MOTOR DC Pengertian Motor DC Motor listrik merupakan perangkat elektromagnetis yang mengubah energi listrik menjadi energi mekanik. Energi mekanik ini digunakan untuk, misalnya memutar impeller pompa, fan atau blower, menggerakan kompresor, mengangkat bahan,dll. Motor listrik digunakan juga di rumah (mixer, bor listrik, fan angin) dan di industri. Motor listrik kadangkala disebut “kuda kerja” nya industri sebab diperkirakan bahwa motor-motor menggunakan sekitar 70% beban listrik total di industri. Motor DC memerlukan suplai tegangan yang searah pada kumparan medan untuk diubah menjadi energi mekanik. Kumparan medan pada motor dc disebut stator (bagian yang tidak berputar) dan kumparan jangkar disebut rotor (bagian yang berputar). Jika terjadi putaran pada kumparan jangkar dalam pada medan magnet, maka akan timbul tegangan (GGL) yang berubah-ubah arah pada setiap setengah putaran, sehingga merupakan tegangan bolak-balik. Prinsip kerja dari arus searah adalah membalik phasa tegangan dari gelombang yang mempunyai nilai positif dengan menggunakan komutator, dengan demikian arus yang berbalik arah dengan kumparan jangkar yang berputar dalam medan magnet. Bentuk motor paling sederhana memiliki kumparan satu lilitan yang bisa berputar bebas di antara kutubkutub magnet permanen. Gambar 1. Motor D.C Sederhana Catu tegangan dc dari baterai menuju ke lilitan melalui sikat yang menyentuh komutator, dua segmen yang terhubung dengan dua ujung lilitan. Kumparan satu lilitan pada gambar di atas disebut angker dinamo. Angker dinamo adalah sebutan untuk komponen yang berputar di antara medan magnet Prinsip Dasar Cara Kerja Jika arus lewat pada suatu konduktor, timbul medan magnet di sekitar konduktor. Arah medan magnet ditentukan oleh arah aliran arus pada konduktor. Gambar 2. Medan magnet yang membawa arus mengelilingi konduktor . Aturan Genggaman Tangan Kanan bisa dipakai untuk menentukan arah garis fluks di sekitar konduktor. Genggam konduktor dengan tangan kanan dengan jempol mengarah pada arah aliran arus, maka jari-jari anda akan menunjukkan arah garis fluks. Gambar 3 menunjukkan medan magnet yang terbentuk di sekitar konduktor berubah arah karena bentuk U. Gambar 3. Medan magnet yang membawa arus mengelilingi konduktor. Catatan : Medan magnet hanya terjadi di sekitar sebuah konduktor jika ada arus mengalir pada konduktor tersebut. Pada motor listrik konduktor berbentuk U disebut angker dinamo. Gambar 4. Medan magnet mengelilingi konduktor dan diantara kutub. Jika konduktor berbentuk U (angker dinamo) diletakkan di antara kutub uatara dan selatan yang kuat medan magnet konduktor akan berinteraksi dengan medan magnet kutub. Lihat gambar 5. Gambar 5. Reaksi garis fluks. Lingkaran bertanda A dan B merupakan ujung konduktor yang dilengkungkan (looped conductor). Arus mengalir masuk melalui ujung A dan keluar melalui ujung B. Medan konduktor A yang searah jarum jam akan menambah medan pada kutub dan menimbulkan medan yang kuat di bawah konduktor. Konduktor akan berusaha bergerak ke atas untuk keluar dari medan kuat ini. Medan konduktor B yang berlawanan arah jarum jam akan menambah medan pada kutub dan menimbulkan medan yang kuat di atas konduktor. Konduktor akan berusaha untuk bergerak turun agar keluar dari medan yang kuat tersebut. Gaya-gaya tersebut akan membuat angker dinamo berputar searah jarum jam. Mekanisme kerja untuk seluruh jenis motor secara umum : Arus listrik dalam medan magnet akan memberikan gaya. Jika kawat yang membawa arus dibengkokkan menjadi sebuah lingkaran / loop, maka kedua sisi loop, yaitu pada sudut kanan medan magnet, akan mendapatkan gaya pada arah yang berlawanan. Pasangan gaya menghasilkan tenaga putar / torque untuk memutar kumparan. Motor-motor memiliki beberapa loop pada dinamonya untuk memberikan tenaga putaran yang lebih seragam dan medan magnetnya dihasilkan oleh susunan elektromagnetik yang disebut kumparan medan. Pada motor dc, daerah kumparan medan yang dialiri arus listrik akan menghasilkan medan magnet yang melingkupi kumparan jangkar dengan arah tertentu. Konversi dari energi listrik menjadi energi mekanik (motor) maupun sebaliknya berlangsung melalui medan magnet, dengan demikian medan magnet disini selain berfungsi sebagai tempat untuk menyimpan energi, sekaligus sebagai tempat berlangsungnya proses perubahan energi, daerah tersebut dapat dilihat pada gambar di bawah ini : Gambar Prinsip kerja motor dc Agar proses perubahan energi mekanik dapat berlangsung secara sempurna, maka tegangan sumber harus lebih besar daripada tegangan gerak yang disebabkan reaksi lawan. Dengan memberi arus pada kumparan jangkar yang dilindungi oleh medan maka menimbulkan perputaran pada motor. Dalam memahami sebuah motor, penting untuk mengerti apa yang dimaksud dengan beban motor. Beban dalam hal ini mengacu kepada keluaran tenaga putar / torque sesuai dengan kecepatan yang diperlukan. Beban umumnya dapat dikategorikan ke dalam tiga kelompok : Beban torque konstan adalah beban dimana permintaan keluaran energinya bervariasi dengan kecepatan operasinya namun torquenya tidak bervariasi. Contoh beban dengan torque konstan adalah corveyors, rotary kilns, dan pompa displacement konstan. Beban dengan variabel torque adalah beban dengan torque yang bervariasi dengan kecepatn operasi. Contoh beban dengan variabel torque adalah pompa sentrifugal dan fan (torque bervariasi sebagai kuadrat kecepatan). Peralatan Energi Listrik : Motor Listrik. Beban dengan energi konstan adalah beban dengan permintaan torque yang berubah dan berbanding terbalik dengan kecepatan. Contoh untuk beban dengan daya konstan adalah peralatan-peralatan mesin. Prinsip Arah Putaran Motor Untuk menentukan arah putaran motor digunakan kaedah Flamming tangan kiri. Kutub-kutub magnet akan menghasilkan medan magnet dengan arah dari kutub utara ke kutub selatan. Jika medan magnet memotong sebuah kawat penghantar yang dialiri arus searah dengan empat jari, maka akan timbul gerak searah ibu jari. Gaya ini disebut gaya Lorentz, yang besarnya sama dengan F. Prinsip motor : aliran arus di dalam penghantar yang berada di dalam pengaruh medan magnet akan menghasilkan gerakan. Besarnya gaya pada penghantar akan bertambah besar jika arus yang melalui penghantar bertambah besar. Contoh : Sebuah motor DC mempunyai kerapatan medan magnet 0,8 T. Di bawah pengaruh medan magnet terdapat 400 kawat penghantar dengan arus 10A. Jika panjang penghantar seluruhnya 150 mm, tentukan gaya yang ada pada armature. Jawab : F = B.I.ℓ.z = 0,8 (Vs/m2). 