Verifikasi metode analisis serat pangan dengan

advertisement
II. TINJAUAN PUSTAKA
2.1 SERAT PANGAN (DIETARY FIBER)
Deskripsi serat pangan oleh Trowell yang diacu dalam Cummings & Englyst (1991)
menyebutkan bahwa serat pangan merupakan bagian dari makanan yang diperoleh dari dinding
sel tumbuhan. Berdasarkan aspek fisiologi dan nutrisi, serat pangan meliputi semua jenis
polisakarida dan lignin, serta beberapa jenis oligosakarida, yang tahan terhadap enzim pencernaan
di jalur gastrointestinal atas. Serat pangan dapat didefinisikan sebagai ingredien pangan
fungsional karena tidak dapat dicerna oleh enzim pencernaan manusia dan mampu mempengaruhi
satu atau lebih fungsi tubuh sehingga dapat memberikan manfaat bagi kesehatan (Diplock et al.
1999).
Selama lebih dari dua dekade, manfaat serat pangan telah banyak dipublikasi. Serat pangan
berperan dalam mengatur motilitas saluran gastrointestinal, mempengaruhi metabolisme glukosa
dan lemak, memperlancar buang air besar, menstimulasi aktivitas metabolisme bakteri,
detoksifikasi terhadap zat-zat yang berada dalam kolon, serta berkontribusi dalam menjaga
kestabilan ekosistem di kolon dan integritas mukosa intestinal (Guillon et al. 2000).
Ditinjau dari sudut geografis, konsumsi serat pangan cukup bervariasi. Di negara maju,
seperti Amerika Serikat, konsumsi serat relatif lebih rendah dibandingkan masyarakat di negara
lain. Sebagai contoh, rata-rata asupan serat pangan di Amerika Serikat hanya berkisar antara 12
hingga 15 g per hari. Nilai ini jauh lebih kecil dibandingkan rekomendasi World Health
Organization (WHO), yaitu sekitar 25 hingga 40 g per hari. Sementara penduduk Afrika
diketahui mengonsumsi serat sebanyak 50 g per hari (Jalili et al. 2001).
Polisakarida terdiri atas polisakarida yang dapat dicerna dan tidak dapat dicerna. Polisakarida
yang dapat dicerna memiliki ikatan α (1-4) seperti yang terdapat pada pati serta beberapa jenis
glikogen dalam daging. Ikatan ini dapat dicerna oleh enzim amilase yang disekresikan oleh
kelenjar saliva dan pankreas. Selain ikatan α (1-4), terdapat titik percabangan dalam rantai pati
dan glikogen yaitu ikatan α (1-6) yang dapat dihidrolisis oleh enzim α (1-6) dextrinase
(isomaltase) yang disekresikan oleh pankreas. Sebaliknya, polisakarida yang tidak dapat dicerna
memiliki ikatan β (1-4). Enzim yang disekresikan oleh kelenjar saliva dan pankreas tidak dapat
menghidrolisis ikatan kovalen β (1-4). Meskipun polisakarida dengan jenis ikatan β (1-4) bersifat
resistan terhadap pencernaan manusia, bakteri yang terdapat pada usus besar mampu
memetabolisme serat dan menghasilkan asam lemak rantai pendek (asam asetat, propionat dan
butirat) sebagai metabolit. Ikatan antar monomer glukosa pada pati dan glikogen dapat dilihat
pada Gambar 1 dan 2.
Gambar 1. Ikatan α (1-4) antar monomer glukosa pada pati dan glikogen (Jalili et al. 2001)
Gambar 2. Ikatan β (1-4) antar unit glukosa dalam selulosa (Jalili et al. 2001)
Serat pangan berdasarkan kelarutannya terhadap air terbagi pada dua jenis. Pertama serat
pangan larut (SDF) yang terdiri dari pektin dan turunannya, gum, serta mucilage. Sementara serat
tidak larut (IDF) terdiri dari selulosa, hemiselulosa, lignin dan selulosa termodifikasi. Sumber
makanan yang kaya akan SDF ialah buah-buahan, polong-polongan, oat dan beberapa jenis
sayur-sayuran. Di samping itu, IDF banyak terdapat di dalam sereal, biji-bijian, polong-polongan
serta sayur-sayuran. Keterangan lebih detail tentang tipe serat pangan dapat dilihat pada Tabel 1.
