LANDASAN TEORI LANDASAN TEORI PENDAHULUAN A. Pengertian Listrik Kelistrikan adalah sifat benda yang muncul dari adanya muatan listrik. Listrik dapat juga diartikan sebagai berikut: Listrik adalah kondisi dari partikel subatomik tertentu, seperti elektron dan proton, yang menyebabkan penarikan dan penolakan gaya di antaranya. Listrik adalah sumber energi yang disalurkan melalui kabel. Arus listrik timbul karena muatan listrik mengalir dari saluran positif ke saluran negatif. Bersama dengan magnetisme, listrik membentuk interaksi fundamental yang dikenal sebagai elektromagnetisme. Listrik memungkinkan terjadinya banyak fenomena fisika yang dikenal luas, seperti petir, medan listrik, dan arus listrik. Listrik digunakan dengan luas di dalam aplikasi-aplikasi industri seperti elektronik dan tenaga listrik. B. Sifat-sifat Listrik Listrik memberi kenaikan terhadap 4 gaya dasar alami, dan sifatnya yang tetap dalam benda yang dapat diukur. Dalam kasus ini, frasa "jumlah listrik" digunakan juga dengan frasa "muatan listrik" dan juga "jumlah muatan". Ada 2 jenis muatan listrik, yaitu positif dan negatif. Melalui eksperimen, muatan-sejenis saling menolak dan muatan-lawan jenis saling menarik satu sama lain. Besarnya gaya menarik dan menolak ini ditetapkan oleh hukum Coulomb. Beberapa efek dari listrik didiskusikan dalam fenomena listrik dan elektromagnetik. 129 LANDASAN TEORI Satuan unit SI dari muatan listrik adalah coulomb, yang memiliki singkatan "c". Simbol Q digunakan dalam persamaan untuk mewakili kuantitas listrik atau muatan. Contohnya, "Q=0,5 C" berarti "kuantitas muatan listrik adalah 0,5 coulomb". Jika listrik mengalir melalui bahan khusus, misalnya dari wolfram dan tungsten, cahaya pijar akan dipancarkan oleh logam itu. Bahan-bahan seperti itu dipakai dalam bola lampu (bulblamp atau bohlam). Setiap kali listrik mengalir melalui bahan yang mempunyai hambatan, maka akan dilepaskan panas. Semakin besar arus listrik, maka panas yang timbul akan berlipat. Sifat ini dipakai pada elemen setrika dan kompor listrik.. C. Berkawan dengan Listrik Aliran listrik mengalir dari saluran positif ke saluran negatif. Dengan listrik arus searah jika kita memegang hanya kabel positif (tapi tidak memegang kabel negatif), listrik tidak akan mengalir ke tubuh kita (kita tidak terkena setrum). Demikian pula jika kita hanya memegang saluran negatif. Dengan listrik arus bolak-balik, Listrik bisa juga mengalir ke bumi (atau lantai rumah). Hal ini disebabkan oleh sistem perlistrikan yang menggunakan bumi sebagai acuan tegangan netral (ground). Acuan ini, yang biasanya di pasang di dua tempat (satu di ground di tiang listrik dan satu lagi di ground di rumah). Karena itu jika kita memegang sumber listrik dan kaki kita menginjak bumi atau tangan kita menyentuh dinding, perbedaan tegangan antara kabel listrik di tangan dengan tegangan di kaki (ground), membuat listrik mengalir dari tangan ke kaki sehingga kita akan mengalami kejutan listrik (terkena setrum). Daya listrik dapat disimpan, misalnya pada sebuah aki atau batere. Listrik yang kecil, misalnya yang tersimpan dalam batere, tidak akan memberi efek setrum pada tubuh. Pada aki mobil yang besar, biasanya ada sedikit efek setrum, meskipun tidak 130 LANDASAN TEORI terlalu besar dan berbahaya. Listrik mengalir dari kutub positif batere/aki ke kutub negatif. Sistem listrik yang masuk ke rumah kita, jika menggunakan sistem listrik 1 fase, biasanya terdiri atas 3 kabel: 1. Pertama adalah kabel fase (berwarna merah/hitam/kuning) yang merupakan sumber listrik bolak-balik (fase positif dan fase negatif berbolak-balik terus menerus). Kabel ini adalah kabel yang membawa tegangan dari pembangkit tenaga listrik (PLN misalnya); kabel ini biasanya dinamakan kabel panas (hot), dapat dibandingkan seperti kutub positif pada sistem listrik arus searah (walaupun secara fisika adalah tidak tepat). 