10A. 0,15 m.400 = 480 (Vs.A/m) = 480 (Ws/m) = 480 N. Electromotive Force (EMF) / Gaya Gerak Listrik EMF induksi biasanya disebut EMF Counter. atau EMF kembali. EMF kembali artinya adalah EMF tersebut ditimbulkan oleh angker dinamo yang yang melawan tegangan yang diberikan padanya. Teori dasarnya adalah jika sebuah konduktor listrik memotong garis medan magnet maka timbul ggl pada konduktor. Gambar 8. E.M.F. Kembali. EMF induksi terjadi pada motor listrik, generator serta rangkaian listrik dengan arah berlawanan terhadap gaya yang menimbulkannya. HF. Emil Lenz mencatat pada tahun 1834 bahwa “arus induksi selalu berlawanan arah dengan gerakan atau perubahan yang menyebabkannya”. Hal ini disebut sebagai Hukum Lenz. Timbulnya EMF tergantung pada: kekuatan garis fluks magnet jumlah lilitan konduktor sudut perpotongan fluks magnet dengan konduktor kecepatan konduktor memotong garis fluks magnet Tidak ada arus induksi yang terjadi jika angker dinamo diam. Mengatur Kecepatan pada Armature Berdasarkana persamaan di bawah ini : Jika flux Φ tetap dijaga konstan, dan kecepatannya berubah berdasarkan armature voltage (Es). Dengan naiknya atau turunnya Es, kecepatan motor akan naik atau turun sesuai dengan perbandingannya. Pada gambar di atas dapat dilihat bahwa Es dapat divariasikan dengan menghubungkan motor armature M ke excited variable – voltage dc generator G yang berbeda. Field excitation dari motor tetap dijaga tetap kosntan, tetapi generator Ix bisa divariasikan dari nol sampai maksimum dan bahkan sebaliknya. Oleh sebab itu generator output voltage Es bisa divariasikan dari nol sampai maksimum, baik dalam polaritas positif maupun negatif. Oleh karena itu, kecepatan motor dapat divariasikan dari nol sampai maksimum dalam dua arah. Metode speed control ini, dikenal sebagai sistem Ward-Leonard, ditemukan di pabrik baja (steel mills), lift bertingkat, pertambangan, dan pabrik kertas.Dalam instalasi modern, generator sering digantikan dengan high-power electronic converter yang mengubah ac power dari listrik ke dc. Ward-Leonard sistem lebih dari sekadar cara sederhana dengan menerapkan suatu variabel dc ke armature dari motor dc. Hal tersebut benar-benar dapat memaksa motor utnuk mengembangkan torsi dan kecepatan yang dibutuhkan oleh beban. Contohnya, misalkan Es disesuaikan dengan sedikit lebih tinggi daripada Eo dari motor. Arus akan mengalir dengan arah sesuai dengan gambar di atas, dan motor mengembangkan torsi yang positif. Armature dari motor menyerap power karena I mengalir ke terminal positif. Sekarang, misalkan kita megurangi Es dengan mengurangi excitation Φ G. Segera setelah Es menjadi kurang dari Eo, arus I berbalik. Hasilnya, torsi motor berbalik dan armature dari motor menghantarkan daya ke generator G. Akibatnya, motor dc mendadak menjadi generator dan generator G mendadak menjadi motor. Maka, dengan mengurangi Es, motor tiba-tiba dipaksa untuk memperlambat. Apa yang terjadi kepada power dc yg diterima oleh generator? Saat generator menerima daya listrik, generator beroperasi sebagai motor, mengendalikan motor ac nya sendiri sebagai asynchrounous generator. Hasilnya, ac power memberikan kembali ke rangkaian yang biasanya memberikan motor ac. Kenyataannya daya bisa diperoleh kembali, cara ini membuat Ward-Leonard sistem menjadi sangat efisien. Contoh soal : Calculate a. Torsi motor dan kecepatan saat Es = 400 V dan Eo = 380 V b. Torsi motor dan kecepatan saat Es = 350 V dan Eo = 380 V Solution a. Arus armature adalah I = (Es – Eo)/R = (400-380)/0.01 = 2000 A Daya ke motor armature adalah P = EoI = 380 x 2000 = 760kW Kecepatan motor adalah n = (380 V / 500 V) x 300 = 228r/min Torsi motor adalah T = 9.55 P/n = (9.55 x 760 000)/228 = 47.8 kN.m b. Karena Eo = 380 V, kecepatan motor masih 228 r/min. Arus armature adalah I = (Es-Eo)/R = (350-380)/0.01 = -3000A Arusnya negatif dan mengalir berbalik; akibatnya, torsi motor juga berbalik. Daya dikembalikan ke generator dan hambatan 10 mΩ : P = EoI = 380 x 3000 = 1140kW Braking torque yang dikembangkan oleh motor : T = 9.55 P/n = (9.55 X 1 140 000)/228 = 47.8 kN.m Kecepatan dari motor dan dihubungkan ke beban mekanis akan cepat jatuh dibawah pengaruh electromechanical braking torque. Cara lain untuk mengontrol kecepatan dari motor dc adalah menempatkan rheostat yang di-seri-kan dengan armature (gambar di atas). Arus dalam rheostat menghasilkan voltage drop jika dikurangi dari fixed source voltage Es, menghasilkan tegangan suplai yang lebih kecil dari armature. Metode ini memungkinkan kita untuk mengurangi kecepatan dibawah kecepatan nominalnya. Ini hanya direkomendasikan untuk motor kecil karena banyak daya dan pasa yang terbuang dalam rheostat, dan efisiensi keseluruhannya rendah. Di samping itu, pengaturan kecepatan lemah, bahkan untuk rheostat yg diatur fixed. Akibatnya, IR drop sedangkan rheostat meningkat sebagaimana arus armature meningkat. Hal ini menghasilkan penurunan kecepatan yang besar dengan naiknya beban mekanis. Mengatur Kecepatan dengan Field Berdasarkan persamaan di atas kita juga dapat memvariasikan kecepatan motor dc dengan memvariasikan field flux Φ. Tegangan armature Es tetap dijaga konstan agar numerator pada persamaan di atas juga konstan. Oleh sebab itu, kecepatan motor sekarang berubah perbandingannnya ke flux Φ; jika kita menaikkan fluxnya, kecepatan akan jatuh, dan sebaliknya. Metode dari speed control ini seringkali digunakan saat motor harus dijalankan diatas kecepatan rata-ratanya, disebut base speed. Untuk mengatur flux ( dan kecepatannya), kita menghubungkan rheostat Rf secara seri dengan fieldnya. Untuk mengerti metode speed control, pada gambar di atas awalnya berjalan pada kecepatan konstan. Counter-emf Eo sedikit lebih rendah dari tegangan suplai armature Es, karena penurunan IR armature. Jika tiba-tiba hambatan dari rheostat ditingkatkan, baik exciting current Ix dan flux Φ akan berkurang. Hal ini segera mengurangi cemf Eo, menyebabkan arus armature I melonjak ke nilai yang lebih tinggi. Arus berubah secara dramatis karena nilainya tergantung pada perbedaam yang sangat kecil antara Es dan Eo. Meskipun fieldnya lemah, motor mengembangkan torsi yang lebih besar dari sebelumnya. Itu akan mempercepat sampai Eo hampir sama dengan Es. Untuk lebih jelasnya, untuk mengembangkan Eo yang sama dengan fluks yang lebih lemah, motor harus berputar lebih cepat. Oleh karena itu kita dapat meningkatkan kecepatan motor di atas nilai nominal dengan memperkenalkan hambatan di dalam seri dengan field. Untuk shunt-wound motors, metode dari speed control memungkinkan high-speed/base-speed rasio setinggi 3 : 1. Range broader speed cenderung menghasilkan ketidakstabilan dan miskin pergantian. Di bawah kondisi-kondisi abnormal tertentu, flux mungkin akan drop ke nilai rendah yang berbahaya. Sebagai contoh, jika arus exciting dari motor shunt sengaja diputus, satu-satunya flux yang tersisa adalah