Tabel 1. Tipe Serat Pangana
Tipe
Derajat
Degradasi*
Karakteristik
Sumber
Pektin
Kaya akan asam galakturonat,
rhamnosa, arabinosa, galaktosa;
karakteristik lapisan tengah dan
dinding luar
Serealia utuh,
polong-polongan,
kol, umbi-umbian,
apel
Gum
Sebagian besar terbentuk oleh
monomer heksosa dan pentosa
Oatmeal, kacang
kering, beberapa
jenis polong
+++
Mucilage
Disintesa oleh sel tumbuhan dan
dapat mengandung glikoprotein
Bahan tambahan
makanan
+++
Struktur dasar dinding sel;
hanya terdiri dari monomer
glukosa
Serealia utuh,
bekatul, kol dan
sejenisnya, kacang
kapri, buncis, apel,
umbi-umbian
Bekatul, sereal, biji
utuh
+
Sayuran, gandum
0
Larut
Tidak Larut
Selulosa
*
Hemiselulosa
Komponen dinding sel primer
dan sekunder; tipe yang berbeda
terdiri dari unit monomer yang
berbeda pula
Lignin
Terdiri dari alkohol aromatik;
perekat, dan komponen dinding
sel lainnya
+
+
Derajat degradasi akibat fermentasi bakteri di usus besar; a Wildman dan Medeiros 2000
4
2.2 PRINSIP ANALISIS SERAT PANGAN METODE AOAC DAN ASP
Metode analisis yang dikembangkan oleh AOAC Official Methods dan Asp et al. (1992)
adalah metode yang dipilih pada penelitian ini. Kedua metode ini termasuk dalam kategori
analisis serat pangan secara enzimatik gravimetri. Enzimatik gravimetri lebih ekonomis
dibandingkan dengan metode enzimatik kimia.
Sebelum keempat sampel dianalisis kadar serat pangannya, sampel terlebih dahulu
diberikan perlakuan pendahuluan yang sesuai dengan karakteristik sampel. Karakteristik sampel
dibedakan menjadi tiga jenis, antara lain sampel tinggi lemak, sampel basah, dan sampel kering.
Teknik persiapan sampel pada metode AOAC tidak berbeda dengan metode Asp.
Sampel kacang kedelai dan kacang tanah merupakan sampel yang memiliki kadar lemak
yang tinggi, yaitu lebih dari 10%. Kedua sampel ini membutuhkan ekstraksi lemak terlebih
dahulu melalui ekstraksi pelarut menggunakan 25 bagian (v/b) petroleum eter atau heksana.
Dalam penelitian ini solven yang digunakan adalah petroleum eter karena memiliki titik didih
yang rendah, yaitu 35-38oC sehingga lebih mudah dipisahkan dari bahan pangan melalui
penguapan atau pemanasan. Selain itu, petroleum eter lebih bersifat hidrofobik, selektif terhadap
lemak, murah, tidak higroskopis, dan tidak mudah terbakar dibandingkan dengan etil eter.
Komposisi utama petroleum eter adalah pentana dan heksana (Min dan Ellefson, 2010). Pentana
dan heksana bersifat sinergis dalam mengekstrak lemak dan pencampuran keduanya
mengakibatkan petroleum eter bersifat lebih stabil (Fialkov dan Chumak, 2000). Ekstraksi lemak
dengan petroleum eter dilakukan sebanyak tiga kali, lalu petroleum eter dibiarkan menguap
selama 15 menit. Sampel kemudian dikeringkan sekitar 12 jam pada oven bersuhu 105o C
hingga kadar air sampel kurang dari 5%.
Ekstraksi lemak yang dilakukan pada penelitian ini termasuk ekstraksi pelarut (liquid-liquid
extraction). Ekstraksi pelarut didefinisikan sebagai proses pemisahan suatu zat dari sebuah
campuran dengan mencampurkan dalam sebuah pelarut yang mampu melarutkan zat yang
diinginkan tetapi tidak melarutkan zat lainnya (Holden 1999). Data hasil analisis serat pangan
dikoreksi oleh selisih bobot akibat penghilangan lemak dan air selama proses persiapan sampel.
Sampel wortel merupakan sampel yang termasuk dalam jenis sampel basah. Oleh karena
itu, sampel ini dikeringkan terlebih dahulu pada suhu 70oC menggunakan oven vakum hingga
kadar air sampel kurang dari 5% karena memiliki zat yang relatif sensitif terhadap panas
(Devahastin dan Suvarnakuta 2008). Sampel kemudian diblender dan diayak agar ukuran sampel
homogen, yaitu 40-50 mesh.
Sampel oat merupakan jenis sampel basah sahingga harus dikeringkan terlebih dahulu
menggunakan oven pada suhu 105oC hingga kadar air sampel kurang dari 5%. Berbeda dengan
sampel wortel yang sensitif terhadap panas, sampel oat tidak memiliki substansi yang sensitif
terhadap panas sehingga air dalam sampel dapat diuapkan menggunakan suhu yang relatif lebih
tinggi. Sampel kemudian diblender dan diayak agar ukuran sampel homogen, yaitu 40-50 mesh.
