BAB II TINJAUAN PUSTAKA 2.1 Pendahuluan Pondasi tiang adalah suatu konstruksi pondasi yang mampu menahan gaya orthogonal ke sumbu tiang dengan cara menyerap lenturan. Pondasi tiang dibuat menjadi satu kesatuan yang monolit dengan menyatukan pangkal tiang yang terdapat di bawah konstruksi, dengan tumpuan pondasi (Nakazawa, 1983). Didaerah perkotaan yang sudah padat penduduknya, akan mengalami keterbatasan lahan yang sudah tersedia biasanya perkembangan bangunan dilakukan vertikal. Pengembangan struktur bangunan secara vertikal. maka dibutuhkan pondasi dalam yaitu penggunaan pondasi bore pile dianggap lebih efesien karena pemasangannya tidak begitu banyak menimbulkan kerusakan pada gedung disekitarnya, sedangkan pondasi tiang pancang dipasang dengan menggunakan hammer yang dapat menyebabkan getaran pada gedung-gedung disekitarnya yang dapat menimbulkan retak-retak pada gedung. Daya dukung pondasi bore pile lebih kecil akibat perlawanan ujung, tetapi tahanan selimut yang diakibatkan gesekan tanah dengan pondasi tiang akan berbeda. Hal ini disebabkan gaya yang bekerja pada tanah disekitar dinding tiang, dimana pada pondasi tiang pancang yang bekerja adalah tekanan tanah pasif (K p ) sementara pada pondasi tiang bor yang bekerja adalah tekanan tanah aktif (K a ). Fungsi pondasi tiang bor pada umumnya dipengaruhi oleh bobot dan fungsi bangunan yang hendak didukung dan jenis tanah pendukung konstruksi seperti: Universitas Sumatera Utara 1. Transfer beban dari konstruksi bangunan atas (upper structure) ke dalam tanah melalui selimut tiang dan perlawanan ujung tiang. 2. Menahan daya desak ke atas maupun guling yang terjadi akibat kombinasi beban struktur yang terjadi. 3. Memampatkan tanah, terutama pada lapisan tanah yang lepas (non kohesif). 4. Mengontrol penurunan yang terjadi pada bangunan terutama pada bangunan yang berada pada tanah yang mempunyai penurunan yang besar. 2.2 Jenis dan Kondisi Tanah Sebagai Pendukung Pondasi Berbagai macam parameter beban yang mempengaruhi karakteristik tanah yang digunakan sebagai pendukung pondasi antara lain: ukuran butiran tanah, berat jenis tanah, kadar air tanah, kerapatan butiran, angka pori, sudut geser tanah, dan lain-lain. Berbagai hal tersebut di atas dapat diketahui dengan melakukan penelitian tanah baik di lapangan maupun di laboratorium. Dari hasil pengujian di laboratorium tersebut dapat diketahui daya dukung yang dapat dihasilkan oleh sebuah pondasi terhadap bangunan di atasnya. Pada kenyataannya di lapangan, tanah mempunyai sifat kemampatan yang sangat besar jika dibandingkan dengan bahan konstruksi lain seperti baja, beton, kayu dan lain-lain. Hal ini disebabkan karena tanah mempunyai rongga atau pori yang besar, jika pondasi dibebani maka akan terjadi perubahan struktur tanah (deformasi) yang bisa mengakibatkan terjadinya penurunan pada pondasi. Jika terjadi penurunan pondasi dalam ambang batas dan seragam maka hal ini tidak terlalu membahayakan pada konstruksi bangunan di atasnya, tetapi yang sangat berbahaya adalah penurunan yang tidak seragam dan di luar batas penurunan yang di ijinkan, hal ini dapat berakibat fatal pada bangunan konstruksi di atasnya. Universitas Sumatera Utara Karakteristik tanah dipengaruhi kekuatan geser tanah dan kemampuan tanah dalam mengalirkan air (permeabilitas tanah). Karena kemampatan butiran tanah atau air keluar secara teknis sangat kecil, maka proses deformasi tanah akibat beban luar dapat ditinjau sebagai suatu gejala akibat dari penyusutan pori. Hal ini disebabkan oleh beban yang bekerja pada struktur tersebut, jika beban yang bekerja kecil maka deformasi yang terjadi tanpa pergeseran pada titik sentuh antara butiran tanah. Deformasi pemampatan tanah yang terjadi memperlihatkan adanya gejala. Daya dukung tanah dipengaruhi oleh nilai kuat geser tanah, dalam hal ini dipengaruhi oleh nilai kohesi dan sudut geser tanah. Jika gaya geser yang bekerja pada suatu massa tanah maka secara bersamaan tegangan normal (σ) akan bekerja, maka harga