remanent magnetism (residual magnetism) di kutub. Flux ini terlalu kecil bagi motor untuk berputar pada kecepatan tinggi yang berbahaya untuk menginduksi cemf yang diharuskan. Perangkat keamanan diperkenalkan untuk mencegah kondisi seperti pelarian. Shunt motor under load Mempertimbangkan sebuah motor dc berjalan tanpa beban. Jika beban mekanis tiba-tiba diterapkan pada poros, arus yang kecil tanpa beban tidak menghasilkan torsi untuk membawa beban dan motor mulai perlahan turun. Ini menyebabkan cemf berkurang, menghasilkan arus yang lebih tinggi dan torsi lebih tinggi. Saat torsi dikembangkan oleh motor adalah sama dengan torsi yang dikenakan beban mekanik, kemudian, kecepatan akan tetap konstan. Untuk menyimpulkan, dengan meningkatnya beban mekanis, arus armature akan naik dan kecepatan akan turun.Kecepatan motor shunt akan tetap relatif konstan dari tidak ada beban ke beban penuh. Pada motor yang kecil, itu hanya turun sebesar 10-15 persen saat beban penuh ditambahkan. Pada mesin yang besar, dropnya bahkan berkurang, sebagian ke hambatan armature yang paling rendah. Dengan menyesuaikan field rheostat, kecepatan harus dijaga agar benar-benar konstan sesuai dengan perubahan beban. Series motor Motor seri identik dalam kosntruksi untuk motor shunt kecuali untuk field. Field dihubungkan secara seri dengan armature, oleh karena itu, membawa arus armature seluruhnya. Field seri ini terdiri dari beberapa putaran kawat yang mempunyai penampang cukup besar untuk membawa arus. Meskipun kosntruksi serupa, properti dari motor seri benar-benar berbeda dari motor shunt/ Dalam notor shunt, flux Φ per pole adalah konstan pada semua muatan karena field shunt dihubungkan ke rangkaian. Tetapi motor seri, flux per pole tergantung dari arus armature dan beban. Saat arusnya besar, fluxnya besar dan sebaliknya. Meskipun berbeda, prinsip dasarnya dan perhitungannya tetap sama. Pada motor yang mempunyai hubungan seri jumlah arus yang melewati angker dinamo sama besar dengan yang melewati kumparan. Lihat gambar 9. Jika beban naik motor berputar makin pelan. Jika kecepatan motor berkurang maka medan magnet yang terpotong juga makin kecil, sehingga terjadi penurunan EMF. kembali dan peningkatan arus catu daya pada kumparan dan angker dinamo selama ada beban. Arus lebih ini mengakibatkan peningkatan torsi yang sangat besar. Catatan : Contoh keadaan adalah pada motor starter yang mengalami poling ( angker dinamo menyentuh kutub karena kurang lurus atau ring yang aus). Arus yang tinggi akan mengalir melalui kumparan dan anker dinamo karena kecepatan angker dinamo menurun dan menyebabkan turunnya EMF kembali. Gambar 9. Motor dengan kumparan seri. EMF kembali mencapai maksimum jika kecepatan angker dinamo maksimum. Arus yang disedot dari catu daya menurun saat motor makin cepat, karena EMF kembali yang terjadi melawan arus catu daya. EMF kembali tidak bisa sama besar dengan arus EMF. yang diberikan pada motor d.c., sehingga akan mengalir searah dengan EMF yang diberikan. Karena ada dua EMF. yang saling berlawanan EMF kembali menghapuskan EMF. yang diberikan, maka arus yang mengalir pada angker dinamo menjadi jauh lebih kecil jika ada EMF kembali. Karena EMF kembali melawan tegangan yang diberikan maka resistansi angker dinamo akan tetap kecil sementara arus angker dinamo dibatasi pada nilai yang aman. Pengereman Regeneratif Bagan rangkaian di bawah ini menjelaskan mengenai rangkaian pemenggal yang bekerja sebagai pengerem regeneratif. Vo hádala gaya gerak listrik yang dibangkitkan oleh mesin arus searah, sedangkan Vt hádala tegangan sumber bagi motor sekaligus merupakan batería yang diisi. Ra dan La masing-masing hádala hambatan dan induktansi jangkar. Gambar Bagan Pengereman Regeneratif Prinsip kerja rangkaian ini hádala sebagai berikut : Ketika saklar pemenggal dihidupkan, maka arus mengalir dari jangkar, melewati skalar dan kembali ke jangkar. Ketika sakalar pemenggal dimatikan, maka energi yang tersimpan pada induktor jangkar akan mengalir melewati dioda, baterai dengan tegangan Vt dan kembali ke jangkar. Analogi rangkaian sistem pengereman regeneratif dari gambar di atas dapat dibagi menjadi dua mode. Mode-1 ketika saklar on dan mode ke-2 ketika saklar off seperti ditunjukkan pada gambar di bawah ini. Gambar Rangkaian ekivalen untuk a) saklar on; b). Saklar off. dengan : Vo = gaya gerak listrik La = induktansi jangkar Ra = resistansi jangkar Vt = tegangan batería i1 = kuat arus jangkar ketika pemenggal on (arus tidak melewati baterai) i2 = kuat arus jangkar ketika pemenggal off ( arus melewati baterai) Sedangkan Gambar di bawah ini menunjukkan arus jangkar yang kontinyu dan yang tidak kontinyu. Gambar Arus Jangkar. a). Arus Kontinyu; b). Arus Terputus dengan: I1o = kuat arus jangkar saat pemenggal mulai on I2o = kuat arus jangkar saat pemenggal mulai off ton = lama waktu pemenggal on toff = lama waktu pemenggal off td = lama waktu dimana i2 tidak nol Tp = perioda pemenggal, Tp = ton + toff Karakteristik motor kompon Motor Kompon DC merupakan gabungan motor seri dan shunt. Pada motor kompon, gulungan medan (medan shunt) dihubungkan secara paralel dan seri dengan gulungan dynamo (A) seperti yang ditunjukkan dalam gambar 6. Sehingga, motor kompon memiliki torque penyalaan awal yang bagus dan kecepatan yang stabil. Makin tinggi persentase penggabungan (yakni persentase gulungan medan yang dihubungkan secara seri), makin tinggi pula torque penyalaan awal yang dapat ditangani oleh motor ini. Gambar Karakteristik Motor Kompon DC Pengereman pada motor Pengereman secara elektrik dapat dilaksanakan dengan dua cara yaitu secara: – Dinamis – Plugging Pengereman secara Dinamis Pengereman yang dilakukan dengan melepaskan jangkar yang berputar dari sumber tegangan dan memasangkan tahanan pada terminal jangkar. Oleh karena itu kita dapat berbicara tentang waktu mekanis T konstan dalam banyak cara yang sama kita berbicara tentang konstanta waktu listrik sebuah kapasitor yang dibuang ke dalam sebuah resistor. Pada dasarnya, T adalah waktu yang diperlukan untuk kecepatan motor jatuh ke 36,8 persen dari nilai awalnya. Namun, jauh lebih mudah untuk menggambar kurva kecepatan-waktu dengan mendefinisikan konstanta waktu baru T o yang merupakan waktu untuk kecepatan dapat berkurang menjadi 50 persen dari nilai aslinya. Ada hubungan matematis langsung antara konvensional konstanta waktu T dan setengah konstanta waktu T O Buku ini diberikan oleh T o = 0,693 T Kita dapat membuktikan bahwa waktu mekanis ini konstan diberikan oleh di mana T o = waktu untuk kecepatan motor jatuh ke satu-setengah dari nilai sebelumnya [s] J = momen inersia dari bagian yang berputar, yang disebut poros motor [kg × m] n1 = awal laju pengereman motor saat mulai [r / min] P 1 = awal daya yang dikirim oleh motor ke pengereman resistor [W] 131,5 = konstan [exact value 0,693 = konstan [exact value = log e 2] = (30 / p) 2 log e 2] Persamaan ini didasarkan pada asumsi bahwa efek pengereman sepenuhnya karena energi pengereman didisipasi di resistor. Secara umum, motor dikenakan tambahan akibat torsi pengereman windage dan gesekan, sehingga waktu pengereman akan lebih kecil dari yang diberikan oleh Persamaan. 