BeMiller (2009) menyatakan bahwa persyaratan sampel yang digunakan dalam analisis
serat pangan ialah kadar lemak kurang dari 10%, kadar air kurang dari 5%, serta ukuran mesh
sampel berkisar antara 40-50 mesh. Ukuran sampel yang lebih kecil meningkatkan luas area
kontak sehingga hidrolisis pati dan protein oleh enzim dapat berjalan secara efisien dan efektif
(Naz 2002). Tabel 2 menunjukkan data mengenai kadar air dan kadar lemak sampel.
5
Tabel 2. Data kadar air dan kadar lemak sampel sebelum dan setelah proses persiapan
sampel
Sampel
Kadar air (%)
Kadar Lemak (%)
Awal
Akhir
Awal
Akhir
Kacang Kedelai
11.67
1.24
16.98
1.31
Kacang Tanah
15.02
1.36
48.01
2.97
Wortel*
78.98
1.25
0.23
-
*tidak dilakukan ekstraksi terhadap lemak
Sampel yang telah homogen disimpan di dalam kemasan tertutup dan kedap udara. Sampel
dikemas sebanyak lima gram per kemasan. Silika gel (SiO2.H2O) diletakkan di dalam kemasan
agar dapat menyerap air. Silika gel menyerap air melalui proses adsorpsi dan kondensasi kapiler
(Karukstis dan Van Hecke 2003). Selanjutnya sampel disimpan di dalam freezer bersuhu 0 –
(-20oC). Metode penyimpanan ini bertujuan menurunkan aktivitas enzim dan pertumbuhan
mikroba yang masih ada di dalam sampel (Morawicki 2009). Aktivitas enzim dapat menurun
akibat proses denaturasi protein oleh panas, perlakuan pH, atau salting out.
Pertumbuhan mikroba juga dapat dihambat melalui proses pengeringan dan penambahan
bahan pengawet. Kadar bahan pengawet yang digunakan ditentukan berdasarkan kemungkinan
kontaminasi, kondisi penyimpanan, lama penyimpanan, serta analisis yang akan dilakukan
terhadap sampel. Kadar air yang rendah pada sampel yang digunakan dalam penelitian ini
menyebabkan penambahan pengawet dalam sampel selama penyimpanan tidak dibutuhkan. Nilai
Aw yang rendah dapat menghambat pertumbuhan mikroba yang dapat menyebabkan kerusakan
sampel.
Persamaan lainnya antara metode AOAC dan Asp terletak pada prosedur hidrolisis pati
menggunakan enzim α-amilase tahan panas (Termamyl). Sampel terlebih dahulu dipanaskan (95100oC selama 30-35 menit) agar granula pati tergelatinisasi sehingga lebih mudah dihidrolisis
oleh enzim. Suspensi pati yang dipanaskan akan mengembang hingga volume tertentu serta
menyerap air. Hal tersebut berakibat pada rentannya pati terhadap zat kimia atau enzim yang ada
di sekelilingnya (Uhlig 1998). Enzim yang tahan panas dibutuhkan agar enzim tidak
terdenaturasi selama proses gelatinisasi sampel. Selama proses ini, terjadi pemotongan terhadap
molekul pati pada ikatan α (1-4). Pemotongan oleh enzim termamyl menghasilkan glukosa,
maltosa dan oligosakarida (Ceirwyn, 1999).
Mekansime reaksi enzim termamyl dapat dilihat pada Gambar 3. Enzim termamyl memiliki
gugus karboksil dan gugus nitrogen (imidazol) pada sisi aktifnya. Substrat (pati) membentuk
kompleks dengan enzim termamyl. Karboksil anion kemudian menyerang substrat pada posisi C
nomor 1. Produk antara yang terbentuk ialah glukosil-enzim yang selanjutnya dipisahkan melalui
reaksi deglukosilasi. Gugus imidazol berperan dalam reaksi deglukosilasi dengan mengikat
proton pada air sehingga molekul air menjadi OH- yang menyerang C1 pada kompleks glukosilenzim. Hasil reaksi berupa glukosa, maltosa dan oligosakarida yang memiliki C1 dengan
konfigurasi α (Naz 2002).
6
Asp197
1
2
CH2
3
Asp197
Asp197
C
C
C
-O
O
O
-O
OH
O
HO
O
HO
OH
OH
OH
HO
OH
HO
OH
HO
HO
HO
O
O
H
O
H
OH
HO
O
H
O
CH2
HO
O
CH 2
O-
O
OH
C
C
C
CH 2
CH2
CH2
CH 2
CH2
CH2
Glu233
Glu233
Glu233
Gambar 3. Reaksi hidrolisis pati oleh enzim termamyl (Naz 2002)
Komponen penyebab utama ketidakakuratan analisis serat pangan ialah pati (BeMiller
2010). Proses penghilangan pati yang tidak sempurna akan meningkatkan jumlah residu akhir
yang berarti sebagai kesalahan hasil analisis. Oleh karena itu, pada prosedur analisis serat pangan
metode AOAC dan Asp terdapat tahap hidrolisis pati lanjutan menggunakan enzim. Tahap ini
bertujuan untuk memastikan bahwa pati yang terdapat di dalam sampel terhidrolisis dengan
sempurna. Akan tetapi, enzim yang digunakan pada kedua metode tersebut berbeda satu sama
lain. Enzim yang digunakan pada metode AOAC untuk menghidrolisis pati ialah
amiloglukosidase, sementara pada metode Asp digunakan enzim pankreatin.