2. Kedua adalah kabel netral (berwarna biru). Kabel ini pada dasarnya adalah kabel acuan tegangan nol, yang disambungkan ke tanah di pembangkit tenaga listrik, pada titik-titik tertentu (pada tiang listrik) jaringan listrik dipasang kabel netral ini untuk disambungkan ke ground terutama pada trafo penurun tegangan dari saluran tegangan tinggi tiga jalur menjadi tiga jalur fase ditambah jalur ground (empat jalur) yang akan disalurkan kerumah-rumah atau kelainnya. Untuk mengatasi kebocoran (induksi) listrik dari peralatan tiap rumah dipasang kabel tanah atau ground (berwarna hijau-kuning) dihubungkan dengan logam (elektroda) yang ditancapkan ke tanah untuk disatukan dengan saluran kabel netral dari jala listrik dipasang pada jarak terdekat dengan alat meteran listrik atau dekat dengan sikring. Dalam kejadian-kejadian badai listrik luar angkasa (space electrical storm) yang besar, ada kemungkinan arus akan mengalir dari acuan tanah yang satu ke acuan tanah lain yang jauh letaknya. Fenomena alami ini bisa memicu kejadian mati lampu berskala besar. 131 LANDASAN TEORI 3. Ketiga adalah kabel tanah atau Ground (berwarna hijau-kuning). Kabel ini adalah acuan nol di lokasi pemakai, yang disambungkan ke tanah (ground) di rumah pemakai, kabel ini benar-benar berasal dari logam yang ditanam di tanah di rumah kita, kabel ini merupakan kabel pengamanan yang disambungkan ke badan (chassis) alat-alat listrik di rumah untuk memastikan bahwa pemakai alat tersebut tidak akan mengalami kejutan listrik. Kabel ketiga ini jarang dipasang di rumah-rumah penduduk, pastikan teknisi (instalatir) listrik anda memasang kabel tanah (ground) pada sistem listrik di rumah. Pemasang ini penting, karena merupakan syarat mutlak bagi keselamatan anda dari bahaya kejutan listrik yang bisa berakibat fatal dan juga beberapa alatalat listrik yang sensitif tidak akan bekerja dengan baik jika ada induksi listrik yang muncul di chassisnya (misalnya karena efek arus Eddy). D. Unit-unit Listrik SI Unit-unit Elektromagnetisme SI Simbol Namakuantitas Unit turunan Lambang Unit dasar I Arus ampere A A Q Muatanlistrik, coulomb C A·s volt V J/C Jumlahlistrik V Perbedaanpotensial = kg·m2·s−3·A−1 R, Z Tahanan, Impedansi, ohm Ω V/A = kg·m2·s−3·A−2 Reaktansi ρ Ketahanan ohmmeter P Daya, Listrik watt Ω·m W kg·m3·s−3·A−2 V·A = kg·m2·s−3 C Kapasitansi farad F C/V = kg−1·m−2·A2·s4 132 LANDASAN TEORI Elastisitas reciprocalfarad F−1 V/C = kg·m2·A−2·s−4 kg−1·m−3·A2·s4 ε Permitivitas farad per meter F/m χe Susceptibilitaslistrik (dimensionless) - - S Ω−1 Konduktansi, Admitansi, siemens kg−1·m−2·s3·A2 Susceptansi σ = Konduktivitas siemens per S/m kg−1·m−3·s3·A2 per A/m A·m−1 Wb V·s meter H Φm Medan magnet, ampere Kekuatanmedan magnet meter Flux magnet weber = kg·m2·s−2·A−1 B Kepadatanmedan tesla T Wb/m2 = kg·s−2·A−1 magnet, Induksi magnet, Kekuatanmedan magnet Reluktansi ampere-turns A/Wb kg−1·m−2·s2·A2 per weber L Induktansi henry H Wb/A = V·s/A = kg·m2·s−2·A−2 μ Permeabilitas henry per meter H/m χm Susceptibilitas magnet (dimensionless) - kg·m·s−2·A−2 - E. Muatan Listrik Muatan listrik adalah muatan dasar yang dimiliki suatu benda, yang membuatnya mengalami gaya pada benda lain yang berdekatan dan juga memiliki muatan listrik. Simbol Q sering digunakan untuk menggambarkan