SEISMIC PERFORMANCE EVALUATION OF BUILDING WITH PUSHOVER ANALYSIS Ima Muljati Ginsar, Benjamin Lumantarna Jurusan Teknik Sipil, FTSP, Universitas Kristen Petra, Surabaya ABSTRAK Arah metode perencanan tahan gempa beralih dari pendekatan kekuatan (force based) menuju pendekatan kinerja (performance based) dimana struktur direncanakan terhadap beberapa tingkat kinerja. Untuk mengetahui kinerja struktur, karena saat menerima beban gempa besar struktur akan mengalami pelelehan, maka dibutuhkan analisis nonlinier yang sederhana tetapi cukup akurat. Salah satu cara analisis nonlinear yang dapat digunakan adalah Capacity Spectrum Method yang memanfaatkan analisis beban dorong statis nonlinier (nonlinear static pushover analysis). Makalah ini menjelaskan prosedur Capacity Spectrum Method serta membahas contoh penggunaan analisis beban dorong statis nonlinier untuk melakukan evaluasi kinerja suatu struktur simetris 10-lantai Kata kunci: perencanaan berbasis kinerja, Capacity Spectrum Method, analisis beban dorong statis nonlinier 1. PENDAHULUAN Beberapa gempa besar yang terjadi, seperti gempa Loma Prieta 1989 dan Northridge 1994, menunjukkan bahwa perencanaan tahan gempa berbasis kekuatan (force based) telah berhasil mengurangi korban jiwa, tetapi tidak berfungsinya gedung dan fasilitas umum karena kerusakan yang terjadi, telah menyebabkan kerugian ekonomi yang cukup besar [1]. Pada perencanaan berbasis kekuatan, kinerja struktur hanya terjamin pada dua level yaitu pada gempa nominal (gempa kecil) bangunan berada dalam keadaan siap pakai (servicebility limit state) sedangkan pada gempa rencana (gempa besar) bangunan berada dalam keadaan tidak hancur (safety limit state). Tidak diketahui dengan jelas kinerja (performance) bangunan dalam keadaan gempa sedang. Asian Concrete Model Code (ACMC) [2] dan Applied Technology Council (ATC 40) [3] mengusulkan perencanaan dengan berbagai tingkat kinerja (multiple performance levels) yang diharapkan dipenuhi pada saat struktur menerima beban gempa dengan berbagai tingkat intensitas. Dengan demikian pemilik gedung dapat menentukan tujuan perencanaan beserta resiko/konsekuensi yang harus dihadapi. Perencanaan seperti ini dinamakan perencanaan berbasis kinerja (performance based design). Kinerja yang ingin dicapai misalnya ditunjukkan oleh ACMC [2] seperti terlihat dalam Gambar 1. Earthquake Design Level Earthquake Performance Level Serviceability Limit State Damage Control Limit State Safety SNI Minor (43 years) Moderate (72 years) Severe (475 years) Ess en t ial/H Sa fet y Cr sic Ob j ectiv aza rdo itic al O Drift 0.5% Unacceptable performance (for new construction) Ba bje ct i us e Ob je ct i ve SNI ve Drift 1% Gambar 1: Performance levels [2] Drift 2% Agar dapat menggambarkan kinerja struktur sampai dengan level life safety limit state, karena struktur telah mengalami pelelehan pada beberapa tempat, diperlukan analisis riwayat waktu nonlinier (nonlinear time history analysis, NLTHA) untuk mengetahui respon nonlinier struktur akibat gempa. Akan tetapi, metode ini memerlukan proses perhitungan yang rumit dan panjang sehingga kurang praktis untuk diterapkan dalam praktek perencanaan struktur. Perencanaan berbasis kinerja membutuhkan alat analisis yang lebih sederhana daripada NLTHA, yang mampu menggambarkan secara jelas perilaku inelastis