Enzim amiloglukosidase merupakan salah satu enzim amilase. Produksi enzim
amiloglukosidase komersial dapat dilakukan dengan menggunakan mikroba, yaitu Aspergillus
sp. dan Rhizopus sp. Enzim yang digunakan dalam penelitian ini berasal dari Aspergillus niger,
karena selain dapat memecah pati pada ikatan α (1-4), enzim yang berasal dari A. niger juga
mampu memecah ikatan α (1-6) (Uhlig 1998). Enzim ini memecah substrat (pati) menjadi
glukosa dari C terluar dari strukstur pati. Hasil reaksi pemecahan pati ialah glukosa yang
memiliki konfigurasi β. Kondisi optimumnya ialah pada rentang pH 4.0-4.4 dan suhu 58-65o C
(Naz 2002).
Enzim pankreatin merupakan campuran enzim lipase, protease, dan amilase. Oleh karena
itu, selain mampu menghidrolisis lemak, enzim ini juga mampu menghidrolisis protein dan pati
(Johnson dan Hillier 2008). Enzim pankreatin memiliki aktivitas optimum pada rentang pH
antara 6.0 hingga 7.0 (Uhlig 1998).
Selain enzim yang digunakan untuk menghidrolisis pati, perbedaan lainnya antara metode
AOAC dan metode Asp ialah penggunaan enzim untuk menghidrolisis protein. Metode AOAC
menggunakan enzim protease, sementara metode Asp menggunakan enzim fisiologis, yaitu
pepsin dan pakreatin. Enzim fisiologis ialah enzim yang merupakan bagian dari enzim
pencernaan di dalam tubuh manusia. Penggunaan enzim fisiologis didasarkan pada definisi serat
pangan sebagai komponen yang tidak dapat dicerna oleh enzim pencernaan manusia (Trowell
1974).
7
Enzim protease yang digunakan dalam analisis serat pangan metode AOAC berasal dari
Bacillus subtilis. Hidrolisis menggunakan enzim protease bertujuan menghidrolisis protein yang
terdapat di dalam sampel. Enzim protease memutuskan ikatan peptida pada struktur protein.
Mekanisme reaksi pemutusan ikatan peptida terdiri atas reaksi alkilasi dan deasilasi. Naz (2002)
menjelaskan tahapan reaksi tersebut sebagai berikut: 1) pembentukan kompleks enzim-protein
dengan ikatan kovalen yang bersifat reversible, 2) pembentukan produk antara tetrahedral akibat
penyerangan oleh serin 221 yang bersifat reaktif terhadap C karbonil. 3) protonasi pada substrat
yang menyebabkan berubahnya struktur tetrahedral menjadi kompleks asil-enzim. 4) produk
antara tetrahedral terbentuk kembali akibat penyerangan H2O terhadap kompleks asil-enzim. 5)
aktivitas His 64-Ser 221 mengakibatkan terjadinya pembebasan sisi asilasi pada substrat
sehingga menghasilkan asam amino. Mekanisme reaksi enzim protease dapat dilihat pada
Gambar 4. Protease aktif pada kondisi pH antara 6-8 (Barberis et al. 2008).
Gambar 4. Mekanisme reaksi enzim protease (Naz 2002)
8
Hidrolisis protein pada metode Asp menggunakan enzim pepsin, yaitu enzim proteolitik
yang aktif pada pH asam. Oleh karena itu, pada lambung manusia pepsin berperan dalam
pencernaan protein tahap awal yang menghasilkan asam amino dan polipeptida (Ganapathy et al.
2006). Asam amino kemudian diserap sementara polipeptida yang ukurannya lebih besar
dihidrolisis oleh enzim pankreatin di usus dua belas jari (Silk 1985). Mekanisme kerja enzim
pepsin serupa dengan enzim protease, yaitu memecah ikatan peptida pada protein menjadi asam
amino. Enzim pepsin terdiri atas dua gugus karboksil, yaitu gugus yang terprotonasi dan gugus
yang terionisasi. Tahap pertama dari pemecahan ikatan peptida ialah terbentuknya kompleks
enzim-substrat. Tahap selanjutnya ialah penyerangan pada gugus karboksilat pada ikatan
peptida. Oksigen karbonil pada gugus terprotonasi kemudian mengikat proton dari gugus
hidroksil yang mengakibatkan terbentuknya produk antara berupa kompleks amino-asil-enzim.
