21 HASIL DAN PEMBAHASAN Pada setiap sediaan otot gastrocnemius dilakukan tiga kali perekaman mekanomiogram. Perekaman yang pertama adalah ketika otot direndam dalam ringer laktat, kemudian dilanjutkan perekaman yang kedua dan ketiga dengan penambahan ATP cair 1 ml berturut-turut ke dalam ringer. Besar rangsangan sub maksimal disesuaikan dengan kondisi atau kekuatan masing-masing otot sehingga didapatkan gambar/hasil perekaman yang utuh. Hasil perekaman adalah sebagai berikut : Gambar 10 Hasil perekaman ketika otot direndam dalam ringer laktat 22 Hasil perekaman rata-rata dari rasio antara tinggi gelombang (amplitudo) awal setelah kontraksi tetani dengan amplitudo dari gelombang kontraksi tunggal sebelum stimulasi tetani diberikan ketika otot direndam dalam ringer laktat adalah sebesar 0,7+0,22 cm. Gambar 11 Hasil perekaman ketika otot direndam dalam ringer laktat dengan ATP 1 ml Hasil perekaman rata-rata dari rasio antara tinggi gelombang (amplitudo) awal setelah kontraksi tetani dengan amplitudo dari gelombang kontraksi tunggal sebelum stimulasi tetani diberikan ketika otot direndam dalam ringer laktat dengan ATP 1 ml (0,001 gr/cc) adalah sebesar 0,57+0,23 cm. 23 Gambar 12 Hasil perekaman ketika otot direndam dalam ringer laktat dengan ATP 2 ml Hasil perekaman rata-rata dari rasio antara tinggi gelombang (amplitudo) awal setelah kontraksi tetani dengan amplitudo dari gelombang kontraksi tunggal sebelum stimulasi tetani diberikan ketika otot direndam dalam ringer laktat dengan ATP 2 ml (0,002 gr/cc) adalah sebesar 0,61+0,28 cm. Amplitudo adalah tinggi dari gelombang-gelombang yang terekam pada kertas mekanomiogram, yang merupakan kontraksi maksimum yang berlangsung selama satu siklus getaran (Bueche dan Hecht 2006). Pada frekuensi perangsangan yang rendah (stimulasi tunggal), terlihat masing-masing kontraksi sebagai kontraksi tunggal yang terjadi satu setelah yang lain. Pada kondisi ini, sediaan otot masih bisa mencapai amplitudo tertingginya. Kemudian ketika ditingkatkan frekuensi rangsangannya, sampailah pada suatu titik dimana akan timbul kontraksi yang baru sebelum kontraksi yang terdahulu berakhir. Bila frekuensi mencapai 24 titik kritis, kontraksi berikutnya terjadi begitu cepat sehingga mereka benar-benar bersatu bersama-sama, dan kontraksi secara keseluruhan nampak lancar dan berlangsung terus menerus. Peristiwa ini disebut tetanasi (Guyton dan Hall 1997). Tetanasi dihentikan sebelum kekuatan kontraksi mencapai tingkat maksimumnya, sehingga sediaan otot masih dapat digunakan untuk perekaman kedua dan ketiga. Untuk mengetahui normalitas sebaran data, selanjutnya dilakukan uji normalitas data. Jumlah sampel dalam penelitian ini kurang dari 50 maka uji normalitas data yang digunakan adalah uji Shapiro Wilk. Hasil uji normalitas data dapat dilihat pada tabel berikut: Tabel 2 Nilai uji normalitas data No. Variabel Ratan SD P Value 1 Ringer 0,7 0,22249 0,738 2 3 ATP 1 ml ATP 2 ml 0,57 0,61 0,23721 0,28057 0,66 0,701 Keterangan : p > 0,05 = bermakna (s) n=5 Pada tabel di atas dapat dilihat bahwa data berdistribusi normal (p > 0,05), maka uji statistik lanjutan yang digunakan adalah ANOVA. Hasilnya adalah