dari setiap komponen struktur, dan memberikan hasil yang aman dan dapat dihandalkan. Salah satu alternatif yang menarik adalah analisis statis nonlinier yang dinamakan analisis beban dorong statis nonlinier (nonlinear static pushover analysis) [1,2,3,4,5,6,7]. Salah satu varian metode statis nonlinier yang banyak diadopsi dan direkomendasikan oleh standar desain adalah Metode Spektrum Kapasitas (Capacity Spectrum Method, CSM) [2,3]. Metode ini sering kali disebut metode pushover karena dalam aplikasinya, digunakan analisis beban dorong statis nonlinier (nonlinear static pushover analysis), dimana struktur didorong secara bertahap hingga beberapa komponen struktur mengalami leleh dan berdeformasi inelastis. Hubungan antara perpindahan lateral lantai atap dan gaya geser dasar digambarkan dalam suatu kurva yang menggambarkan kapasitas struktur dan dinamakan kurva kapasitas (capacity curve). Untuk mengetahui prilaku struktur yang ditinjau terhadap intensitas gempa yang diberikan, kurva kapasitas ini kemudian dibandingkan dengan tuntutan (demand) kinerja yang berupa response spectrum berbagai intensitas (periode ulang) gempa. CSM pada mulanya dikembangkan sebagai metode evaluasi pada suatu proyek penelitian tentang resiko gempa pada proyek Puget Sound Naval Shipyard milik angkatan laut Amerika Serikat pada tahun 1975 (dalam Freeman [7]). Prosedur CSM telah teruji dan terbukti cukup konservatif dibandingkan dengan analisis NLTH khususnya untuk bangunan yang mempunyai ragam pertama yang dominan [ 8,9,10,11] Makalah ini akan menjelaskan tentang prosedur CSM seperti yang tercantum dalam ATC-40 [3]. Untuk memberikan pemahaman yang lebih baik, makalah ini juga membahas sebuah contoh pemeriksaan kinerja bangunan beton bertulang 10-lantai simetris. 2. CAPACITY SPECTRUM METHOD Capacity spectrum method menyajikan secara grafis dua buah grafik yang disebut spektrum, yaitu spektrum kapasitas (capacity spectrum) yang menggambarkan kapasitas struktur berupa hubungan gaya dorong total (base shear) dan perpindahan lateral struktur (biasanya ditetapkan di puncak bangunan), dan spektrum demand yang menggambarkan besarnya demand (tuntutan kinerja) akibat gempa dengan periode ulang tertentu (Gambar 2). Sa Demand spectrum Titik kinerja (performance point) Capacity spectrum Sd Gambar 2 – Performance Point pada Capacity Spectrum Method Spektrum kapasitas didapatkan dari kurva kapasitas (capacity curve) yang diperoleh dari analisis pushover. Karena kurva kapasitas merupakan hubungan antara gaya dorong total yang diberikan ke suatu struktur berderajat kebebasan banyak (multi-degree-of-freedom-system, MDOF) terhadap perpindahan yang dipilih sebagai referensi (umumnya puncak bangunan) sedangkan spektrum demand dibuat untuk struktur dengan kebebasan satu (singledegree-of-freedom-system, SDOF), maka kurva kapasitas dengan cara tertentu harus diubah menjadi spektrum kapasitas dengan satuan yang sama dengan spektrum demand. Spektrum demand didapatkan dengan mengubah spektrum respons yang biasanya dinyatakan dalam spektral kecepatan, Sa, dan Periode, T, menjadi format spektral percepatan, Sa, dan spektral perpindahan, Sd. Format yang baru ini disebut Acceleration-Displacemet Response Spectra (ADRS). Kurva kapasitas yang merupakan produk dari pushover dinyatakan dalam satuan gaya (kN) dan perpindahan (m), sedangkan demand spectrum memiliki satuan percepatan (m/detik2) dan perpindahan (m). Satuan dari kedua kurva tersebut perlu diubah dalam format yang sama, yaitu spektral percepatan, Sa, dan spektral perpindahan, Sd, agar dapat ditampilkan dalam satu tampilan.. Penyajian secara grafis dapat memberikan gambaran yang jelas bagaimana sebuah bangunan merespon beban gempa. Perencana dapat membuat berbagai skenario kekuatan struktur (dengan cara mengganti kekakuan dari beberapa komponen struktur) dan melihat kinerjanya akibat beberapa level demand yang dikehendaki secara cepat dalam satu grafik (Gambar 3). Titik kinerja merupakan perpotongan antara spektrum kapasitas dan spektrum demand. Dengan demikian titik kinerja merupakan representasi dari dua kondisi, yaitu: 1) karena terletak pada spektrum kapasitas, merupakan representasi kekuatan struktur pada suatu nilai perpindahan tertentu, dan 2) karena terletak pada kurva demand, menunjukkan bahwa kekuatan struktur dapat memenuhi demand beban yang diberikan. Sa Beberapa titik kinerja Beberapa Spectrum kapasitas Demand spectrum Sd Gambar 3 – Beberapa titik kinerja dalam satu grafik dalam CSM 2.1 KURVA KAPASITAS DAN SPEKTRUM KAPASITAS Kurva kapasitas yang didapatkan dari analisis pushover menggambarkan kekuatan struktur yang besarnya sangat tergantung dari kemampuan momen-deformasi dari masing-masing komponen struktur. Cara termudah untuk membuat kurva ini adalah dengan mendorong struktur secara bertahap (pushover) dan mencatat hubungan antara gaya geser dasar (base shear) dan perpindahan atap akibat beban lateral yang dikerjakan pada struktur dengan pola pembebanan tertentu (Gambar 4). Pola pembebanan umumnya berupa respon ragam-1 struktur (atau bisa juga berupa beban statik ekivalen) berdasarkan asumsi bahwa ragam struktur yang dominan adalah ragam-1. Hal ini berlaku untuk bangunan yang memiliki periode fundamental struktur yang relatif kecil. Untuk bangunan yang lebih fleksibel dengan periode struktur yang lebih besar, perencana sebaiknya memperhitungkan pengaruh ragam yang lebih tinggi dalam analisisnya. Gaya geser dasar, V (kN) atap Perpindahan atap, atap (m) V Gambar 4 – Kurva Kapasitas Kurva kapasitas diubah menjadi spektrum kapasitas (capacity spectrum) dalam format ADRS melalui persamaan: Sa Sd V /W (1) 1 atap (2) PF1 atap,1 N wii1 / g PF1 i N1 2 wii1 / g i 1 (3) 2 N wii1 / g 1 N i1 N 2 wi / g wii1 / g i1 i1 dimana: PF1 1 wi/g i1 N V W atap Sa Sd = = = = = = = = = = (4) faktor partisipasi ragam (modal participation factor) untuk ragam ke-1 koefisien massa ragam untuk ragam ke-1 massa lantai i perpindahan pada lantai i ragam ke-1 jumlah lantai gaya geser dasar berat struktur (akibat beban mati dan beban hidup tereduksi) perpindahan atap (yang digunakan pada kurva kapasitas) spektrum percepatan spektrum perpindahan 2.2 SPEKTRUM DEMAND (DEMAND SPECTRUM) Spektrum demand didapatkan dari spektrum respons elastis yang pada umumnya dinyatakan dalam satuan percepatan, Sa (m/detik2) dan periode struktur, T (detik). Sama halnya dengan kurva kapasitas, spektrum respons ini juga perlu diubah dalam format ADRS menjadi spektrum demand. Gambar 5 menunjukkan spektrum yang sama yang ditampilkan dalam format tradisional (Sa dan T) dan format ADRS (Sa dan Sd). Pada format ADRS, periode struktur yang sama merupakan garis lurus