Kompleks tersebut kemudian bereaksi dengan air sehingga menghasilkan asam amino. Reaksi
pemecahan ikatan peptida oleh enzim pepsin dapat dilihat pada Gambar 5.
Gambar 5. Reaksi pemecahan ikatan peptida oleh enzim pepsin menghasilkan asam amino
(Naz 2002)
Enzim yang digunakan dalam analisis serat pangan harus memiliki spesifikasi tertentu,
terutama aktivitas spesifik (Anonim 1999). Aktivitas spesifik ialah satuan yang digunakan untuk
mengukur kinerja enzim. Satuan aktivitas enzim pada umumnya dinyatakan dalam unit aktivitas
yang menyatakan jumlah enzim yang mengubah 1 µmol substrat per menit pada kondisi
optimum (Anonim 2002). Termamyl memiliki aktivitas sebesar 3000 U/ml, protease memilliki
konsentrasi 50 mg/ml atau setara dengan 350 unit tyrosin/ml, sementara amiloglukosidase
memiliki aktivitas sebesar 50 U/ml. Aktivitas enzim pepsin yang digunakan pada analisis serat
pangan metode Asp ialah 2755 U/mg.
9
Protein yang tersisa pada residu akhir diperhitungkan sebagai faktor koreksi, baik pada
metode AOAC maupun Asp. Analisis protein pada residu dilakukan melalui metode analisis
nitrogen Kjehldahl (AOAC 1999). Selain protein, mineral yang tersisa pada residu akhir juga
dikoreksi melalui metode pengabuan. Asp (2001) menjelaskan bahwa pengendapan mineral
terjadi pada tahap presipitasi serat pangan larut (SDF) menggunakan etanol. Oleh karena itu,
sebagian besar peneliti menyarankan adanya koreksi terhadap kadar abu dan protein terhadap
residu serat di akhir analisis (Prosky et al. 1988; Schweizer et al. 1988; Lee et al. 1992).
Presipitasi SDF dilakukan dengan menambahkan etanol 95% ke dalam larutan analisis yang
terdiri atas IDF, SDF terlarut, hasil hidrolisis enzim, mineral, serta komponen kontaminan
lainnya. Tingkat kelarutan polisakarida, dalam hal ini SDF, di dalam larutan menurun akibat
penambahan larutan tertentu seperti alkohol, iodin, tembaga, dan garam amonium kuartener.
Penurunan tingkat kelarutan polisakarida di dalam air menyebabkan polisakarida mengalami
presipitasi atau pengendapan (Aman & Westerlund 2006).
Perbedaan antara analisis TDF dan IDF terletak pada proses presipitasi. Komponen IDF
terlebih dahulu dipisahkan dari larutan analisis melalui penyaringan, sehingga filtrat yang
diperoleh hanya terdiri atas komponen SDF terlarut yang selanjutnya dipresipitasi. Asp (2001)
menyatakan bahwa presipitasi menggunakan etanol akan mengendapkan polisakarida yang
memiliki derajat polimerisasi >10. Akan tetapi, pada beberapa kasus, polisakarida yang memiliki
derajat polimerisasi yang besar tidak dapat dipresipitasi oleh etanol, terutama molekul yang
bercabang. Polisakarida yang memiliki derajat polimerisasi <10 tidak termasuk dalam kategori
serat pangan (Anonim 2001).
Garbelotti et al. (2003) menyatakan bahwa perbedaan prosedur analisis utama di antara
metode enzimatik gravimetri yang berkembang saat ini terletak pada enzim yang digunakan,
waktu, serta suhu reaksi. Lee et al. (1992) memperbaharui teknik analisis pada metode AOAC
untuk mempersingkat waktu reaksi sehingga dapat meningkatkan presisi metode. Perbedaan
kondisi analisis antara metode AOAC dan Asp dapat dilihat pada Tabel 3.
.
Tabel 3. Perbedaan prosedur analisis serat pangan metode AOAC dan Asp
Prosedur Analisis
AOAC
Asp
Enzim protease, inkubasi 30
Hidrolisis protein
o
menit, suhu 60 C, dan pH 7.5 ±
menit, suhu 40oC, dan pH
0.1
1.5
Enzim amiloglukosidase,
Hidrolisis pati
Volume Buffer fosfat
Enzim pepsin, inkubasi 60
Enzim pankreatin, inkubasi
o
inkubasi 30 menit, suhu 60 C,
60 menit, suhu 40oC, dan
dan pH 4.0-4.6
pH 6.8
50 ml
25 ml
Kedua metode akan digunakan untuk menganalisis serat pangan pada empat sampel yang
sama, yaitu kacang kedelai, kacang tanah, oat, dan wortel. Kelompok makanan yang berbeda
memungkinkan adanya perbedaan keakuratan hasil analisis. Komponen seperti protein, lemak
10
dan karbohidrat pada jumlah tertentu dapat mengganggu proses analisis serat pangan sehingga
hasil yang diperoleh menjadi kurang akurat. Data proksimat sampel dapat dilihat pada Tabel 4.