5.9. Pengereman secara Plugging Kita bisa menghentikan motor bahkan lebih cepat dengan menggunakan metode yang disebut plugging. Ini terdiri dari tiba-tiba membalikkan arus angker dengan membalik terminal sumber (Gambar 5.19a). Gambar 5.18 Kecepatan kurva terhadap waktu untuk berbagai metode pengereman. Di bawah kondisi motor normal, angker arus / 1 diberikan oleh I 1 = (E s - E o) IR di mana R o adalah resistansi armature. Jika kita tiba-tiba membalik terminal sumber tegangan netto yang bekerja pada sirkuit angker menjadi (E o + E s). Yang disebut counter-ggl E o dari angker tidak lagi bertentangan dengan apa-apa tetapi sebenarnya menambah tegangan suplai E s. Bersih ini tegangan akan menghasilkan arus balik yang sangat besar, mungkin 50 kali lebih besar daripada beban penuh arus armature. Arus ini akan memulai suatu busur sekitar komutator, menghancurkan segmen, kuas, dan mendukung, bahkan sebelum baris pemutus sirkuit bisa terbuka. Gambar A Amature terhubung ke sumber dc E s. Gambar B Menghubungkan. Untuk mencegah suatu hal yang tidak diinginkan, kita harus membatasi arus balik dengan memperkenalkan sebuah resistor R dalam seri dengan rangkaian pembalikan (Gambar 5.19b). Seperti dalam pengereman dinamis, resistor dirancang untuk membatasi pengereman awal arus I 2 sampai sekitar dua kali arus beban penuh. Dengan memasukkan rangkaian, torsi reverse dikembangkan bahkan ketika angker telah datang berhenti. Akibatnya, pada kecepatan nol, E o = 0, tapi aku 2 = E s / R, yaitu sekitar satu setengah nilai awalnya. Begitu motor berhenti, kita harus segera membuka sirkuit angker, selain itu akan mulai berjalan secara terbalik. Sirkuit gangguan biasanya dikontrol oleh sebuah null-kecepatan otomatis perangkat terpasang pada poros motor. Lekuk Gambar. 5,18 memungkinkan kita untuk membandingkan pengereman plugging dan dinamis untuk pengereman awal yang sama saat ini. Perhatikan bahwa memasukkan motor benar-benar berhenti setelah selang waktu 2 T o. Di sisi lain, jika pengereman dinamis digunakan, kecepatan masih 25 persen dari nilai aslinya pada saat ini. Meskipun demikian, kesederhanaan komparatif pengereman dinamis menjadikan lebih populer di sebagian besar aplikasi. Reaksi Jangkar Terjadinya gaya torsi pada jangkar disebabkan oleh hasil interaksi dua garis medan magnet. Kutub magnet menghasilkan garis medan magnet dari utara-selatan melewati jangkar. Interaksi kedua magnet berasal dari stator dengan magnet yang dihasilkan jangkar mengakibarkan jangkar mendapatkan gaya torsi putar berlawanan arah jarus jam. Karena medan utama dan medan jangkar terjadi bersama sama hal ini akan menyebabkan perubahan arah medan utama dan akan mempengaruhi berpindahnya garis netral yang mengakibatkan kecenderungan timbul bunga api pada saat komutasi. Untuk itu biasanya pada motor DC dilengkapi dengan kutub bantu yang terlihat seperti gambar dibawah ini Gambar kutub bantu (interpole) pada motor DC Kutub bantu ini terletak tepat pada pertengahan antara kutub utara dan kutub selatan dan berada pada garis tengah teoritis. Lilitan penguat kutub ini dihubungkan seri dengan lilitan jangkar, hal ini disebabkan medan lintang tergantung pada arus jangkarnya. Untuk mengatasi reaksi jangkar pada mesin – mesin yang besar dilengkapi dengan lilitan kompensasi. Lilitan kompensasi itu dipasang pada alur – alur yang dibuat pada sepatu kutub dari kutub utama. Lilitan ini sepertijuga halnya dengan lilitan kutub bantu dihubungkan seri dengan lilitan jangkar. Arah arusnya berlawanan dengan arah arus kawat jangkar yang berada dibawahnya. Contoh soal: 1. Jangkar sebuah motor DC tegangan 230 volt dengan tahanan 0.312 ohm dan mengambil arus 48 A ketika dioperasikan pada beban normal. a. Hitunglah GGL lawan (Ea) dan daya yang timbul pada jangkar. b. Jika tahanan jangkar 0.417 ohm, keadaan yang lain sama. Berapa GGL lawan (Ea) dan daya yang timbul pada jangkar. Penurunan tegangan pada sikat-sikat sebesar 2 volt untuk soal a dan b. Jawaban: a. Ea = V – Ia Ra – 2∆E = (230 – 2 ) – (48 x 0.312) = 213 volt Daya yang dibangkitkan pada jangkar = Ea Ia = 213 x 48 = 10.224 watt b. Eb = V – Ia Ra – 2∆E = (230 – 2) – (48 x 0.417) = 208 volt Daya yang dibangkitkan pada jangkar = Ea Ia = 208 x 48 = 9984 watt Generator 1. Pengertian Generator Arus Bolak-balik Generator arus bolak-balik berfungsi mengubah tenaga mekanis menjadi tenaga listrik arus bolak-balik. Generator Arus Bolak-balik sering disebut juga sebagai alternator, generator AC (alternating current), atau generator sinkron. Dikatakan generator sinkron karena jumlah putaran rotornya sama dengan jumlah putaran medan magnet pada stator. Kecepatan sinkron ini dihasilkan dari kecepatan putar rotor dengan kutubkutub magnet yang berputar dengan kecepatan yang sama dengan medan putar pada stator.Mesin ini tidak dapat dijalankan sendiri karena kutub-kutub rotor tidak dapat tiba-tiba mengikuti kecepatan medan putar pada waktu sakelar terhubung dengan jalajala.Generator arus bolak-balik dibagi menjadi dua jenis, yaitu: a. Generator arus bolak-balik 1 fasa b. Generator arus bolak-balik 3 fasa Konstruksi Generator Arus Bolak-balik Konstruksi generator arus bolak-balik ini terdiri dari dua bagian utama, yaitu : (1) stator, yakni bagian diam yang mengeluarkan tegangan bolakbalik, dan (2) rotor, yakni bagian bergerak yang menghasilkan medan magnit yang menginduksikan ke stator. Stator terdiri dari badan generator yang terbuat dari baja yang berfungsi melindungi bagian dalam generator, kotak terminal dan name plate pada generator. Inti Stator yang terbuat dari bahan ferromagnetik yang berlapis-lapis dan terdapat alur-alur tempat meletakkan lilitan stator. Lilitan stator yang merupakan tempat untuk menghasilkan tegangan. Sedangkan, rotor berbentuk kutub sepatu (salient) atau kutub dengan celah udara sama rata (rotor silinder). Konstruksi dari generator sinkron ini dapat dilihat pada Gambar 1. Gambar 1 Konstruksi Generator Arus Bolak-balik Stator : 1. Rumah Stator 2. Inti satator 3. Lilitan stator 4. Alur stator 5. Kontak hubung 6. Sikat Rotor : 1. Kutub magnet 2. Lilitan penguat magnet 3. Cincin seret (slip ring) 4. Poros Prinsip Kerja Generator Arus Bolak-balik Prinsip dasar generator arus bolak-balik menggunakan hukum Faraday yang