sebagai berikut: Tabel 3 Perbandingan amplitudo kontraksi otot dengan pemberian ringer dan ATP Perlakuan Amplitudo Kontraksi Otot (cm) P value Ringer 0,7 + 0,22 0,685405 ATP 1 ml 0,57 + 0,23 0,842842 ATP 2 ml 0,61 + 0,28 0,957694 Keterangan : p > 0,05 = tidak bermakna (n.s) n=5 Pada tabel di atas terlihat bahwa hasil uji ANOVA menunjukkan tidak ada perbedaan bermakna antara derajat kontraksi otot baik ringer terhadap ATP 1 ml (P value = 0,685405), ringer terhadap ATP 2 ml (P value = 0,842842), maupun ATP 1 ml terhadap ATP 2 ml (P value = 0,957694), sehingga dapat disimpulkan 25 bahwa pemberian ATP dari luar tidak berpengaruh terhadap pemulihan kelelahan otot rangka. Otot yang digunakan dalam penelitian ini adalah otot gastrocnemius. Berdasarkan kapasitas biokimiawinya, terdapat tiga tipe serat otot, yaitu; serat oksidatif lambat, serat oksidatif cepat (slow twitch), dan serat glikolitk cepat (fast twitch). Tipe fast twitch memiliki aktivitas ATPase miosin yang lebih tinggi dari pada tipe slow twitch. Semakin tinggi aktivitas ATPase, semakin cepat ATP diuraikan, dan semakin cepat ketersediaan ATP untuk siklus titian silang. Hal ini menyebabkan kontraksi otot tipe fast twitch terjadi lebih cepat dibandingkan tipe slow twitch. Metabolisme energi yang dominan digunakan oleh tipe fast twitch adalah glikolisis anaerobik (Guyton dan Hall 1997). Otot gastrocnemius dari Rana sp memiliki tipe serat otot fast twitch sehingga dapat digunakan dalam penelitian ini. Rangsangan sub maksimal pada preparat in vitro otot gastrocnemius menyebabkan terjadinya peningkatan kebutuhan ATP yang berasal dari glikolisis anaerob. Pada kondisi ini, sejumlah energi masih dapat dibebaskan ke sel oleh tahap glikolisis dari degradasi karbohidrat karena reaksi kimia dalam pemecahan glukosa secara glikolitik menjadi asam piruvat tidak memerlukan oksigen. Semakin hebat kerja yang dilakukan oleh otot semakin besar pula jumlah ATP yang dipecahkan (Guyton dan Hall 1997). Sehingga ketika otot diberi rangsangan dengan frekuensi tinggi (tetani), maka kebutuhan ATP meningkat karena kontraksi yang berlangsung terus menerus dan sangat cepat. Proses kejadian kontraksi tersebut secara fisiologis diatur oleh keberadaan 2+ Ca dengan protein pengaturnya yaitu tropomiosin dan kompleks troponin. Pada proses ini, potensial aksi menyebabkan retikulum sarkoplasma melepaskan sejumlah besar ion Ca2+ yang telah disimpan di dalam retikulum ke dalam miofibril. Ion Ca2+ menimbulkan kekuatan menarik antara filamen aktin dan miosin, yang menyebabkannya bergerak bersama-sama dan menghasilkan proses konraksi (Guyton dan Hall 1997). Interaksi aktin dan miosin dihambat oleh kompleks troponin dan tropomiosin bila kadar Ca2+ rendah. Rangsang saraf yang memicu kontraksi akan membebaskan Ca2+ sehingga konsentrasi Ca2+ di dalam sarkoplasma meningkat dengan cepat. Pengikatan Ca2+ ke troponin, mengubah 26 interaksi tropomiosin dengan aktin, sehingga miosin dapat mengikat aktin dan menghasilkan gaya kontraksi (Fox 2004). Pemberian ATP dari luar diharapkan dapat membantu mempercepat pemompaan kembali ion Ca2+ ke dalam retikulum sarkoplasma, tempat ion-ion tersebut disimpan, sampai potensial