radial dari titik nol. Hubungan antara Sa, Sd, dan T, dapat dihitung dengan menggunakan persamaan [12]: T 2 Sd ( Sd Sa T 2 ) Sa 2 (5) (6) Spektral percepatan, Sa (m/det2) Spektral percepatan, Sa (m/det2) T1 T1 T2 T3 T2 T3 Spektral perpindahan, Sd (m) Periode, T (detik) Spektrum tradisional (Sa vs T) Spektrum ADRS (Sa vs Sd) Gambar 5 – Spektrum respon yang ditampilkan dalam format tradisional dan ADRS a elastis 1 b inelastis 2 3 c d Spektral perpindahan, Sd a. Reduksi spektrum respon (Kecepatan konstan, periode yang besar) Spektral percepatan, Sa Spektral percepatan, Sa Karena pada saat gempa besar telah terjadi plastifikasi di banyak tempat, maka perlu dibuat spektrum demand dengan memperhatikan redaman (damping) yang terjadi karena plastifikasi tersebut. Gambar 6 memberikan penjelasan mengapa terjadi reduksi pada respon inelastis. Titik 1 menunjukkan demand elastis. Jika terjadi reduksi kekuatan struktur akibat perilaku inelastis, periode efektif struktur menjadi semakin besar seperti pada titik 2. Pada kondisi ini, perpindahan bertambah sebesar ”a” dan percepatan berkurang sebesar ”b”. Jika struktur berperilaku inelastis (nonlinier), pada periode yang sama dengan titik 2, demand berkurang menjadi spektrum respon inelastis pada titik 3. Jadi, kembali terjadi pengurangan percepatan sebesar ”c” dan pengurangan perpindahan sebesar ”d”. Total pengurangan percepatan sebesar ”b+c” dan perpindahan perlu dimodifikasi sebesar ”a-d”. Jika besarnya ”a” diperkirakan sama dengan ”d”, maka perpindahan inelastis sama dengan perpindahan elastis (Gambar 6a). Jika ”a” lebih besar daripada ”d” maka perpindahan inelastis menjadi lebih kecil daripada perpindahan elastis (Gambar 6b). a 1 2 c 3 d Spektral perpindahan, Sd b. Reduksi spektrum respon (Percepatan konstan, periode yang kecil) Gambar 6 – Reduksi respon spektrum 3. CONTOH Untuk lebih memahami prosedur CSM, diberikan contoh pemeriksaan kinerja struktur bangunan perkantoran 10 lantai beton bertulang sebagai studi kasus. 3.1 BANGUNAN YANG DITINJAU Bangunan yang ditinjau dalam penelitian ini adalah bangunan perkantoran yang berada di wilayah gempa 2 dan didirikan di atas tanah lunak. Bangunan yang ditinjau adalah bangunan portal terbuka sepuluh lantai dengan denah seperti terlihat dalam Gambar 7. Ukuran balok dan kolom ditunjukkan dalam Tabel 1. Tinggi antar lantai adalah 3.5 m. Mutu beton fc’=25 MPa, mutu tulangan longitudinal fy = 400 MPa dan mutu tulangan sengkang fy = 240 Mpa. Detail penulangan lengkap dapat dilihat dalam referensi [13]. Tabel 1: Ukuran Balok dan Kolom _________________________________ Elemen 10 lantai ------------------------------------------------------------Balok (mm2) 400 x 700 Kolom (mm2) 500 x 500 600 x 600 ------------------------------------------------------------Tebal Plat = 150 mm; Mutu Beton, f’c = 25 MPa; Mutu Baja, fy = 400 MPa; Mutu Sengkang, fy = 240 Mpa Tinggi antar Tingkat = 3.5 m 5x8m 5x8m Gambar 7: Denah Bangunan 3.2. ANALISIS PUSHOVER Pola pembebanan yang digunakan dalam analisis pushover didapatkan dari beban statik ekivalen. Contoh pola beban lateral untuk bangunan sepuluh lantai ditunjukkan dalam Gambar 8. Besaran-besaran yang diperlukan untuk mendefinisikan sendi plastis seperti; momen leleh (yield moment), kurvatur leleh (yield curvature), momen ultimit (ultimate moment), dan kurvatur ultimit (ultimate curvature) didapatkan dari analisis momen-kurvatur dengan program ESDAP [14] yang dibuat berdasarkan algoritma yang dibuat oleh King [15]. Contoh hasil keluaran yang didapatkan dari ESDAP dapat dilihat dalam Gambar 9. Ultimate moment dan ultimate curvature dianggap terjadi pada saat concrete strain sebesar 0.006, dengan asumsi pada saat ini penampang telah mengalami kehancuran. 