menyatakan jika sebatang penghantar berada pada medan magnet yang berubah-ubah, maka pada penghantar tersebut akan terbentuk gaya gerak listrik. Prinsip kerja generator arus bolak-balik tiga fasa (alternator) pada dasarnya sama dengan generator arus bolak-balik satu fasa, akan tetapi pada generator tiga fasa memiliki tiga lilitan yang sama dan tiga tegangan outputnya berbeda fasa 1200 pada masing-masing fasa seperti ditunjukkan pada Gambar 2. Gambar 2 Skema Lilitan Stator Generator Tiga Fasa Besar tegangan generator bergantung pada : 1. Kecepatan putaran (N) 2. Jumlah kawat pada kumparan yang memotong fluk (Z) Jumlah Kutub Jumlah kutub generator arus bolak-balik tergantung dari kecepatan rotor dan frekuensi dari ggl yang dibangkitkan. Hubungan tersebut dapat ditentukan dengan persamaan : f= 𝑝𝑛 120 dimana : f = frekuensi tegangan (Hz) p = jumlah kutub pada rotor n = kecepatan rotor GeneratorTanpa Beban dan Berbeban. Generator Tanpa Beban (Beban Nol) Jika poros generator diputar dengan kecepatan sinkron dan rotor diberi arus medan If, maka tegangan E0 akan terinduksi pada kumparan jangkar stator sebesar : Eo = cn Φ dimana : c = konstanta mesin n = putaran sinkron Φ = fluks yang dihasilkan oleh If Generator arus bolak-balik yang dioperasikan tanpa beban, arus jangkarnya akan nol (Ia = 0) sehingga tegangan terminal Vt = Va = Vo. Karena besar ggl induksi merupakan fungsi dari flux magnet, maka ggl induksi dapat dirumuskan: Ea = f (Φ), yang berarti pengaturan arus medan sampai kondisi tertentu akan mengakibatkan ggl induksi tanpa beban dalam keadaan saturasi seperti ditunjukkan pada Gambar 3. R V S A Rotor Stator T Generator Berbeban Tiga macam sifat beban jika dihubungkan dengan generator, yaitu : beban resistif, beban induktif, dan beban kapasitif. Akibat pembeban ini akan berpengaruh terhadap tegangan beban dan faktor dayanya. Gambar 4 menunjukkan jika beban generator bersifat resistif mengakibatkan penurunan tegangan relatif kecil dengan faktor daya sama dengan satu. Jika beban generator bersifat induktif terjadi penurunan tegangan yang cukup besar dengan faktor daya terbelakang (lagging). Sebaliknya, Jika beban generator bersifat kapasitif akan terjadi kenaikan tegangan yang cukup besar dengan faktor daya mendahului (leading). Sistem Penguat (Exciter) Saat generator dihubungkan dengan beban akan menyebabkan tegangan keluaran generator akan turun, karena medan magnet yang dihasilkan dari arus penguat relatif konstan. Agar tegangan generator konstan, maka harus ada peningkatan arus penguatan sebanding dengan kenaikan beban. Gambar 5 menunjukkan sistem arus penguatan pada generator dan karakteristik tegangan keluarannya. Gambar Gambar 5 Prinsip Kerja Exciter Generator Keterangan : Garis lengkung 1 : Karakteristik tegangan keluar tanpa beban yang diperoleh dari medan magnet minimum. Garis lengkung 2 : Karakteristik tegangan dengan penambahan arus penguatan maksimum. Garis lengkung 3 : Karakteristik yang bervariasi dengan mengatur arus penguatan sesuai kebutuhan beban. GENERATOR SINKRON (ALTERNATOR) Hampir semua energi listrik dibangkitkan dengan menggunakan mesin sinkron. Generator sinkron (sering disebut alternator) adalah mesin sinkron yangdigunakan untuk mengubah daya mekanik menjadi daya listrik. Generator sinkrondapat berupa generator sinkron tiga fasa atau generator sinkron AC satu fasatergantung dari kebutuhan. Konstruksi Generator Sinkron Pada generator sinkron, arus DC diterapkan pada lilitan rotor untuk mengahasilkan mdan magnet rotor. Rotor generator diputar oleh prime mover menghasilkan medan magnet berputar pada mesin. Medan magnet putar ini menginduksi tegangan tiga fasa pada kumparan stator generator. Rotor pada generator sinkron pada dasarnya adalah sebuah elektromagnet yang besar. Kutub medan magnet rotor dapat berupa salient (kutub sepatu) dan dan non salient (rotor silinder). Gambaran bentuk kutup sepatu generator sinkron diperlihatkan pada gambar di bawah ini. Gambar 1.1 Rotor salient (kutub sepatu) pada generator sinkron Pada kutub salient, kutub magnet menonjol keluar dari permukaan rotor sedangkan pada kutub non salient, konstruksi kutub magnet rata dengan permukaan rotor. Rotor silinder umumnya digunakan untuk rotor dua kutub dan empat kutub, sedangkan rotor kutub sepatu digunakan untuk rotor dengan empat atau lebih kutub. Pemilihan konstruksi rotor tergantung dari kecepatan putar prime mover, frekuensi dan rating daya generator. Generator dengan kecepatan 1500 rpm ke atas pada frekuensi 50 Hz dan rating daya sekitar 10MVA menggunakan rotor silinder. Sementara untuk daya dibawah 10 MVA dan kecepatan rendah maka digunakan rotor kutub sepatu. Gambaran bentuk kutup silinder generator sinkron diperlihatkan pada gambar di bawah ini. A B Gambar 1.2 Gambaran bentuk (a) rotor Non-salient (rotor silinder), (b) penampang rotor pada generator sinkron Arus DC disuplai ke rangkaian medan rotor dengan dua cara: 1. Menyuplai daya DC ke rangkaian dari sumber DC eksternal dengan sarana slip ring dan sikat. 2. Menyuplai daya DC dari sumber DC khusus yang ditempelkan langsung pada batang rotor generator sinkron. Prinsip Kerja Generator Sinkron Jika sebuah kumparan diputar pada kecepatan konstan pada medan magnethomogen, maka akan terinduksi tegangan sinusoidal pada kumparan tersebut. Medan magnet bisa dihasilkan oleh kumparan yang dialiri arus DC atau oleh magnet tetap. Pada mesin tipe ini medan magnet diletakkan pada stator (disebut generator kutub eksternal / external pole generator) yang mana energi listrik dibangkitkan pada kumparan rotor. Hal ini dapat menimbulkan kerusakan pada slip ring dan karbon sikat, sehingga menimbulkan permasalahan pada pembangkitan daya tinggi. Untuk mengatasi permasalahan ini, digunakan tipe generator dengan kutub internal (internal pole generator), yang mana medan magnet dibangkitkan oleh kutub rotor dan tegangan AC dibangkitkan pada rangkaian stator. Tegangan yang dihasilkan akan sinusoidal jika rapat fluks magnet pada celah udara terdistribusi sinusoidal dan rotor diputar pada kecepatan konstan. Tegangan AC tiga fasa dibangkitan pada mesin sinkron kutub internal pada tiga kumparan stator yang diset sedemikian rupa sehingga membentuk beda fasa dengan sudut 120°. Bentuk gambaran sederhana hubungan kumparan 3-fasa dengan tegangan yang dibangkitkan diperlilhatkan pada gambar di bawah ini. Gambar 1.3 Gambaran sederhana kumparan 3-fasa dan tegangan yang dibangkitkan Pada rotor kutub sepatu, fluks terdistribusi sinusoidal didapatkan dengan mendesain bentuk sepatu kutub. Sedangkan pada rotor silinder, kumparan rotor disusun secara khusus untuk mendapatkan fluks terdistribusi secara sinusoidal. Untuk tipe generator dengan kutub internal (internal pole generator), suplai DC yang dihubungkan ke kumparan rotor melalui slip ring dan sikat untuk menghasilkan medan magnet merupakan eksitasi daya rendah. Jika rotor menggunakan magnet permanen, maka tidak slip ring dan sikat karbon tidak begitu diperlukan. Kecepatan Putar Generator Sinkron Frekuensi elektris yang dihasilkan generator sinkron adalah sinkron dengan kecepatan putar generator. Rotor generator sinkron terdiri atas rangkaian elektromagnet dengan suplai arus DC. Medan magnet rotor bergerak pada arah putaran rotor. Hubungan antara kecepatan putar medan magnet pada mesin dengan frekuensi elektrik pada stator adalah: 𝑛𝑟 . 