Tabel 4. Data Proksimat sampela
Data Analisis Proksimat (DM*)
Sampel
Air
Protein
Lemak
Karbohidrat
Abu
Kacang Kedelai
13.00%
35.00%
17.00%
31.00%
4.40%
Kacang Tanah
15.00%
24.80%
47.90%
24.60%
2.70%
Oat
13.00%
17.60%
7.00%
55.90%
4.05%
Wortel
79.00%
1.50%
0.20%
10.40%
0.80%
*DM: Dry Matter Basis (basis kering)
a
Liu 1999; NAS 1979; dan Hanif et al. 2006
2.3 VALIDASI DAN VERIFIKASI METODE
Validasi metode adalah suatu proses untuk mengkonfirmasi bahwa prosedur analisis yang
dilakukan untuk pengujian tertentu sesuai dengan tujuan yang diharapkan (Huber 2001). Garfield
et al. (2000) menyatakan bahwa validasi metode adalah suatu proses penting dari quality control
laboratorium. Sifat-sifat dari sebuah metode ditentukan dan dievaluasi secara obyektif. Hasil
validasi metode dapat digunakan untuk menilai kualitas, tingkat kepercayaan (reliability), dan
konsistensi hasil analisis. Hal tersebut merupakan bagian dari Good Laboratory Practice (GLP)
(Huber 2001).
Metode analisis mempunyai atribut tertentu seperti ketepatan, ketelitian, spesifisitas,
sensitivitas, kemandirian, dan kepraktisan yang harus dipertimbangkan ketika memilih metode
yang cocok untuk memecahkan masalah tertentu (Garfield et al. 2000). Namun atribut-atribut
tersebut tidak dapat dioptimalkan sekaligus sehingga harus diputuskan atribut metode yang tepat.
Informasi yang digunakan untuk mengambil keputusan harus seimbang dengan pertimbangan
praktis seperti biaya, waktu, risiko, kesalahan, dan tingkat keahlian yang diperlukan.
Ketika menggunakan metode yang dikembangkan oleh pihak lain, baik metode yang
digunakan oleh laboratorium lain, metode yang telah dipublikasi, atau metode baku, terdapat dua
hal penting yang harus diperhatikan. Pertama, apakah data validasi cukup memadai atau
membutuhkan tindakan revalidasi sebelum penggunaan. Kedua, jika data validasi telah cukup
memadai, apakah laboratorium mampu mencapai level performa yang ditunjukkan oleh data
validasi tersebut. Dengan kata lain, dibutuhkan analis yang kompeten serta peralatan dan fasilitas
yang memadai. Misalnya, jika metode yang digunakan telah divalidasi oleh organisasi
terstandarisasi seperti AOAC Internasional, laboratorium umumnya hanya menjaga performa data
dengan cara memverifikasi metode.
Verifikasi metode ialah tindakan validasi pada beberapa atribut metode saja. Laboratorium
harus menentukan atribut metode yang dibutuhkan. Spesifikasi analisis dapat menjadi acuan untuk
merancang proses verifikasi. Rancangan yang baik akan menghasilkan informasi yang dibutuhkan
serta meminimalisir tenaga, waktu, serta biaya. Pemilihan parameter validasi atau verifikasi
tergantung pada beberapa faktor seperti aplikasi, sampel uji, tujuan metode, dan peraturan lokal
atau internasional. Karakteristik verifikasi metode pengujian dapat dilihat pada Tabel 5.
11
Tabel 5. Verifikasi metode pengujiana
Parameter yang
dievaluasi
Repeatability
Selektivitas
(spesifisitas)
Ruggedness
(Robustness)
a
Prosedur yang harus
diikuti
Analisis terhadap
sampel dengan analis,
peralatan,
laboratorium yang
sama dalam rentang
waktu singkat
Analisis terhadap
sampel dengan
metode kandidat serta
metode standar
Mengidentifikasi
variabel yang dapat
memberikan efek
yang signifikan
terhadap performa
metode. Evaluasi
dilakukan dengan
memberi perlakuan
berbeda pada variabel
dan melihat dampak
perubahan terhadap
keakuratan data
Jumlah
pengujian
Kalkulasi
10
Terhadap standar
deviasi pada
masing-masing
sampel
Menentukan
standar deviasi
pada masingmasing sampel
1
Hasil dari
konfirmasi teknik
dengan uji beda
digunakan untuk
mendapatkan data
mengenai
kemampuan
metode untuk
mengkonfirmasi
identitas analat
dan
kemampuannya
untuk mengukur
analat setelah
diisolasi dari
gangguangangguan yang
ada
Memberikan
bukti
pendukung yang
dibutuhkan
untuk
memberikan
kepercayaan
yang cukup
terhadap metode
yang digunakan
2
Terhadap nilai
rata-rata hasil
analisis dari tiap
set percobaan
Mengontrol titik
kritis metode
Keterangan
EURACHEM Guide (1998)
Menurut EURACHEM Guide (1998), parameter-parameter tersebut meliputi
selektivitas/spesifisitas, limit deteksi, limit kuantitasi, linearity, rentang, repeatability,
12
reproducibility, akurasi, ketidakpastian, sensitivitas, ruggedness (robustness), dan recovery.
