BAB II TEORI DASAR 2.1 Batuan Mineral terbentuk secara alamiah oleh alam dari gabungan senyawa kimia di bumi. Mineral biasa ditemukan dalam bentuk butiran yang diameternya berkisar antara sub atomik hingga sentimeter. Untuk mendefinisikan mineral secara spesifik, komposisi mineral serta struktur molekulnya harus tertentu. Sedangkan batu adalah mineral yang terkumpul dan dapat memperlihatkan sifat-sifat yang tidak dimiliki mineral jika berdiri sendiri. Mikrostruktur batuan digunakan untuk menjabarkan kompleksitas geometri internal batuan. Satu karakteristik batuan yang menarik yaitu besarnya ketidaksamaan atau inhomogenitas yang terjadi sehingga sifat fisis batuan dapat bergantung pada besarnya skala pengukuran. Berdasarkan proses yang terjadi, batuan dibedakan menjadi tiga yaitu batuan beku, batuan sedimen, serta batuan metamorf. Pada batuan beku proses kristalisasi dan pembekuan atau pengerasan magam yang keluar dari perut bumi ke permukaan terjadi dalam waktu cepat ataupun lambat. Batuan sedimen terbentuk dari proses-proses kimia atau fisika, seperti pengaruh cuaca, terbawa angin yang kemudian teerkumpul di suatu tempat, atau terbawa air yang kemudian Halaman |6 mengendap atau tersedimentasi. Sedang batuan metamorf terbentuk akibat efek terkubur ataupun pemanasan. Jumlah batuan beku di lapisan kerak bumi mencapai 95 %, namun 75 % dari permukaan benua dan permukaan lempeng samudera merupakan batuan sedimen (Palciauskas, et. al. 1994). Karena batuan beku lebih padat, difungsikankan sebagai lantai rumah, dll. Batuan sedimen lebih berongga, sehingga ruang porinya dapat menyimpan fluida. Fluida berupa gas, minyak atau air atau pun campuran dari ketiganya. Salah satu jenis batuan sedimen adalah lempung (clay). Batu lempung merupakan jenis batuan sedimen yang memiliki ukuran butir lebih kecil dari (http://id.wikipedia.org/wiki/Batuan_sedimen). Batu lempung umumnya bersifat plastis, berkomposisi hidrous alumunium silikat (2H2OAL2O3. 2SiO2) atau mineral lempung yang mempunyai ukuran butir halus (Pettijohn, 1957). Gambar 2.1 Lempung 2.2 Sifat-sifat Batuan 2.2.1 Porositas Porositas adalah ukuran volume pori yang dimiliki suatu batuan. Porositas didefinisikan sebagai bagian volume batuan yang tidak menempati zat padatan di batuan. Secara matematis, porositas adalah persentase volume pori dibagi volume total batuan. VP ×100 % V V P = Volume Pori φ= V = Volume Total Nilai porositas menentukan besar jumlah fluida yang terkandung di dalam batuan. Porositas sendiri dibedakan menjadi dua yaitu porositas total dan porositas efektif. Porositas total adalah nilai total semua ruang pori yang ada pada suatu batuan per seluruh volume batuan. Sedangkan porositas efektif adalah nilai ruang pori yang saling terhubung hingga dapat mengalirkan fluida. 2.2.2 Tortuositas Tortuositas didefinisikan sebagai panjang ruang pori, yang saling terhubung dengan yang lainnya sehingga membentuk jalur yang dialiri fluida, dari satu sisi ke sisi yang berseberangan dibandingkan dengan panjang dari sampel batuan tersebut (Palciauskas, et. al. 1994). Tortuositas berkaitan dengan porositas efektif karena sama-sama berkaitan dengan ruang pori batuan yang saling berhubungan. Gambar berikut merupakan ilustrasi tortuositas. Gambar 2.2 Tortuositas Secara matematis, tortuositas adalah L' L L' = panjang saluran pori L = panjang dimensi batuan τ= 2.2.3 Bilangan Koordinasi Bilangan koordinasi adalah jumlah pertemuan jalur pori pada satu node. Bilangan koordinasi dapat dihitung hanya pada batuan ataupun model batuan tiga dimensi. 