𝑝 Fe = 120 yang mana: fe = frekuensi listrik (Hz) nr = kecepatan putar rotor = kecepatan medan magnet (rpm) p = jumlah kutub magnet Oleh karena rotor berputar pada kecepatan yang sama dengan medan magnet, persamaan diatas juga menunjukkan hubungan antara kecepatan putar rotor dengan frekuensi listrik yang dihasilkan. Agar daya listrik dibangkitkan tetap pada frekuensi 50Hz atau 60 Hz, maka generator harus berputar pada kecepatan tetapdengan jumlah kutub mesin yang telah ditentukan. Sebagai contoh untuk membangkitkan 60 Hz pada mesin dua kutub, rotor arus berputar dengan kecepatan 3600 rpm. Untuk membangkitkan daya 50 Hz pada mesin empat kutub, rotor harus berputar pada 1500 rpm. Alternator tanpa beban Dengan memutar alternator pada kecepatan sinkron dan rotor diberi arus medan (IF), maka tegangan (Ea ) akan terinduksi pada kumparan jangkar stator. Bentuk hubungannya diperlihatkan pada persamaan berikut. Ea = c.n.φ yang mana: c = konstanta mesin n = putaran sinkron φ = fluks yang dihasilkan oleh IF Dalam keadaan tanpa beban arus jangkar tidak mengalir pada stator, karenanya tidak terdapat pengaruh reaksi jangkar. Fluks hanya dihasilkan oleh arus medan (IF). Apabila arus medan (IF) diubah-ubah harganya, akan diperoleh harga Ea seperti yang terlihat pada kurva sebagai berikut. gambar 1.4 Karakteristik tanpa beban generator sinkron Alternator Berbeban Dalam keadaan berbeban arus jangkar akan mengalir dan mengakibatkan terjadinya reaksi jangkar. Reaksi jangkar besifat reaktif karena itu dinyatakan sebagai reaktansi, dan disebut reaktansi magnetisasi (Xm ). Reaktansi pemagnet (Xm ) ini bersama-sama dengan reaktansi fluks bocor (Xa ) dikenal sebagai reaktansi sinkron (Xs) . Persamaan tegangan pada generator adalah: Ea = V + I.Ra + j I.Xs Xs = Xm + Xa yang mana: Ea = tegangan induksi pada jangkar V = tegangan terminal output Ra = resistansi jangkar Xs = reaktansi sinkron Karakteristik pembebanan dan diagram vektor dari alternator berbeban induktif (faktor kerja terbelakang) dapat dilihat pada gambar di bawah ini : Gambar 1.5 Karakteristik alternator berbeban induktif Rangkaian Ekuivalen Generator Sinkron Tegangan induksi Ea dibangkitkan pada fasa generator sinkron. Tegangan ini biasanya tidak sama dengan tegangan yang muncul pada terminal generator. Tegangan induksi sama dengan tegangan output terminal hanya ketika tidak ada arus jangkar yang mengalir pada mesin. Beberapa faktor yang menyebabkan perbedaan antara tegangan induksi dengan tegangan terminal adalah: a. Distorsi medan magnet pada celah udara oleh mengalirnya arus pada stator, disebut reaksi jangkar. b. Induktansi sendiri kumparan jangkar. c. Resistansi kumparan jangkar. d. Efek permukaan rotor kutub sepatu Rangkaian ekuivalen generator sinkron perfasa ditunjukkan pada gambar di bawah ini Gambar 1.6 Rangkaian ekuivalen generator sinkron perfasa Menentukan Parameter Generator Sinkron Harga s X diperoleh dari dua macam percobaan yaitu percobaan tanpa beban dan percobaan hubungan singkat. Pada pengujian tanpa beban, generator diputar pada kecepatan ratingnya dan terminal generator tidak dihubungkan ke beban. Arus eksitasi medan mula adalah nol. Kemudian arus eksitasi medan dinaikan bertahap dan tegangan terminal generator diukur pada tiap tahapan. Dari percobaan tanpa beban arus jangkar adalah nol (Ia = 0) sehingga V sama dengan Ea. Sehingga dari pengujian ini diperoleh kurva Ea sebagai fungsi arus medan (If). Dari kurva ini harga yang akan dipakai adalah harga liniernya (unsaturated). Pemakaian harga linier yang merupakan garis lurus cukup beralasan mengingat kelebihan arus medan pada keadaan jenuh sebenarnya dikompensasi oleh adanya reaksi jangkar. Gambar 1.7 Karakteristik tanpa beban Pengujian yang kedua yaitu pengujian hubung singkat. Pada pengujian ini mula-mula arus eksitasi medan dibuat nol, dan terminal generator dihubung singkat melalui ampere meter. Kemudian arus jangkar Ia (= arus saluran) diukur dengan mengubah arus eksitasi medan. Dari pengujian hubung singkat akan menghasilkan hubungan antara arus jangkar (Ia ) sebagai fungsi arus medan (IF), dan ini merupakan garis lurus. Gambaran karakteristik hubung singkat alternator diberikan di bawah ini. Gambar 1.8 Karakteristik hubung singkat alternator Ketika terminal generator dihubung singkat maka tegangan terminal adalah nol. Impedansi internal mesin adalah: Zs =√𝑅𝑎 2 + 𝑋𝑠 2 = 𝑋𝑎 𝐼𝑎 Oleh karena Xs >> Ra, maka persamaan diatas dapat disederhanakan menjadi: 𝐸𝑎 𝑉𝑜𝑐 Xs = 𝐼𝑎 = 𝐼𝑎 ℎ𝑠 Jika Ia dan Ea diketahui untuk kondisi tertentu, maka nilai reaktansi sinkron dapat diketahui. Tahanan jangkar dapat diukur dengan menerapkan tegangan DC pada kumparan jangkar pada kondisi generator diam saat hubungan bintang (Y), kemudian arus yang mengalir diukur. Selanjutnya tahanan jangkar perfasa pada kumparan dapat diperoleh dengan menggunakan hukum ohm sebagai berikut. 𝑉𝑑𝑐 Ra = 2 . 𝐼𝑑𝑐 Penggunaan tegangan DC ini adalah supaya reaktansi kumparan sama dengan nol pada saat pengukuran.Diagram Fasor Gambar 1.9 Diagram fasor (a) Faktor daya satu (b) faktor daya tertinggal (c) faktor daya mendahului Diagram fasor memperlihatkan bahwa terjadinya pebedaan antara tegangan teminal V dalam keadaan berbeban dengan tegangan induksi (Ea ) atau tegangan pada saat tidak berbeban. Diagram dipengaruhi selain oleh faktor kerja juga oleh besarnya arus jangkar (Ia ) yang mengalir. Dengan memperhatikan perubahan tegangan V untuk faktor keja yang berbedabeda, karakteristik tegangan teminal V terhadap arus jangkar Ia diperlihatkan pada gambar 1.9. Pengaturan Tegangan (Regulasi Tegangan) Pengaturan tegangan adalah perubahan tegangan terminal alternator antara keadaan beban nol (VNL) dengan beban penuh (VFL). Keadaan ini memberikan gambaran batasan drop tegangan yang terjadi pada generator, yang dinyatakan sebagai berikut. 