muatan. Sistem Satuan Internasional dari satuan Q adalah coulomb, yang merupakan 6.24 x 1018 muatan dasar. Q adalah sifat dasar yang dimiliki oleh materi baik itu berupa proton (muatan positif) maupun elektron (muatan negatif). Muatan listrik total suatu atom 133 LANDASAN TEORI atau materi ini bisa positif, jika atomnya kekurangan elektron. Sementara atom yang kelebihan elektron akan bermuatan negatif. Besarnya muatan tergantung dari kelebihan atau kekurangan elektron ini, oleh karena itu muatan materi/atom merupakan kelipatan dari satuan Q dasar. Dalam atom yang netral, jumlah proton akan sama dengan jumlah elektron yang mengelilinginya (membentuk muatan total yang netral atau tak bermuatan). F. Tenaga Listrik Tenaga listrik, atau listrik, melibatkan produksi dan pengantaran tenaga listrik dalam jumlah yang cukup untuk menjalankan peralatan rumah tangga, peralatan perkantoran, mesin industri, dan menyediakan tenaga untuk lampu umum, alat pemanasan, memasak, dan lain-lain. 134 LANDASAN TEORI HUKUM OHM Landasan Teori A. Pengertian Hukum Ohm Hukum Ohm adalah suatu pernyataan bahwa besar arus listrik yang mengalir melalui sebuah penghantar selalu berbanding lurus dengan beda potensial yang diterapkan kepadanya. Sebuah benda penghantar dikatakan mematuhi hukum Ohm apabila nilai resistansinya tidak bergantung terhadap besar dan polaritas beda potensial yang dikenakan kepadanya. Walaupun pernyataan ini tidak selalu berlaku untuk semua jenis penghantar, namun istilah "hukum" tetap digunakan dengan alasan sejarah. Secara matematis hukum Ohm diekspresikan dengan persamaan: Dimana : I adalah arus listrik yang mengalir pada suatu penghantar dalam satuan Ampere. V adalah tegangan listrik yang terdapat pada kedua ujung penghantar dalam satuan volt. R adalah nilai hambatan listrik (resistansi) yang terdapat pada suatu penghantar dalam satuan ohm. Hukum ini dicetuskan oleh George Simon Ohm, seorang fisikawan dari Jerman pada tahun 1825 dan dipublikasikan pada sebuah paper yang berjudul The Galvanic Circuit Investigated Mathematically pada tahun 1827. 135 LANDASAN TEORI B. Arus Listrik Arus listrik adalah banyaknya muatan listrik yang disebabkan dari pergerakan elektron-elektron, mengalir melalui suatu titik dalam sirkuit listrik tiap satuan waktu. Arus listrik dapat diukur dalam satuan coulomb/detik atau Ampere. Contoh arus listrik dalam kehidupan sehari-hari berkisar dari yang sangat lemah dalam satuan mikroAmpere (µA) seperti di dalam jaringan tubuh hingga arus yang sangat kuat 1200 kiloAmpere (kA) seperti yang terjadi pada petir. Dalam kebanyakan sirkuit arus searah dapat diasumsikan resistansi terhadap arus listrik adalah konstan sehingga besar arus yang mengalir dalam sirkuit bergantung pada voltase dan resistansi sesuai dengan hukum Ohm. Arus listrik merupakan satu dari tujuh satuan pokok dalam satuan internasional. Satuan internasional untuk arus listrik adalah Ampere (A). Secara formal satuan ampere didefinisikan sebagai arus konstan yang, bila dipertahankan, akan menghasilkan gaya sebesar 2x10-7 Newton/meter di antara dua penghantar lurus sejajar, dengan luas penampang yang dapat diabaikan, berjarak 1 meter satu sama lain dalam ruang hampa udara. C. Penghantar Listrik Penghantar dalam teknik elektronika adalah zat yang dapat menghantarkan arus listrik, baik berupa zat padat, cair atau gas. Karena sifatnya yang konduktif maka disebut konduktor. Konduktor yang baik adalah yang memiliki tahanan jenis yang kecil. Pada umumnya logam bersifat konduktif. Emas, perak, tembaga, alumunium, zink, besi berturut-turut memiliki tahanan jenis semakin besar. Jadi sebagai penghantar emas adalah sangat baik, tetapi karena sangat mahal harganya, maka secara ekonomis tembaga dan alumunium paling banyak digunakan. 