2.3 Geometri Fraktal Terdapat dua metode untuk melukiskan objek, yaitu metode geometri euclidian dan metode geometri fraktal. Metode geometri euclidian adalah metode untuk melukiskan objek dengan persamaan matematika (Hearn, 1977). Metode ini cocok untuk melukiskan objek-objek industri yang bentuknya teratur dan permukaannya halus seperti persegi, persegi panjang, lingkaran, dll dalam dua dimensi dan kubus, kerucut, bola, dll dalam tiga dimensi. Sedangkan metode geometri fraktal adalah metode untuk melukiskan objek-objek alami yang memiliki bentuk yang tidak teratur seperti tepi pantai, awan, gunung, batuan, dll. Geometri fraktal dikenalkan oleh Mandelbrot pada 1977. Terdapat dua karakteristik dasar objek fraktal yaitu memiliki detil yang tak berhingga pada setiap titik, dan memiliki kemiripan bentuk potongan objek dengan objek induk secara keseluruhan (Hamzah, 2006). Gambar 2.3 Fraktal Kurva Von Koch 1 Dimensi Ada dua cara untuk membentuk objek fraktal. Pertama yaitu dengan menerapkan proses berulang (iterative process) pada persamaan sederhana. Metode lainnya adalah dengan menggunakan sistem fungsi teriterasi atau Iterated Function System (IFS). Dalam tugas akhir ini akan digunakan metode iterative process sebagai metode untuk merekonstruksi model pigeon hole. 2.4 Model Pigeon Hole Model pigeon hole pertama kali diperkenalkan oleh Hansgeorg Pape pada tahun 1987 dalam papernya. Model ini menggunakan prinsip self similarity pada struktur dan sub stukturnya. Struktur dasar model pigeon hole berupa sebuah lingkaran, kemudian lingkaran ini dikelilingi sub struktur yang merupakan objek setengah lingkaran dalam ukuran yang lebih kecil dari struktur dasar objek (Pape, 1987). Gambar 2.4 Model Pigeon Hole 2D Batuan Sedimen Gambar berikut merupakan ilustrasi Pape membuat batuan sedimen dengan model pigeon hole. Pembuatan model pigeon hole menggunakan langkah berulang untuk membuat objek yang semakin kasar. Program rekonstruksi pigeon hole dua dimensi yang telah dilakukan menggunakan langkah-langkah seperti dijelaskan pada gambar berikut: Level 0 Level 1 Gambar 2.5 Inisiator dan Generator Pigeon Hole 2 Dimensi Dengan proses berulang (iterative process), level 0 merupakan objek awal atau inisiator, sedangkan level 1 adalah bentuk pembangkit atau generator. Proses berikutnya menempatkan setiap lengkungan lingkaran pada bentuk pembangkit. Hasil proses iterative membentuk seperti berikut ini: Level 2 Level 3 Gambar 2.6 Model Pigeon Hole 2 Dimensi Untuk merekonstruksi model pigeon hole dalam ruang tiga dimensi dilakukan cara yang sama seperti ketika merekonstruksi model pigeon hole dua dimensi. Dengan level 0 sebagai objek mula-mula atau inisiator, dan level 1 sebagai objek pembangkit atau generator. 2.5 Two Point Correlation Function (TPCF) Sebelum menjelaskan mengenai two point correlation function, akan dijelaskan terlebih dahulu mengenai one point correlation function. Gambar yang hanya terdiri atas dua komponen, seperti image batuan berpori yang terdiri atas bagian pori dan bagian matriks batuan. Jika image direpresentasikan dengan fungsi f, dan pada posisi x yang merupakan pori maka f(x)=1, dan jika x merupakan matriks maka f(x)=0, jumlah seluruh fungsi f pada seluruh x adalah yang disebut one point correlation function (S1). Karena f(x) yang memiliki nilai hanya pada ruang pori saja, maka perhitungan one point correlation function tak lain merupakan nilai porositas dari image batuan itu sendiri. Sedangkan pada two point correlation function (TPCF), jika dilakukan anggapan yang sama ketika menganalisa one point correlation function yaitu image direpresentasikan dengan fungsi f, dan pada posisi x yang merupakan pori maka f(x)=1, dan jika x merupakan matriks maka f(x)=0, maka two point correlation function adalah jumlah probabilitas dari dua titik yang terpisah jarak r, keduanya berada dalam ruang pori. Gambar 2.7 Contoh Grafik Two Point Correlation Function Gambar 2.7 diatas adalah satu contoh grafik two point correlation function dengan porositas batuan sekitar 0,0788. Sumbu-x pada grafik diatas adalah variasi jarak r antar dua titik, sedangkan sumbu-y merupakan nilai korelasi antara dua titik tersebut (S2). Pada x=0, nilai y adalah nilai porositas batuan. Dan dari grafik two point correlation function ini dapat pula didapatkan nilai porositas efektif, ukuran butiran mikrostruktur, serta dapat menjelaskan morfologi partikel secara kualitatif.