Selektivitas (spesifisitas) menyatakan kemampuan metode untuk menentukan analat yang
dimaksud di antara keberadaan komponen lainnya di dalam matriks sampel secara akurat dan
spesifik pada keadaan yang telah ditentukan dalam metode. Limit deteksi ialah konsentrasi
terendah analat dalam sampel yang mampu dideteksi, namun tidak dihitung secara kuantitatif.
Limit kuantitasi ialah konsentrasi terendah analat dalam sampel yang dapat ditentukan dengan
presisi yang bisa diterima (repeatability) serta akurasi. Linearity menunjukkan kemampuan
metode untuk memperoleh hasil analisis yang proposional terhadap konsentrasi analat. Rentang
ialah set nilai tertentu dimana tingkat kesalahan alat dalam pengukuran diharapkan berada di
antara batas yang telah ditentukan. Repeatability menunjukkan presisi pada kondisi yang berulang.
Misalnya, hasil analisis diperoleh melalui metode yang sama dari sampel dengan laboratorium,
operator, serta peralatan yang sama pada rentang waktu yang pendek. Reproducibility
menunjukkan presisi pada kondisi yang diulang kembali. Misalnya, hasil analisis diperoleh melalui
metode yang sama dari sampel dengan laboratorium, operator, serta peralatan yang berbeda.
Akurasi ialah kedekatan yang diterima antara hasil analisis dengan nilai acuan. Ketidakpastian
merupakan parameter yang berhubungan dengan hasil pengukuran, ketidakpastian menunjukkan
penyebaran nilai yang dapat dijelaskan sebagai atribut hasil. Parameter dapat berupa standar
deviasi atau interval kepercayaan. Sensitivitas ialah perubahan respon pengukuran oleh perubahan
stimulus yang berkaitan. Stimulus dapat berupa jumlah analat yang berada di dalam sampel.
Ruggedness (robustness) ialah penelitian yang dilakukan untuk mengetahui perbedaan hasil
analisis akibat perubahan kecil pada lingkungan maupun kondisi analisis yang dilakukan.
Recovery merupakan pengukuran analat yang ditambahkan pada sampel dalam jumlah yang
diketahui.
2.4 FAKTOR-FAKTOR KESALAHAN PADA ANALISIS SERAT PANGAN
METODE ENZIMATIK-GRAVIMETRI
Diagram ishikawa adalah diagram sebab-akibat yang merupakan salah satu dari tujuh
pengendali mutu. Diagram ini menunjukkan penyebab dari suatu hal, pada pembahasan ini ialah
kesalahan analisis serat pangan metode enzimatik gravimetri yang dilakukan pada penelitian ini.
Faktor-faktor kesalahan yang digambarkan dalam diagram ishikawa diperoleh melalui
pengamatan selama penelitian dilakukan.
Faktor-faktor kesalahan yang dapat terjadi selama analisis serat pangan metode enzimatik
gravimetri digambarkan melalui diagram Ishikawa (Gambar 6). Faktor-faktor kesalahan
digolongkan ke dalam empat kategori utama yaitu reagen dan enzim, metode, alat, dan analisis.
Masing-masing kategori terbagi menjadi beberapa faktor. Pada faktor reagen dan enzim,
kontaminasi atau kemurnian, umur simpan, serta sifat-sifat kimia reagen dan enzim merupakan
kemungkinan penyebab terjadinya kesalahan selama analisis.
Persiapan sampel, penyaringan, dan penentuan faktor koreksi merupakan bagian dari faktor
kesalahan metode. Persiapan sampel yang tidak tepat dapat menyebabkan sampel tidak homogen
sehingga hasil analisis memiliki keragaman yang tinggi. Penyaringan larutan analisis
membutuhkan kehati-hatian yang tinggi karena sampel dapat tumpah atau tercecer karena
crucible memiliki volume yang terbatas. Penentuan faktor koreksi dilakukan terhadap kadar abu
dan protein residu. Sampel yang memiliki kadar serat pangan kurang dari 10% akan
menghasilkan data kadar abu dan protein yang memiliki keragaman yang besar (BeMiller 2010).
Hal ini dikarenakan jumlah residu yang digunakan sangat kecil.