136 LANDASAN TEORI D. Tegangan Listrik Tegangan listrik (kadang disebut sebagai Voltase) adalah perbedaan potensial listrik antara dua titik dalam rangkaian listrik, dan dinyatakan dalam satuan volt. Besaran ini mengukur energi potensial dari sebuah medan listrik yang mengakibatkan adanya aliran listrik dalam sebuah konduktor listrik. Tergantung pada perbedaan potensial listriknya, suatu tegangan listrik dapat dikatakan sebagai ekstra rendah, rendah, tinggi atau ekstra tinggi. Secara definisi tegangan listrik menyebabkan obyek bermuatan listrik negatif tertarik dari tempat bertegangan rendah menuju tempat bertegangan lebih tinggi. Sehingga arah arus listrik konvensional di dalam suatu konduktor mengalir dari tegangan tinggi menuju tegangan rendah. E. Hambatan Listrik Hambatan listrik adalah perbandingan antara tegangan listrik dari suatu komponen elektronik (misalnya resistor) dengan arus listrik yang melewatinya. Hambatan listrik yang mempunyai satuan Ohm dapat dirumuskan sebagai berikut: atau di mana V adalah tegangan dan I adalah arus listrik. 137 LANDASAN TEORI RANGKAIAN RESISTOR SERI 1 DAN 2 Landasan Teori A. Pengertian Rangkaian Seri Rangkaian Seri adalah salah satu rangkaian listrik yang disusun secara sejajar (seri). Baterai dalam senter umumnya disusun dalam rangkaian seri. B. Sirkuit Listrik Sirkuit listrik atau rangkaian listrik (electrical circuit) adalah sambungan dari bermacam-macam elemen listrik pasif seperti resistor, kapasitor, induktor, transformator, sumber tegangan, sumber arus, dan saklar (switch). Istilah sirkuit listrik sedikit dibedakan dari jaringan listrik (electrical network atau electrical distribution network), dimana jaringan listrik membahas penggunaan sirkuit listrik dalam skop yang lebih luas seperti dalam jaringan distribusi pembangkit listrik dari generator pembangkit sampai pada pelanggan listrik di masing-masing rumah. Sebetulnya kedua macam rangkaian ini menggunakan prinsip dasar yang sama, hanya dalam jaringan listrik dibahas mengenai jalur transmisi yaitu mengenai sifat kabel pada frekuensi tinggi. Sirkuit listrik ini sering dibahas dan dianalisis dalam tiga macam respons (tanggap waktu): respons-nya terhadap arus atau tegangan DC (Direct Current, atau arus batrei misalnya), respons-nya terhadap arus atau tegangan AC (Alternating Current, seperti arus PLN misalnya), dan respons-nya terhadap waktu transien. Listrik arus DC sering dikenal juga sebagai listrik arus searah, dan listrik arus AC diartikan juga sebagai listrik arus bolak-balik. 138 LANDASAN TEORI C. Resistor Resistor adalah komponen elektronik dua kutub yang didesain untuk menahan arus listrik dengan memproduksi tegangan listrik di antara kedua kutubnya, nilai tegangan terhadap resistansi berbanding dengan arus yang mengalir, berdasarkan hukum Ohm: Resistor digunakan sebagai bagian dari jejaring elektronik dan sirkuit elektronik, dan merupakan salah satu komponen yang paling sering digunakan. Resistor dapat dibuat dari bermacam-macam kompon dan film, bahkan kawat resistansi (kawat yang dibuat dari paduan resistivitas tinggi seperti nikel-kromium). Karakteristik utama dari resistor adalah resistansinya dan daya listrik yang dapat dihantarkan. Karakteristik lain termasuk koefisien suhu, derau listrik (noise), dan induktansi. Resistor dapat diintegrasikan kedalam sirkuit hibrida dan papan sirkuit cetak, bahkan