aksi otot yang baru datang lagi. ATP memberikan tenaga bagi transpor aktif Ca2+ ke dalam retikulum sarkoplasma. Karena itu, ATP tidak hanya dibutuhkan untuk kontraksi saja, tetapi juga untuk relaksasi otot (Ganong 1995). Ketika otot dirangsang dengan frekuensi tinggi berdurasi singkat, otot memperoleh energi dari cadangan glikogen yang disimpan dalam otot. Glikogen merupakan salah satu bentuk simpanan energi di dalam tubuh yang dapat dihasilkan melalui konsumsi karbohidrat harian dan merupakan salah satu sumber energi utama yang digunakan oleh tubuh pada saat berolahraga (Irawan 2007). Konversi glikogen menjadi energi terjadi melalui proses glikolisis. Glikolisis merupakan jalur yang bersifat oksidatif anaerobik. Hasil akhir dari jalur glikolisis ini adalah asam piruvat. Pada kondisi anaerob, piruvat akan dikonversi menjadi laktat. Dua molekul ATP dibentuk secara langsung dari setiap molekul glukosa yang terlibat. Reaksi kimia dari glikolisis anaerob adalah sebagai berikut; Glukosa + 2ADP + 2Pi 2Laktat + 2 ATP + 2H2O (Vander et al. 2001). Pada kondisi anaerobik, sebagian besar asam piruvat yang diubah menjadi asam laktat akan segera berdifusi keluar dari sel masuk ke dalam cairan ekstraseluler, dan ke dalam cairan intraseluler dari sel lain yang kurang aktif. Sehingga glikolisis dapat berlangsung jauh lebih lama. Glikolisis dapat berlangsung selama beberapa menit, mensuplai tubuh dengan jumlah ATP yang cukup banyak bahkan dalam keadaan tanpa oksigen pernafasan. Kelelahan otot meningkat hampir berbanding langsung dengan kecepatan penurunan glkogen otot (Guyton dan Hall 1997). Kapasitas penyimpanan glikogen dalam tubuh sekitar 350-500 gram, atau setara dengan energi sebesar 1.200-2.000 kkal (Irawan 2007). Satu molekul ATP dengan berat molekul 300 gram dapat menyediakan energi sebesar 10 kkal setiap harinya. Sehingga berdasarkan kapasitas penyimpanan glikogen yang sampai dengan 500 gram (setara energi 2.000 kkal) maka ATP yang dapat dihasilkan adalah 2.000 kkal : 10 kkal per molekul ATP, yaitu 200 molekul ATP. Dengan 27 berat molekul 200 x 300 gram, yaitu 60.000 gram ATP. Sementara rata-rata kandungan ATP pada produk ATP yang beredar di pasaran adalah sebesar 20-100 mg atau sama dengan 0,02-0,1 gram. Jumlah yang sangat kecil sekali jika dibandingkan dengan jumlah yang mampu dihasilkan secara mandiri oleh tubuh. Klon (2005) menyebutkan bahwa ATP tidak dapat berdifusi bebas melintasi membran plasma sel. Bentuk molekul polarnya menjadi penghalang besar untuk melintasi bagian hidrofobik membran plasma. Secara umum, molekul polar seperti asam amino dan nukleotida (termasuk adenosin) tidak bebas permeabel untuk membran plasma. Hal ini menjelaskan bahwa aktivitas dan atau fungsi ATP hanya berlangsung di dalam sel (intraseluler) saja serta tidak dapat diintervensi dengan penambahan ATP dari luar karena bagian hidrofobik membran plasma sel dengan sifat non polarnya tidak bisa ditembus begitu saja. Struktur dasar dari membran plasma sel adalah sebuah lapisan lipid ganda yang terdiri atas molekul-molekul fosfolipid. Salah satu bagian dari setiap molekul fosfolipid ini larut dalam air, yaitu hidrofilik. Bagian lain hanya