tegangan geser (τ) akan bertambah besar akibat deformasi mencapai ambang batas. Jika harga ambang batas itu dihubungkan dengan tegangan normal (σ) yang berbeda-beda maka akan diperoleh suatu garis lurus dimana kohesi (c) sebagai konstanta dan tegangan normal (σ) sebagai variabel, dan kemiringan garis ditentukan oleh sudut geser tanah. Sehingga dapat ditulis dalam persamaan sebagai berikut: τ = c + σ tan Ø (2.1) dimana τ = Kuat geser tanah (kg/cm2) c = Kohesi tanah (kg/cm2) σ = Tegangan normal yang terjadi pada tanah((kg/cm2) Ø = Sudut geser tanah (derajat) Dari persamaan di atas nilai kohesi (c) diperoleh dari besarnya gaya tarik menarik antara butiran tanah, sedangkan daya tahan terhadap pergeseran antar partikel tanah disebut sudut geser tanah (Ø), hal ini dapat ditentukan dari percobaan atas sampel tanah di laboratorium. Universitas Sumatera Utara 2.3 Pengukuran Penurunan Penurunan kepala tiang dapat diukur dari penurunannya terhadap titik referensi yang tetap dari arloji pengukur yang dihubungkan dengan tiang. Arloji pengukur dipasang pada sebuah gelagar yang didukung oleh dua angker fondasi yang kokoh, yang tidak dipengaruhi oleh penurunan tiang dapat dilakukan dengan menggunakan Arloji Pengukur seperti pada (Gambar 2.1). Gambar 2.1. Arloji pengukur 2.4 Macam-macam Pengujian Pengujian tiang yang sering dilakukan adalah pengujian dengan beban desak, walaupun pengujian beban tarik dan beban lateral juga dapat dilaksanakan dengan 4 macam metode pengujian, yaitu: 2.4.1 Slow Maintained Test Load Method (SM Test) Metode ini sebagaimana direkomendasikan oleh ASTM D1143-83 (1989), terdiri dari bebarapa langkah sebagai berikut: Universitas Sumatera Utara a. Beban tiang dalam delapan tahapan yang sama (yaitu 25%, 50%, 75%, 100%, 125%, 150%, 175%, dan 200%) hingga 200% beban rencana. b. Setiap penambahan beban harus mempertahankan laju penurunan harus lebih kecil 0,01 in/jam (0,25 mm/jam). c. Mempertahankan 200% beban selama 24 jam. d. Setelah waktu yang dibutuhkan didapat, lepaskan beban dengan pengurangan sebesar 25% dengan jarak waktu 1 jam diantara waktu pengurangan. e. Setelah beban diberikan dan dilepas keatas, bebani tiang kembali untuk pengujian beban dengan penambahan 50% dari beban desain, menyediakan waktu 20 menit untuk penambahan beban. f. Kemudian tambahkan beban dengan penambahan 10% beban desain. Metode ini dianggap sebagai metode uji standart ASTM dan umumnya digunakan untuk penelitian dilapangan sebelum dilakukan pekerjaan selanjutnya. 2.4.2 Quick Maintained Load Test Method (QM Test) Metode ini seperti tang direkomendasikan oleh departemen perhubungan Amerika serikat, pengelola jalan raya dan ASTM D1143-81 (opsional), terdiri dari beberapa langkah berikut : a. Bebani tiang dalam penambahan 20 kali hingga 300% dari beban desain (masing-masing tambahan adalah 15% dari beban desain). b. Pertahankan setiap beban selama 5 menit dengan bacaan diambil setiap 2,5 menit c. Tambahkan peningkatan beban hingga jacking kontinue dibutuhkan untuk mempertahankan beban uji atau uji telah dicapai. Universitas Sumatera Utara d. Setelah interval 5 menit, lepaskan atau hilangkan beban penuh dari tiang dalam empat pengurangan dengan jarak diantara pengurangan 5 menit metode ini lebih cepat dan ekonomis. Waktu uji dengan metode ini adalah 3-5 jam. Metode ini lebih mendekati suatu kondisi. Metode ini tidak dapat digunakn untuk estimasi penurunan karena metode cepat. 2.4.3 Constant Rate of Penetration Test Method (CRP Test) Metode ini disarankan oleh komisi pile Swedia, Departemen perhubungan Amerika Serikat, dan ASTMD1143-81 (opsional). Juga terdiri dari beberapa langkah utama: a. Kepala tiang didorong untuk turun pada 0,05 inchi/menit (1,25 mm/menit). b. Gaya yang dibutuhkan untuk mencapai penetrasi akan dicatat. c. Uji dilakukan dengan total penetrasi 2-3 inchi (50-75 mm). Keuntungan utama dari metode ini adalah lebih cepat (2-3) jam dan ekonomis. 