sirkuit terpadu. Ukuran dan letak kaki bergantung pada desain sirkuit, kebutuhan daya resistor harus cukup dan disesuaikan dengan kebutuhan arus rangkaian agar tidak terbakar. D. Induktor Sebuah induktor atau reaktor adalah sebuah komponen elektronika pasif (kebanyakan berbentuk torus) yang dapat menyimpan energi pada medan magnet yang ditimbulkan oleh arus listrik yang melintasinya. Kemampuan induktor untuk menyimpan energi magnet ditentukan oleh induktansinya, dalam satuan Henry. Biasanya sebuah induktor adalah sebuah kawat penghantar yang dibentuk menjadi kumparan, lilitan membantu membuat medan magnet yang kuat di dalam kumparan dikarenakan hukum induksi Faraday. Induktor adalah salah satu komponen elektronik dasar yang digunakan dalam rangkaian yang arus dan tegangannya berubah-ubah dikarenakan kemampuan induktor untuk memproses arus bolak-balik. 139 LANDASAN TEORI Sebuah induktor ideal memiliki induktansi, tetapi tanpa resistansi atau kapasitansi, dan tidak memboroskan daya. Sebuah induktor pada kenyataanya merupakan gabungan dari induktansi, beberapa resistansi karena resistivitas kawat, dan beberapa kapasitansi. Pada suatu frekuensi, induktor dapat menjadi sirkuit resonansi karena kapasitas parasitnya. Selain memboroskan daya pada resistansi kawat, induktor berinti magnet juga memboroskan daya di dalam inti karena efek histeresis, dan pada arus tinggi mungkin mengalami nonlinearitas karena penjenuhan. E. Transformator Transformator atau transformer atau trafo adalah komponen elektromagnet yang dapat mengubah taraf suatu tegangan AC ke taraf yang lain. F. Sakelar Sakelar adalah sebuah perangkat yang digunakan untuk memutuskan jaringan listrik, atau untuk menghubungkannya. Jadi saklar pada dasarnya adalah alat penyambung atau pemutus aliran listrik. Selain untuk jaringan listrik arus kuat, saklar berbentuk kecil juga dipakai untuk alat komponen elektronikaarus lemah. Secara sederhana, saklar terdiri dari dua bilah logam yang menempel pada suatu rangkaian, dan bisa terhubung atau terpisah sesuai dengan keadaan sambung (on) atau putus (off) dalam rangkaian itu. Material kontak sambungan umumnya dipilih agar supaya tahan terhadap korosi. Kalau logam yang dipakai terbuat dari bahan oksida biasa, maka saklar akan sering tidak bekerja. Untuk mengurangi efek korosi ini, paling tidak logam kontaknya harus disepuh dengan logam anti korosi dan anti 140 LANDASAN TEORI karat. Pada dasarnya saklar tombol bisa diaplikasikan untuk sensormekanik, karena alat ini bisa dipakai pada mikrokontroller untuk pengaturan rangkaian pengontrolan. G. Pembangkit Listrik Pembangkit listrik adalah bagian dari alat industri yang dipakai untuk memproduksi dan membangkitkan tenaga listrik dari berbagai sumber tenaga, seperti PLTU, PLTN, PLTA, PLTS, PLTSa, dan lain-lain. Bagian utama dari pembangkit listrik ini adalah generator, yakni mesin berputar yang mengubah energi mekanis menjadi energi listrik dengan menggunakan prinsip medan magnet dan penghantar listrik. Mesin generator ini diaktifkan dengan menggunakan berbagai sumber energi yang sangat bemanfaat dalam suatu pembangkit listrik. 