𝑉𝑛𝑙 − 𝑉𝑓𝑙 𝑉𝑟 = 𝑥 100% 𝑉𝑓𝑙 Kerja Paralel Alternator Untuk melayani beban yang berkembang, maka diperlukan tambahan sumber daya listrik. Agar sumber daya listrik yang yang baru (alternator baru) bisa digunakan bersama, maka dilakukan penggabungan alternator dengan cara mempararelkan dua atau lebih alternator pada sistem tenaga dengan maksud memperbesar kapasitas daya yang dibangkitkan pada sistem. Selain untuk tujuan di atas, kerja pararel juga sering dibutuhkan untuk menjaga kontinuitas pelayanan apabila ada mesin (alternator) yang harus dihentikan, misalnya untuk istirahat atau reparasi, maka alternator lain masih bisa bekerja untuk mensuplai beban yang lain. Untuk maksud mempararelkan ini, ada beberapa pesyaratan yang harus dipenuhi, yaitu: a. Harga sesaat ggl kedua alternator harus sama dalam kebesarannya, dan bertentangan dalam arah, atau harga sesaat ggl alternator harus sama dalam kebesarannya dan bertentangan dalam arah dengan harga efektif tegangan jala jala. b. Frekuensi kedua alternator atau frekuensi alternator dengan jala harus sama c. Fasa kedua alternator harus sama d. Urutan fasa kedua alternator harus sama Bila sebuah generator ’G’ akan diparalelkan dengan jala-jala, maka mulamula G diputar oleh penggerak mula mendekati putaran sinkronnya, lalu penguatan IF diatur hingga tegangan terminal generator tersebut sama denga jala-jala. Untuk mendekati frekuensi dan urutan fasa kedua tegangan (generator dan jala-jala) digunakan alat pendeteksi yang dapat berupa lampu sinkronoskop hubungan terang. Benar tidaknya hubungan pararel tadi, dapat dilihat dari lampu tersebut. Bentuk hubungan operasi paralel generator sinkron dengan lampu sinkronoskop diperlihatkan pada gambar di bawah ini. Gambar 1.10 Operasi paralel generator sinkron Jika rangakaian untuk pararel itu benar (urutan fasa sama) maka lampu L1, L2 dan L3 akan hidup-mati dengan frekuensi fL - fG cycle. Sehingga apabila ke tiga lampu sedang tidak bekedip berarti fL = fG atau frekuensi tegangan generator dan jala-jala sudah sama. Untuk mengetahui bahwa fasa kedua tegangan (generator dan jala-jala) sama dapat dilihat dari lampu L1, L2, dan L3. Frekuensi tegangan generator diatur oleh penggerak mula, sedang besar tegangan diatur oleh penguatan medan. Jika rangkaian untuk mempararelkan itu salah (urutan fasa tidak sama) maka lampu L1, L2 dan L3 akan hidup-mati bergantian dengan frekuensi (fL + fG ) cycle. Dalam hal ini dua buah fasa (sebarang) pada terminal generator harus kita pertukarkan. Jika urutan fasa kedua sistem tegangan sama, maka lampu L1, L2, dan L3 akan hidup-mati bergantian dengan frekuensi fL - fG cycle. Saat mempararelkan adalah pada keadaan L1 mati sedangkan L2 dan L3 menyala sama terang, dan keadaan ini berlangsung agak lama (yang berarti fL dan fG sudah sangat dekat atau benar-benar sama). Dalam keadaan ini, posisi semua fasa sistem tegangan jala-jala berimpit dengan semua system tegangan generator. MOTOR SINKRON Motor Sinkron adalah mesin sinkron yang digunakan untuk mengubah energi listrik menjadi energi mekanik. Mesin sinkron mempunyai kumparan jangkar pada stator dan kumparan medan pada rotor. Kumparan jangkarnya berbentuk sama dengan mesin induksi, sedangkan kumparan medan mesin sinkron dapat berbentuk kutub sepatu (salient) atau kutub dengan celah udara sama rata (rotor silinder). Arus searah (DC) untuk menghasilkan fluks pada kumparan medan dialirkan ke rotor melalui cincin dan sikat. Prinsip Kerja Motor Sinkron Gambar 2.1 Terjadinya torsi pada motor sinkron (a) tanpa beban (b) kondisi berbeban (c) kurva karakteristik torsi Gambar 2.1 memperlihatkan keadaan terjadinya torsi pada motor sinkron. Keadaan ini dapat dijelaskan sebagai berikut: apabila kumparan jangkar (pada stator) dihubungkan dengan sumber tegangan tiga fasa maka akan mengalir arus tiga fasa pada kumparan. Arus tiga fasa pada kumparan jangkar ini menghasilkan medan putar homogen (BS). Berbeda dengan motor induksi, motor sinkron mendapat eksitasi dari sumber DC eksternal yang dihubungkan ke rangkaian rotor melalui slip ring dan sikat. Arus DC pada rotor ini menghasilkan medan magnet rotor (BR) yang tetap. Kutub medan rotor mendapat tarikan dari kutub medan putar stator hingga turut berputar dengan kecepatan yang sama (sinkron). Torsi yang dihasilkan motor sinkron merupakan fungsi sudut torsi (δ). Semakin besar sudut antara kedua medan magnet, maka torsi yang dihasilkan akan semakin besar seperti persamaan di bawah ini. T = k .BR .Bnet sin δ Pada beban nol, sumbu kutub medan putar berimpit dengan sumbu kumparan medan (δ = 0). Setiap penambahan beban membuat medan motor “tertinggal” dari medan stator, berbentuk sudut kopel (δ); untuk kemudian berputar dengan kecepatan yang sama lagi. Beban maksimum tercapai ketika δ = 90o. Penambahan beban lebih lanjut mengakibatkan hilangnya kekuatan torsi dan motor disebut kehilangan sinkronisasi. Oleh karena pada motor sinkron terdapat dua sumber pembangkit fluks yaitu arus bolak-balik (AC) pada stator dan arus searah (DC) pada rotor, maka ketika arus medan pada rotor cukup untuk membangkitkan fluks (ggm) yang diperlukan motor, maka stator tidak perlu memberikan arus magnetisasi atau daya reaktif dan motor bekerja pada faktor daya = 1,0. Ketika arus medan pada rotor kurang (penguat bekurang), stator akan menarik arus magnetisasi dari jala-jala, sehingga motor bekerja pada faktor daya terbelakang (lagging). Sebaliknya bila arus pada medan rotor belebih (penguat berlebih), kelebihan fluks (ggm) ini harus diimbangi, dan stator akan menarik arus yang bersifat kapasitif dari jala-jala, dan karenanya motor bekerja pada faktor daya mendahului (leading). Dengan demikian, faktor daya motor sinkron dapat diatur dengan mengubah-ubah harga arus medan (IF) Rangkaian Ekuivalen Motor Sinkron Motor sinkron pada dasarnya adalah sama dengan generator sinkron, kecuali arah aliran daya pada motor sinkron merupakan kebalikan dari generator sinkron. Oleh karena arah aliran daya pada motor sinkron dibalik, maka arah aliran arus pada stator motor sinkron juga dapat dianggap dibalik. Maka rangkaianekuivalen motor sinkron adalah sama dengan rangkaian ekuivalen generator sinkron, kecuali arah arus Ia dibalik. Bentuk rangkaian ekuivalen motor sinkron diperlihatkan pada gambar 2.2. Gambar 2.2 Rangkaian ekuivalen motor sinkron Dari gambar 2.2 dapat dibuatkan persamaan tegangan rangkaian ekuivalen motor sinkron sebagai berikut. Vθ = Ea + Ia.Ra + jIa.XS atau Ea = Vθ - Ia.Ra – jIa.XS Kurva Karakteristik Torsi-Kecepatan Motor Sinkron Motor sinkron pada dasarnya merupakan alat yang menyuplai tenaga ke beban pada kecepatan konstan. Kecepatan putaran motor adalah terkunci pada frekuensi listrik yang diterapkan, oleh karena itu kecepatan motor adalah konstan pada beban bagaimanapun. Kecepatan motor yang tetap ini dari kondisi tanpa beban sampai torsi maksimum yang bisa disuplai motor disebut torsi pullout. Bentuk karakteristik torsi terhadap kecepatan ini diperlihatkan pada gambar di bawah ini. Gambar 2.3 Karakteristik torsi – kecepatan Dengan mengacu kebali ke persamaan (2.3) dapat dibuatkan kembali persamaan torsi motor sinkron sebagai berikut. 