2.4.4 Swedish Cyclic Test Method (SC Test) Metode ini dianjurkan oleh komisi pile swedia terdiri beberapa langkah berikut: a. Bebani tiang hingga sepertiga beban desain. b. Lepaskan beban hingga seperenam beban desain. Ulangi pembebanan dan pelepasan beban dalam siklus 20 kali. c. Peningkatan beban dengan sebesar 50% dengan langkah (a) dan pengulangan seperti langkah (b). d. Lanjutkan hingga keruntuhan tercapai. Metode ini adalah membutuhkan waktu dan siklus perubahan perilaku tiang sehingga tiang berbeda dengan yang aslinya. Ini hanya direkomendasikan atas proyek khusus dimana beban siklus dianggap sangat penting. Universitas Sumatera Utara 2.5 Kapasitas Daya Dukung Tiang Bor dengan Metode Davisson Didalam Metode Davisson (1972) Metode batas offset mungkin yang terbaik yang dikenal secara luas. Metoda ini telah diusulkan oleh Davisson sebagai beban yang sesuai dengan pergerakan dimana melebihi tekanan elastis (yang diasumsikan sebagai kolom yang berdiri bebas) dengan suatu nilai 0,15 inchi dan suatu faktor sepadan dengan ukuran diameter tiang yang dibagi oleh 120. Kegagalan beban didefinisikan sebagai beban yang mendorong untuk membentuk sebuah deformasi yang sama pada penyajian akhir dari tekanan tiang elastis dan sebuah deformasi yang sejajar dari pencerminan tekanan tiang elastis untuk prosentase diameter tiang. Hubungan ini dituliskan sebagai berikut: X = 0,15 + (D/120) (2.2) S f = Δ + 0,15 + (D/120) (2.3) Hubungan beban dengan penurunan dalam Metode Davisson Seperti yang terlihat pada Gambar 2.2 bahwa garis tekanan elastis pada tiang dapat diperoleh dari persamaan deformasi elastis dari suatu tiang, yang mana diperoleh dari persamaan elastis: Δ = QxL / AxE (2.4) Dimana: S f : penurunan pada kondisi kegagalan D : diameter tiang Q : beban yang diterapkan L : panjang tiang E : modulus elastisitas dari tiang A : luas dari tiang Universitas Sumatera Utara Gambar 2.2 Hubungan beban dengan penurunan Metode Davisson (Prakas dan Sharma, 1990) 2.6 Kapasitas Daya Dukung Tiang Bor dengan Metode Mazurkiewicz Metode ini diasumsikan bahwa dengan kapasitas tahanan terbesar (ultimate) akan didapatkan dari beban yang berpotongan, diantaranya beban yang searah sumbu tiang untuk dihubungkan beban dengan titik-titik dari posisi garis terhadap sudut 45o pada beban sumbu yang berbatasan dengan beban (Prakash dan Sharma, 1990). Hubungan beban dengan penurunan dengan menggunakan Metode Mazurkiewicz diperlihatkan seperti Gambar 2.3. Gambar 2.3. Hubungan beban dengan penurunan metode Mazurkiewicz. (Prakas dan Sharma, 1990) Universitas Sumatera Utara 2.7 Uji Pembebanan Loading Test 2.7.1 Pengertian Loading Test Pembebanan static atau yang disebut juga dengan loading test. Merupakan cara yang paling tepat untuk menguji daya dukung tanah. Uji pembebanan statik merupakan bagian yang cukup penting untuk mengetahui respon tiang pada selimut dan ujungnya serta besar daya dukung ultimit. Berbagai metode untuk medapatkan hasil daya dukung ultimit yang diperoleh setiap metode dapat memberikan hasil berbeda. Dalam rekayasa pondasi untuk mendapatkan hasil uji beban statik, dapat dilihat dengan kurva penurunan–beban, besar deformasi plastis tiang kemungkinan terjadi kegagalan yang disebabkan oleh bahan tiang dan sebagainya. Dalam pengujian hingga 200% dari beban kerja sering dilakukan pada tahap verifikasi daya dukung, tetapi untuk alasan optimasi dan kontrol beban ultimit pada gempa, sering kali diperlukan pengujian 250% hingga 300% dari beban kerja. Di dalam pengujian beban statik adalah pemberian beban statik dan pengukuran pergerakan tiang. Beban diberikan secara bertahap dan penurunan harus diamati. Definisi keruntuhan yang diterima dan dicatat untuk interpretasi lebih lanjut adalah bila di bawah suatu beban yang konstan dimana tiang yang turun terus menerus. Pada umumnya beban runtuh tidak dicapai saat pengujian. Oleh karena itu daya dukung ultimit dari tiang hanya merupakan suatu estimasi. Pada dasarnya tiang dapat diuji setelah 28 hari beton dicor, untuk memungkinkan tanah yang telah terganggu kembali kekeadaan semula, dan