141 LANDASAN TEORI RANGKAIAN RESISTOR PARAREL Landasan Teori A. Pengertian Rangkaian Pararel Rangkaian Paralel adalah salah satu rangkaian listrik yang disusun secara berderet (paralel). Lampu yang dipasang dirumah. Umumnya merupakan rangkaian paralel. Rangakain listrik parallel adalah suatu rangkaian listrik, dimana semua input komponen berasal dari sumber yang sama. Semua komponen satu sama lain tersusun paralel. Hal inilah yang menyebabkan susunan parallel dalam rangkaian listrik menghabiskan biaya yang lebih banyak (kabel penghubung yang diperlukan lebih banyak). Selain kelemahan ersebut, susunan parallel memiliki kelebihan tertentu dibandingkan susunan seri. Adapun kelebihannya adalah jika salah satu komponen dicabut atau rusak, maka komponen yang lain tetap berfungsi sebagaimana mestinya. Gabungan antara rangkaian seri dan rangkaian parallel disebut rangkaian seriparalel (kadang disebut sebagai rangkaian campuran atau rangkaian kombinasi). B. Arus Bolak-Balik Arus bolak-balik (AC/alternating current) adalah arus listrik dimana besarnya dan arahnya arus berubah-ubah secara bolak-balik. Berbeda dengan arus searah dimana arah arus yang mengalir tidak berubah-ubah dengan waktu. Bentuk gelombang dari listrik arus bolakbalik biasanya berbentuk gelombang sinusoida, karena ini yang memungkinkan pengaliran energi yang paling efisien. Namun dalam aplikasi-aplikasi spesifik yang 142 LANDASAN TEORI lain, bentuk gelombang lain pun dapat digunakan, misalnya bentuk gelombang segitiga (triangular wave) atau bentuk gelombang segiempat (square wave). Secara umum, listrik bolak-balik berarti penyaluran listrik dari sumbernya (misalnya PLN) ke kantor-kantor atau rumah-rumah penduduk. Namun ada pula contoh lain seperti sinyal-sinyal radio atau audio yang disalurkan melalui kabel, yang juga merupakan listrik arus bolak-balik. Di dalam aplikasi-aplikasi ini, tujuan utama yang paling penting adalah pengambilan informasi yang termodulasi atau terkode di dalam sinyal arus bolak-balik tersebut. C. Arus Searah Arus searah (direct current atau DC) adalah aliran elektron dari suatu titik yang energi potensialnya tinggi ke titik lain yang energi potensialnya lebih rendah. Sumber arus listrik searah biasanya adalah baterai (termasuk aki dan Elemen Volta) dan panel surya. Arus searah biasanya mengalir pada sebuah konduktor, walaupun mungkin saja arus searah mengalir pada semi-konduktor, isolator, dan ruang hampa udara. Arus searah dulu dianggap sebagai arus positif yang mengalir dari ujung positif sumber arus listrik ke ujung negatifnya. Pengamatan-pengamatan yang lebih baru menemukan bahwa sebenarnya arus searah merupakan arus negatif (elektron) yang mengalir dari kutub negatif ke kutub positif. Aliran elektron ini menyebabkan terjadinya lubang-lubang bermuatan positif, yang "tampak" mengalir dari kutub positif ke kutub negatif. Penyaluran tenaga listrik komersil yang pertama (yang dibuat oleh Thomas Edison di akhir abad ke 19) menggunakan listrik arus searah. Karena listrik arus bolak-balik lebih mudah digunakan dibandingkan dengan listrik arus searah untuk 143 LANDASAN TEORI transmisi (penyaluran) dan pembagian tenaga listrik, di zaman sekarang hampir semua transmisi tenaga listrik menggunakan listrik arus bolak-balik. D. Hukum Sirkuit Kirchhoff Hukum-hukum Sirkuit Kirchhoff adalah dua persamaan yang membahas kekekalan muatan dan energi dalam sirkuit listrik, dan pertama dijabarkan pada tahun 1845 oleh Gustav Kirchhoff. Hukum-hukum ini juga sering disebut sebagai Hukum Kirchhoff (lihat juga hukum Kirchhoff untuk arti lain) dan seringkali digunakan dalam teknik elektro. Kedua hukum sirkuit ini dapat diturunkan dari persamaan Maxwell, tapi Kirchhoff ada sebelum Maxwell dan menggunakan pekerjaan dari George Ohm untuk menghasilkan hukumnya. E. Teorema Norton Teorema Norton adalah salah satu teorema yang berguna untuk analisis Norton sirkuit listrik. Teorema menunjukkan bahwa keseluruhan jaringan listrik tertentu, kecuali beban, dapat diganti dengan sirkuit ekuivalen yang