3 . 𝑉𝛷 . 𝐸𝑎 . sin 𝜕 Tind = 𝜔𝑚 . 𝑋𝑠 Torsi maksimum motor terjadi ketika δ = 90°. Umumnya torsi maksimum motor sinkron adalah tiga kali torsi beban penuhnya. Ketika torsi pada motor sinkron melebihi torsi maksimum maka motor akan kehilangan sinkronisasi. Dengan mengacu kembali ke persamaan (2.1) dan (2.4), maka persamaan Torsi maksimum (pullout) motor sinkron dapat dibuatkan sebagai berikut. Tind = K . Br . Bnet Atau 3 . 𝑉𝛷 . 𝐸𝑎 Tind = 𝜔𝑚 . 𝑋𝑠 Dari persamaan di atas menunjukkan bahwa semakin besar arus medan, maka torsi maksimum motor akan semakin besar. Pengaruh Perubahan Beban Pada Motor Sinkron Gambar 2.4 Pengaruh perubahan beban pada motor sinkron Gambar 2.4 memberikan gambaran bentuk pengaruh perubahan beban pada motor sinkron. Jika beban dihubungkan pada motor sinkron, maka motor akan membangkitkan torsi yang cukup untuk menjaga motor dan bebannya berputar pada kecepatan sinkron. Misal mula-mula motor sinkron beroperasi pada faktor daya mendahului (leading). Jika beban pada motor dinaikkan, putaran rotor pada asalnya akan melambat. Ketika hal ini terjadi, maka sudut torsi δ menjadi lebih besar dan torsi induksi akan naik. Kenaikan torsi induksi akan menambah kecepatan rotor, dan motor akan kembali berputar pada kecepatan sinkron tapi dengan sudut torsi δ yang lebih besar. Pengaruh Pengubahan Arus Medan pada Motor Sinkron Kenaikan arus medan IF menyebabkan kenaikan besar Ea tetapi tidak mempengaruhi daya real yang disuplai motor. Daya yang disuplai motor berubah hanya ketika torsi beban berubah. Oleh karena perubahan arus medan tidak mempengaruhi kecepatan dan beban yang dipasang pada motor tidak berubah sehingga daya real yang disuplai motor tidak berubah, dan tegangan fasa sumber juga konstan, maka jarak daya pada diagram fasor dinaikan, maka Ea naik, tetapi ia hanya bergeser di sepanjang garis dengan daya konstan. Gambaran hubungan pengaruh kenaikan arus medan pada motor sinkron diperlihatkan pada gambar di bawah ini. Gambar 2.5 Pengaruh kenaikan arus medan pada motor sinkron Ketika nilai Ea naik, besar arus Ia mula-mula turun dan kemudian naik lagi. Pada nila Ea rendah, arus jangkar Ia adalah lagging dan motor bersifat induktif. Ia bertindak seperti kombinasi resitor-induktor dan menyerap daya reaktif Q. Ketika arus medan dinaikkan, arus jangkar menjadi kecil dan pada akhirnya menjadi segaris (sefasa) dengan tegangan. Pada kondisi ini motor bersifat resistif murni. Ketika arus medan dinaikkan lebih jauh, maka arus jangkar akan menjadi mendahului (leading) dan motor menjadi beban kapasitif. Ia bertindak seperti kombinasi resistor-kapasitor menyerap daya reaktif negatif –Q (menyuplai daya reaktif Q ke sistem). Hubungan antara arus jangkar Ia dengan arus medan IF untuk satu beban (P) yang tetap akan merupakan kurva yang berbentuk V seperti yang diperlihatkan pada gambar di bawah ini. Gambar 2.6 Kurva V hubungan antara arus jangkar Ia dengan arus medan IF untuk satu beban (P) yang tetap pada motor sinkron Beberapa kurva V digambarkan untuk level daya yang berbeda. Arus jangkar minimum terjadi pada faktor daya satu dimana hanya daya real yang disuplai ke motor. Pada titik lain, daya reaktif disuplai ke atau dari motor. Untuk arus medan lebih rendah dari nilai yang menyebabkan Ia minimum, maka arus jangkar akan tertinggal (lagging) dan menyerap Q. Oleh karena arus medan pada kondisi ini adalah kecil, maka motor dikatakan under excitation. Untuk arus medan lebih besar dari nilai yang menyebabkan Ia minimum, maka arus jangkar akan mendahului (leading) dan menyuplai Q. Kondisi ini disebut over excitation. Kondensor Sinkron Telah diterangkan sebelumnya bahwa apabila motor sinkron diberi penguatan berlebih, maka untuk mengkompensasi kelebihan fluks, dari jala-jala akan ditarik arus kapasitif. Karena itu motor sinkron (tanpa beban) yang diberi penguat berlebih akan berfungsi sebagai kapasitor dan mempunyai kemampuan untuk memperbaiki faktor daya. Motor sinkron demikian disebut kondensor sinkron. Daya Reaktif Motor sinkron tanpa beban dalam keadaan penguatan tertentu dapat menimbulkan daya reaktif. Perhatikan diagram vektor motor sinkron tanpa beban pada gambar di bawah ini. Gambar 2.7 Diagram vektor daya reaktif motor sinkron tanpa beban Pada gambar (a), penguatan normal, sehingga V = E. Motor dalam keadaan mengambang karena tidak memberikan ataupun menarik arus. V berimpit dengan E berlebih, sehingga E >V. Arus kapasitif (leading current) ditarik dari jala-jala. Daya aktif P = VI cos θ = 0. Jadi, motor berfungsi sebagai pembangkit daya reaktif yang bersifat kapasitif (kapasitor). Pada gambar (c), penguatan berkurang, sehingga E < V. Arus magnetisasi (lagging current) ditarik dari jala-jala. Jadi, motor berfungsi sebagai pembangkit daya reaktif yang bersifat induktif (induktor). Starting Motor Sinkron Pada saat start ( tegangan dihubungkan ke kumparan stator) kondisi motor adalah diam dan medan rotor BR juga stasioner, medan magnet stator mulai berputar pada kecepatan sinkron. Saat t = 0, BR dan BS adalah segaris, maka torsi induksi pada rotor adalah nol. Kemudian saat t = ¼ siklus rotor belum bergerak dan medan magnet stator ke arah kiri menghasilkan torsi induksi pada rotor berlawanan arah jarum jam. Selanjutnya pada t = ½ siklus BR dan BS berlawanan arah dan torsi induksi pada kondisi ini adalah nol. Pada t = ¾ siklus medan magnet stator ke arah kanan menghasilkan torsi searah jarum jam. Demikian seterusnya pada t = 1 siklus medan magnet stator kembali segaris dengan medan magnet rotor. Bentuk hubungan Torsi motor sinkron pada kondisi start ini diperlihatkan pada gambar di bawah ini. Gambar 2.8 Torsi motor sinkron pada kondisi start Selama satu siklus elektrik dihasilkan torsi pertama berlawanan jarum jam kemudian searah jarum jam, sehingga torsi rata-rata pada satu siklus adalah nol. Ini menyebabkan motor bergetar pada setiap siklus dan mengalami pemanasan lebih. Tiga pendekatan dasar yang dapat digunakan untuk menstart motor sinkron dengan aman adalah. 1. Mengurangi kecepatan medan magnet stator pada nilai yang rendah sehingga rotor dapat mengikuti dan menguncinya pada setengah siklus putaran medan magnet. Hal ini dapat dilakukan dengan mengurangi frekuensi tegangan yang diterapkan. 2. Menggunakan penggerak mula eksternal untuk mengakselarasikan motor sinkron hingga mencapai kecepatan sinkron, kemudian penggerak mula dimatikan (dilepaskan). 3. Menggunakan kumparan peredam (damper winding) atau dengan membuat kumparan rotor motor sinkron seperti kumparan rotor belitan pada motor induksi (hanya saat start).