12 10 Tingkat 8 6 4 2 0 0 500 1000 Beban Lateral Gambar 8: Pola Beban Lateral Gambar 9: Contoh M-Ø keluaran ESDAP [14] Beban dorong statik lateral diberikan pada pusat massa sampai dicapai target displacement sebesar 0.5 meter. Efek nonlinier dari geometri struktur diberikan dengan memperhatikan efek P-∆. Analisis Pushover dilakukan dengan program ETABS-nonlinear [16]. ETABS memberikan 3 pilihan jenis bangunan yaitu; bangunan dengan structural behaviour A, B, dan C. Kriteria ketiga structural behaviour ini dapat dilihat dalam ATC 40 [3] dan secara ringkas ditunjukkan dalam Tabel 2. Dalam penelitian ini digunakan structural behaviour A. Tabel 2: Tipe Structural Behaviour [3] SHAKING DURATION NEW BUILDING EXISTING BUILDING AVERAGE POOR SHORT A B C LONG B C C NEW: Building whose primary elements make up an essentially new lateral resisting system and little strength or stiffness is contributed by noncomplying elements AVERAGE: Building whose primary elements are combinations of existing and new elements or better than average existing systems POOR: Building whose primary elements make up noncomplying lateral force systems with poor or unreliable hysterestic behaviour Gambar 10 menunjukkan hasil tipikal performance point yang didapat untuk bangunan 10 lantai terhadap gempa dengan periode ulang 850 tahun. ETABS secara otomatis mereduksi spektrum respons sesuai dengan damping yang terjadi akibat plastifikasi yang terjadi akibat pembebanan yang diberikan. Setelah didapatkan performace point, dari harga spectral acceleration Sa, dan spectral displacement Sd, dapat diketahui pada langkah (step) keberapa performance point tersebut dicapai (Gambar 11). Kemudian dapat diperoleh deformasi, dan letak sendi plastis (Gambar 12), serta drift ratio (Gambar 13) yang terjadi untuk gempa dengan suatu periode ulang tertentu. Warna pada sendi plastis menunjukkan secara grafis tingkat kerusakan yang terjadi pada sendi plastis. Kinerja struktur yang ditinjau terhadap gempa dengan bermacam-macam periode ulang, dengan kriteria story drift, ditunjukkan dalam Gambar 14. Performance point Gambar 10: Performance Point Untuk Bangunan 10 Lantai, Gempa 850 tahun Gambar 11: Langkah Pushover pada saat Performance Point dicapai, Gempa 850 tahun Gambar 12.: Deformasi dan Letak Sendi Plastis pada saat Performance Point dicapai, Gempa 850 tahun Gambar 13.: Drift Ratio, Gempa 850 tahun Story Drift (%) 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 0 Earthquake period (year) 500 1000 1500 2000 2500 SERVICE DAMAGE SAFETY LIMIT STATES 3000 6 LANTAI 10 LANTAI Gambar 14.: Kinerja Struktur dengan Kriteria Story Drift (Pushover) 4. PENUTUP Dengan Capacity Spectrum Method dapat ditunjukkan kinerja bangunan yang telah direncanakan terhadap gempa dengan berbagai periode ulang (Gambar 14). Bila kinerja yang dikehendaki tidak dapat dicapai, dengan memperhatikan kerusakan serta letak sendi plastis yang terjadi (Gambar 12) bagian-bagian tersebut dapat direncanakan kembali dan diperkuat untuk kemudian dilakukan pengujian ulang terhadap kinerja struktur yang telah diperkuat. 