larut dalam lemak, disebut hidrofobik. Gugus fosfat dari fosfolipid bersifat hidrofilik (polar), gugus asam lemaknya bersifat hidrofobik (non polar). Di dalam sel, ATP diproduksi dan diangkut keluar dari mitokondria kemudian berdifusi ke seluruh sel untuk membebaskan energinya dimana saja dibutuhkan sehingga sel dapat menjalankan fungsinya (Guyton dan Hall 1997). Hal ini menjelaskan bahwa unit hidup yang melakukan fungsi kehidupan adalah sel dengan bahan bakarnya yaitu ATP. Di sisi lain, ringer laktat dapat masuk ke dalam membran plasma sel otot dengan cara difusi fasilitasi. Difusi fasilitasi atau difusi yang dipermudah didefinisikan sebagai gerakan kinetik molekuler ataupun ion yang butuh interaksi antara molekul maupun ion tersebut dengan protein pembawa dalam membran (Guyton dan Hall 1997). Ringer laktat merupakan larutan garam yang terdiri dari natrium, kalium, laktat, dan klorida, yang merupakan ion-ion yang dibutuhkan otot untuk menjaga kondisi fisiologis sel dan berguna untuk kontraksi otot. Larutan ini bersifat isotonis sehingga sering digunakan pada resusitasi cairan pada kondisi kekurangan cairan tubuh (Farhan 2009). 28 Beberapa hal yang dapat diperhatikan atau dilakukan sebagai tindak alternatif yang dinilai efektif untuk memulihkan kelelahan, sederhana, dan wajar dilakukan, antara lain; meningkatkan konsumsi oksigen (Sherwood 2001). Oksigen diperlukan untuk pemulihan sistem-sistem energi. Ketika hutang oksigen dilunasi ketika itu juga sistem kreatin fosfat dipulihkan, asam laktat dibersihkan, dan simpanan glikogen paling tidak sebagian diganti. Tindak alternatif lainnya adalah konsumsi cairan yang cukup atau berimbang. Ketika panas di dalam tubuh meningkat entah karena aktivitas yang tinggi, suhu lingkungan, atau oksidasi biologis, maka cairan tubuh akan dikeluarkan dalam bentuk keringat sebagai respon dari hal-hal tersebut. Jika tidak diimbangi dengan konsumsi cairan yang cukup maka konsentrasi cairan ekstraseluler akan meningkat sehingga cairan intraseluler tertarik ke ekstraseluler dan sel mengalami dehidrasi. Dehidrasi menyebabkan proton di dalam mitokondria mengalami gangguan sehingga laju produksi dari ATP terganggu, dan relaksasi otot tidak dapat terjadi (Guyton dan Hall 1997). Konsumsi karbohidrat juga merupakan tindak alternatif lain yang dapat dilakukan untuk memulihkan kelelahan dan kembali mendapatkan energi atau tenaga yang hilang karena beraktivitas atau berolah raga. Karbohidrat merupakan senyawa yang terbentuk dari molekul karbon, hidrogen, dan oksigen. Sebagai salah satu jenis zat gizi, fungsi utama karbohidrat adalah sebagai penghasil energi di dalam tubuh. Selain itu, karbohidrat yang dikonsumsi juga dapat tersimpan sebagai cadangan energi dalam bentuk glikogen di dalam otot dan hati (Irawan 2007). Glikogen pada tingkat aktivitas yang tinggi dan atau lama akan berkurang sejalan dengan kelelahan otot. Daya tahan atau endurance akan meningkat jika kapasitas penyimpanan glikogen di dalam otot ditingkatkan dengan peningkatan konsumsi karbohidrat (Guyton dan Hall 1997). Sebagai tambahan, kadang diperlukan cairan intravena dan atau infus glukosa pada tingkat kelelahan yang tinggi.