
(5)(15) = (2)v2
v2 = 37,5 m/s
Soal No. 3
Tangki air dengan lubang kebocoran diperlihatkan gambar berikut!
Jarak lubang ke tanah adalah 10 m dan jarak lubang ke permukaan air adalah 3,2 m.
Tentukan :
a) Kecepatan keluarnya air
b) Jarak mendatar terjauh yang dicapai air
c) Waktu yang diperlukan bocoran air untuk menyentuh tanah
Pembahasan
a) Kecepatan keluarnya air
v = √(2gh)
v = √(2 x 10 x 3,2) = 8 m/s
b) Jarak mendatar terjauh yang dicapai air
X = 2√(hH)
X = 2√(3,2 x 10) = 8√2 m
c) Waktu yang diperlukan bocoran air untuk menyentuh tanah
t = √(2H/g)
t = √(2(10)/(10)) = √2 sekon
Soal No. 4
Untuk mengukur kecepatan aliran air pada sebuah pipa horizontal digunakan alat seperti
diperlihatkan gambar berikut ini!
7
Jika luas penampang pipa besar adalah 5 cm2 dan luas penampang pipa kecil adalah 3 cm2
serta perbedaan ketinggian air pada dua pipa vertikal adalah 20 cm tentukan :
a) kecepatan air saat mengalir pada pipa besar
b) kecepatan air saat mengalir pada pipa kecil
Pembahasan
a) kecepatan air saat mengalir pada pipa besar
v1 = A2√ [(2gh) : (A12 − A22) ]
v1 = (3) √ [ (2 x 10 x 0,2) : (52 − 32) ]
v1 = 3 √ [ (4) : (16) ]
v1 = 1,5 m/s
Tips :
Satuan A biarkan dalam cm2 , g dan h harus dalam m/s2 dan m. v akan memiliki satuan m/s.
b) kecepatan air saat mengalir pada pipa kecil
A1v1 = A2v2
(3 / 2)(5) = (v2)(3)
v2 = 2,5 m/s
Soal No. 5
Pipa untuk menyalurkan air menempel pada sebuah dinding rumah seperti terlihat pada
gambar berikut! Perbandingan luas penampang pipa besar dan pipa kecil adalah 4 : 1.
Posisi pipa besar adalah 5 m diatas tanah dan pipa kecil 1 m diatas tanah. Kecepatan aliran air
pada pipa besar adalah 36 km/jam dengan tekanan 9,1 x 105 Pa. Tentukan :
a) Kecepatan air pada pipa kecil
b) Selisih tekanan pada kedua pipa
c) Tekanan pada pipa kecil
(ρair = 1000 kg/m3)
Pembahasan
Data :
h1 = 5 m
h2 = 1 m
v1 = 36 km/jam = 10 m/s
P1 = 9,1 x 105 Pa
A1 : A2 = 4 : 1
a) Kecepatan air pada pipa kecil
Persamaan Kontinuitas :
8
A1v1 = A2v2
(4)(10) = (1)(v2)
v2 = 40 m/s
b) Selisih tekanan pada kedua pipa
Dari Persamaan Bernoulli :
P1 + 1/2 ρv12 + ρgh1 = P2 + 1/2 ρv22 + ρgh2
P1 − P2 = 1/2 ρ(v22 − v12) + ρg(h2 − h1)
P1 − P2 = 1/2(1000)(402 − 102) + (1000)(10)(1 − 5)
P1 − P2 = (500)(1500) − 40000 = 750000 − 40000
P1 − P2 = 710000 Pa = 7,1 x 105 Pa
c) Tekanan pada pipa kecil
P1 − P2 = 7,1 x 105
9,1 x 105 − P2 = 7,1 x 105
P2 = 2,0 x 105 Pa
9
MAKALAH
Fluida Dinamik
D
I
S
U
S
U
N
Oleh :
Kelompok 4
1.
2.
3.
4.
5.
6.
Rufus Dao
Liberty Duha
Fransiska Bali
Clara T.M Duha
Beata S. Sarumaha
Maria M. Harita
Kelas
: XI Ipa Dahlia
G.M
: Nurcahaya Hutabarat
SMA. NEGERI 1 TELUKDALAM
TP. 2017/2018
10
Download