5. DAFTAR PUSTAKA 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. Boen, T., 1999, Dasar-dasar Analisa Pushover, Prosiding Seminar Nasional Teknik Sipil, 5-6 March 1999: 2.01-2.14, Universitas Katolik Parahyangan, Bandung. ACMC, 1999, Asian Concrete Model Code, Level 1 & 2 Documents, Second Draft. International Committee on Concrete Model Code, Japan, March 1999. ATC 40, 1996, Seismic Evaluation and retrofit of Concrete Buildings, Volume 1, California. Krawinkler, H., 1994, Static Pushover Analysis, SEAOC 1994 Fall Seminar on The Developing Art of Seismic Engineering: 1-24, California, USA. Krawinkler, H., 1996, Pushover Analysis: Why, How, When and Where Not to Use It, Proc. 65th Annual Convention SEAOC, 1-6 October 1996: 17-36, Maui, Hawaii, USA. SEAOC, 2000, Vision 2000, Performance-Based Seismic Engineering of Buildings, SEAOC's Vision 2000 Report, Structural Engineers Association of California, California, USA. Freeman, S.A., 1996, Seismic Performance Evaluation of Building with Pushover Analysis, http://imacwww.epfl.ch/GenieParasismique/EDOC_ST09/Course_3/FRECSM.PDF. Lumantarna, B., Wijoyo, H., and Harianto, D., 2001, Seismic Performance Evaluation Using Pushover and Dynamic Nonlinear Time History Analysis, Proc. ICCMC/IBST 2001 Int. Conf. On Advanced Technologies in Design, Construction and Maintenance of Concrete Structures, 28-29 March 2001: 133-139 Hanoi, Vietnam. Lumantarna, B., Widjaja, S., and Santoso, B., 2002, Seismic Performance Evaluation Of Regular Buildings Using Pushover And Dynamic Nonlinear Time History Analysis, 17th Australasian Conference on the Mechanics of Structures and Materials, ACMSM 17, 12-14 June 2002, Gold Coast, Australia. Lumantarna B., 2002, Keandalan Analisa Pushover untuk Meramal Prilaku Seismik Nonlinier Struktur Portal Terbuka Teratur, Profesionalisme dalam Dunia Konstruksi Indonesia, Seminar dan Pameran HAKI 2002, 20-21 Agustus 2002, Jakarta, pp v01-09 Lumantarna B., Kumalasari C., dan Wijaya V., 2003, Keandalan Analisa Pushover untuk Meramal Prilaku Seismik Nonlinier Struktur Portal Terbuka dengan Setback, Perkembangan Teknologi dan Aplikasinya Dalam Dunia Konstruksi Indonesia, Seminar dan Pameran HAKI 2003, 19-20 Agustus 2003, Jakarta, pp C01-11 Lumantarna B., 2000, Pengantar Analisa Dinamis dan Gempa, LPPM UK Petra dan Andi, Yogyakarta Iwan, J., dan Affandi, Y., 2004, Studi tentang Rentang Periode Ulang Gempa pada Tingkat Kinerja Damage Control Sistim Rangka Pemikul Momen Khusus (SPRMK) Struktur Beton Bertulang, Tugas Akhir, Fakultas Teknik Sipil dan Perencanaan, Jurusan Teknik Sipil, Universitas Kristen Petra, Surabaya. Lidyawati, dan Pono, G.B.W.R.,2003, Penyempurnaan Program Komputer untuk Desain Beban Lentur dan Aksial serta Analisa Momen-Kurvatur Penampang Beton Bertulang, Tugas Akhir, Fakultas Teknik Sipil dan Perencanaan, Jurusan Teknik Sipil, Universitas Kristen Petra, Surabaya. King, D.J., 1986, Research Report: Computer Programs for Concrete Column Design. University of Canterbury, New Zealand. Habibullah, A., 1998, ETABS-Nonlinear, Three Dimensional Amalysis and Design of Building Systems, Computer and Structures, Inc., Berkeley, California, USA.