hanya mengandung sumber arus listrik independen dengan sebuah resistor yang terhubung secara paralel, sedemikian hingga hubungan antara arus listrik dan tegangan pada beban tidak berubah. Sirkuit baru hasil dari aplikasi teorema Norton disebut dengan sirkuit ekuivalen Norton. Teorema ini dinamakan sesuai dengan penemunya, seorang insinyur yang pernah bekerja pada Bell Telephone Laboratories, yang bernama E. L. Norton. Ditentukan sebuah jaringan listrik seperti pada gambar dan bagian dalam kotak hitam yang akan dicari sirkuit ekuivalennya. Nilai sumber arus Ino sirkuit ekuivalen 144 LANDASAN TEORI Norton didapatkan dengan membuat hubungan-singkat antara terminal A dan B lalu dihitung besar arus yang mengalir melalui terminal tersebut. Sedangkan nilai resistor pengganti Rno dapat dihitung dengan mematikan semua sumber tegangan dan arus lalu dihitung nilai ekuivalen resistansi di antara terminal A dan B. Penggunaan utama dari teorema Norton adalah menyederhanakan sebagian besar dari sirkuit dengan sirkuit ekuivalen yang sederhana. F. Teorema Thevenin Teorema Thevenin adalah salah satu teorema yang berguna untuk analisis sirkuit listrik.Teorema Thevenin menunjukkan bahwa keseluruhan jaringan listrik tertentu, kecuali beban, dapat diganti dengan sirkuit ekuivalen yang hanya mengandung sumber tegangan listrik independen dengan sebuah resistor yang terhubung secara seri, sedemikian hingga hubungan antara arus listrik dan tegangan pada beban tidak berubah. Sirkuit baru hasil dari aplikasi teorema Thevenin disebut dengan sirkuit ekuivalen Thevenin. Teorema ini dinamakan sesuai dengan penemunya, seorang insinyur berkebangsaan Perancis, M. L. Thévenin. Ditentukan sebuah jaringan listrik seperti pada gambar dan bagian dalam kotak hitam yang akan dicari sirkuit ekuivalennya; nilai sumber tegangan Vth pada sirkuit ekuivalen Thevenin didapatkan dengan melepaskan resistor beban di antara terminal A dan B lalu dihitung besar tegangan sirkuit terbuka di antara kedua terminal tersebut. Sedangkan nilai resistor pengganti Rth dapat dihitung dengan mematikan semua sumber tegangan dan arus lalu dihitung nilai ekuivalen resistansi di antara terminal A dan B. 145 LANDASAN TEORI DAYA LISTRIK Landasan Teori A. Pengertian Daya Listrik Daya listrik didefinisikan sebagai laju hantaran energi listrik dalam sirkuit listrik. Satuan SI daya listrik adalah watt yang menyatakan banyaknya tenaga listrik yang mengalir per satuan waktu (joule/detik). Arus listrik yang mengalir dalam rangkaian dengan hambatan listrik menimbulkan kerja. Peranti mengkonversi kerja ini ke dalam berbagai bentuk yang berguna, seperti panas (seperti pada pemanas listrik), cahaya (seperti pada bola lampu), energi kinetik (motor listrik), dan suara (loudspeaker). Listrik dapat diperoleh dari pembangkit listrik atau penyimpan energi seperti baterai. B. Perumusan matematis daya listrik 1. Dalam rangkaian listrik Daya listrik, seperti daya mekanik, dilambangkan oleh huruf P dalam persamaan listrik. Pada rangkaian arus DC, daya listrik sesaat dihitung menggunakan Hukum Joule, sesuai nama fisikawan Britania James Joule, yang pertama kali menunjukkan bahwa energi listrik dapat berubah menjadi energi mekanik, dan sebaliknya. 