13
Neraca analitik, pH-meter dan inkubator bergoyang adalah alat yang mungkin dapat menjadi
penyebab kesalahan analisis. Neraca analitik dan pH-meter harus dikalibrasi terlebih dahulu
karena dapat menyebabkan keragaman pada data yang dihasilkan. Inkubator bergoyang harus
memiliki suhu yang stabil agar enzim dapat bekerja secara maksimal. Inkubator bergoyang
digunakan dalam waktu yang cukup lama, yaitu 30 hingga 60 menit sehingga kestabilan alat
sangat dibutuhkan untuk menghasilkan data yang baik. Faktor analis yaitu ketrampilan, sikap
atau perilaku dan faktor kelelahan menjadi penentu hasil analisis. Prosedur yang panjang dan
memakan waktu mengharuskan analis mengatur waktu dengan baik agar hasil analisis tidak
terpengaruh oleh ketrampilan yang tidak konstan akibat kelelahan.
Reagen & Enzim
Metode
Kontaminasi
Persiapan sampel
Umur simpan
Penyaringan
Sifat-sifat kimia
Faktor koreksi
Keterampilan
Neraca analitik
Kesalahan
analisis serat
pangan
Sikap/perilaku
pH-meter
Kelelahan
Inkubator bergoyang
Analis
Alat
Gambar 6. Diagram Ishikawa faktor-faktor Kesalahan Analisis Serat Pangan Metode Enzimatikgravimetri
2.5 PENGOLAHAN DATA
2.3.1
Rata-rata ( ̅)
Cara terbaik untuk mengevaluasi sebaran data hasil analisis adalah dengan
menghitung rata-rata. Rata-rata memberikan perkiraan yang tepat mengenai nilai dengan
populasi data (Oakland 2003). Rumus rata-rata ialah:
̅=
∑
+
+
+ …+
=
/
= jumlah semua pengukuran sampel hingga ulangan ke-n
14
2.3.2
Standar Deviasi dan RSD
Cara yang terbaik untuk mengevaluasi ketelitian dari data analisis adalah dengan
menghitung standar deviasi. Standar deviasi mengukur penyebaran data-data percobaan
dan memberikan indikasi yang bagus mengenai seberapa dekat data tersebut satu sama
lain (Nielsen 2003). Standar deviasi dapat dihitung dengan rumus:
∑
=
(
− ̅)
−1
Cara lain untuk mengukur ketelitian adalah dengan menghitung nilai Relative
Standard Deviation (RSD). Nilai RSD ini merupakan nilai standar deviasi yang
dinyatakan sebagai presentase dari rata-rata. RSD dapat dihitung dengan rumus:
=
̅
× 100%
Keterangan:
SD = standar deviasi ; xi = nilai yang diperoleh dari setiap ulangan ; x̅ = nilai rata-rata;
n = jumlah ulangan; RSD = standar deviasi relatif
Nilai RSD yang dapat diterima tergantung dari konsentrasi analat yang diperoleh dari
hasil pengujian. Nilai RSD yang dapat diterima dibandingkan dengan nilai RSD Horwitz
(RSDR). RSDR dihitung menggunakan rumus:
%
= 2(
,
)
RSDR adalah standar deviasi relatif antar laboratorium dan C adalah konsentrasi
dalam bentuk fraksi desimal. RSD dalam laboratorium biasanya ½ sampai 2/3 RSDR
(Pomeranz dan Meloan 1994; Garfield 2000). Batas RSD yang dapat diterima dalam
penelitian ini adalah 2/3 RSD.
2.3.3
Uji t dan F
Uji signifikansi meliputi uji t-student dan uji F. Uji t membandingkan rata-rata
ulangan yang dilakukan oleh dua metode dan membuat asumsi dasar atau hipotesis nol,
bahwa tidak ada perbedaan yang signifikan antara nilai rata-rata dari dua set data (James,
1999). Uji t memberikan jawaban ya atau tidak terhadap pembenaran dari hipotesis nol
dengan keyakinan yang pasti, seperti 95% atau bahkan 99%. Nilai kritik untuk t hitung
lebih besar dari nilai t tabel maka hipotesis nol dapat ditolak yang berarti terdapat
perbedaan yang signifikan antara dua hal yang dibandingkan. Nilai t hitung didapat dari
rumus:
15
ℎ
=
dengan derajat bebas sebesar
̅
=
(
1
− 1)
+(
+
+
̅
+(
1
)
− 1)
−2
−2
Uji F atau uji rasio varian ialah uji yang digunakan untuk membandingkan antara dua
standar deviasi, yang berarti membandingkan pula ketelitian antara dua metode. Asumsi
dasar atau hipotesis nol dari uji ini adalah bahwa tidak ada perbedaan yang signifikan
antara dua standar deviasi. Hipotesis nol ditolak jika nilai F hitung lebih besar dari nilai F
Tabel yang berarti bahwa terdapat perbedaan yang signifikan antara ketelitian dua
metode. Nilai F hitung didapat dari rumus:
ℎ
=
Keterangan: nilai s yang lebih besar ditempatkan sebagai pembilang sehingga F>1.
16
Download