146 LANDASAN TEORI Dimana : P adalah daya (watt atau W) I adalah arus (ampere atau A) V adalah perbedaan potensial (volt atau V) Sebagai contoh, lampu dengan daya 8 watt yang dipasang pada voltase (beda potensial) 220 V akan memerlukan arus listrik sebesar 0,0363636 A atau 36,3636 mA : . Hukum Joule dapat digabungkan dengan hukum Ohm untuk menghasilkan dua persamaan tambahan dimana : R adalah hambatan listrik (Ohm atau Ω). sebagai contoh: dan 147 LANDASAN TEORI 2. Dalam ruang Daya listrik mengalir di manapun medan listrik dan magnet berada di tempat yang sama. Contoh paling sederhana adalah rangkaian listrik, yang sudah dibahas sebelumnya. Dalam kasus umum persamaan harus diganti dengan perhitungan yang lebih rumit, yaitu integral hasil kali vektor medan listrik dan medan magnet dalam ruang tertentu: Hasilnya adalah skalar, karena ini adalah integral permukaan dari vektor Poynting. C. Energi listrik Energi listrik adalah energi utama yang dibutuhkan bagi peralatan listrik/energi yang tersimpan dalam arus listrik dengan satuan ampere (A) dan tegangan listrik dengan satuan volt (V) dengan ketentuan kebutuhan konsumsi daya listrik dengan satuan Watt (W) untuk menggerakkan motor, lampu penerangan, memanaskan, mendinginkan ataupun untuk menggerakkan kembali suatu peralatan mekanik untuk menghasilkan bentuk energi yang lain. Energi yang dihasilkan dapat berasal dari berbagai sumber, seperti air, minyak, batu bara, angin, panas bumi, nuklir, matahari, dan lainnya. Energi ini besarnya dari beberapa Joule sampai ribuan hingga jutaan Joule. D. Watt Watt (W) adalah satuan turunan SI untuk daya. 1 Watt didefinisikan sebagai 1 joule dibagi 1 detik (1 J/d), atau dalam satuan listrik , satu voltampere (1 V·A). 148 LANDASAN TEORI Dia merupakan rating (rate) dari joule perdetik dimana energi diubah, digunakan atau habis. Persamaan : Namun, rating V-A hanya sama dengan watt bila dia digunakan untuk alat yang menyerap seluruh energi, seperti "coil" pemanas listrik atau lampu "incandescent". Dengan penyedia tenaga komputer, rating watt nyata hanya 60% sampai 70% rating V-A. Satuan watt ini dinamakan untuk mengenang James Watt untuk sumbangannya bagi pengembangan mesin uap, dan diadopsi oleh "Second Congress" "British Association for the Advancement of Science" pada 1889 dan oleh Conférence Générale des Poids et Mesures ke-11 pada 1960. E. Energi kinetis Energi kinetis atau energi gerak (juga disebut energi kinetik) adalah energi yang dimiliki oleh sebuah benda karena gerakannya. Energi kinetis sebuah benda didefinisikan sebagai usaha yang dibutuhkan untuk menggerakkan sebuah benda dengan massa tertentu dari keadaan diam hingga mencapai kecepatan tertentu. Energi kinetis sebuah benda sama dengan jumlah usaha yang diperlukan untuk menyatakan kecepatan dan rotasinya, dimulai dari keadaan diam. 149 LANDASAN TEORI F. Baterai Baterai adalah alat listrik kimiawi yang menyimpan energi dan mengeluarkan tenaganya dalam bentuk listrik. Sebuah baterai biasanya terdiri dari tiga komponen penting, yaitu:/ 1. batang karbon sebagai anode (kutub positif baterai) 2. seng (Zn) sebagai katode (kutub negatif baterai) 3. pasta sebagai elektrolit (penghantar) Baterai yang biasa dijual (disposable/sekali pakai) mempunyai tegangan listrik 1,5 volt. Baterai ada yang berbentuk tabung atau kotak. Ada juga yang dinamakan rechargeable battery, yaitu baterai yang dapat diisi ulang, seperti yang biasa terdapat pada telepon genggam. Baterai sekali pakai disebut juga dengan baterai primer, sedangkan baterai isi ulang disebut dengan baterai sekunder. Baik baterai primer maupun baterai sekunder, kedua-duanya bersifat mengubah energi kimia menjadi energi listrik. Baterai primer hanya bisa dipakai sekali, karena menggunakan reaksi kimia yang bersifat tidak bisa dibalik (irreversible reaction). Sedangkan baterai sekunder dapat diisi ulang karena reaksi kimianya bersifat bisa dibalik (reversible reaction). 150