tekanan air pori akses yang terjadi akibat pemancangan tiang telah terdisipasi. Universitas Sumatera Utara Yang harus diperhatikan dalam loading test adalah jumlah pembebanan (loding test) adalah 1-2% dari jumlah titik tiang bor yang dilakukan pada lapangan, namun pada pembangunan gedung Crystal Square ini hanya 0,94% jumlah titik yang di loading dari jumlah titik tiang bor. Struktur tidak boleh memperlihatkan tanda–tanda keruntuhan seperti terjadinya retak–retak yang berlebihan atau terjadi lendutan yang melebihi persyaratan keamanan yang telah ditetapkan dalam peraturan–peraturan bangunan. 2.8 Uji Beban Vertikal (Axial Compression Loading Test) Uji beban vertikal digunakan untuk mengetahui besar daya dukung ultimit tiang untuk menerima gaya aksial. Ciri khusus penurunan beban pada uji pembebanan vertikal dapat dilihat seperti pada Gambar 2.4 menunjukkan jenis kurva penurunan beban yang dialami oleh tiang vertikal dalam berbagai kondisi. Gambar 2.4 Ciri Khusus beban-penurunan pada uji pembebanan vertikal (Tomlinson, 1997) Ciri khusus penurunan beban pada uji pembebanan vertikal pada: Universitas Sumatera Utara (a) Lempung lunak–kaku padat atau pasir tak padat (b) Lempung kaku (c) Tiang dukung ujung pada batu berpori lunak (d) Badan tiang dari beton lunak tergesek secara menyeluruh (e) Celah tiang tertutup akibat beban (f) Beton kurang kuat dan mengalami keretakan (Tomlinson, 1997). Beberapa hal yang perlu diperhatikan pada waktu pelaksanaan percobaan pembebanan vertikal adalah sebagai berikut: - Selang waktu pemasangan tiang dengan pengujian untuk hal ini belum ada peraturan yang tegas dalam pengujian ini. - Untuk tiang beton “cast in place” tentu saja percobaan dapat dilakukan setelah beton mengeras (28 hari) disamping mungkin ada persyaratan lainnya. - untuk tiang pancang (pre cast) ada beberapa pendapat mengenai kapan tiang dapat di test, menurut Terzaghi, tiang yang diletakkan diatas lapisan yang permeable misalya berpasir, maka percobaan dapat dilakukan 3 (tiga) hari setelah pemancangan, pada tiang – tiang yang dimasukkan dalam lapisan lanau dan lempung, maka percobaan ini hendaknya dilakukan setelah pemancangan berumur 1 (satu) bulan. - Hal lain yang perlu diperhatikan adalah berapa panjang tiang tersisa dipermukaan tanah, pada prinsipnya penonjolan ini harus sependek mungkin untuk menghindari kemungkinan terjadinya tekuk, untuk loading test yang dilakukan didarat, maka sisa tiang tidak boleh lebih dari 1 m, sedangkan pada lokasi berair siatas dasar sungai (muka tanah) dapat lebih dari 1 m dengan catatan harus ada kontrol tekuk. 2.9 Uji BebanTarik (Uplift Loading Test) Universitas Sumatera Utara Pada uji pembebanan tarik Gambar 2.5 pengukuran beban dengan gerakan tiang ditarik ke atas sesuai dengan pengujian beban aksial. Uji beban tarik digunakan untuk mengetahui daya dukung ultimit pondasi tiang menahan tarik, seperti beban gempa, momen dan lain sebagainya. Interpretasi untuk menentukan keruntuhan beban pada uji tarik bisa bervariasi, tergantung pada besarnya gerakan yang bisa ditolerir, tetapi lebih mudah dilakukan dibandingkan dengan uji tekan karena komponen perlawanan tidak bercampur dengan tahanan ujung. Cara untuk menentukan daya dukung ultimit untuk tarik dicapai pada defleksi kepala tiang sebesar 6,25 mm. Gambar 2.5. Uji pembebanan tarik (Tomlinson, 1997) 2.10 Uji Beban Lateral (Lateral Loading Test) Uji beban lateral (horisontal) digunakan untuk mengetahui kekakuan defleksi tiang pada waktu beban telah bekerja. Beban lateral yang diijinkan dapat ditentukan dari nilai beban pada defleksi tiang tertentu (0,25 inchi atau 0,00635 m) yang dibagi dengan faktor Universitas Sumatera Utara keamanan (McNulty, 1956). Pada uji pembebanan lateral yang diamati adalah pergeseran yang dialami pondasi akibat variasi pembebanan lateral. Pengujian dilakukan sampai defleksi tiang mencapai 2 inch. Uji pembebanan lateral dilakukan dengan cara menekan satu atau sepasang kepala dengan dongkrak hidrolik yang disandarkan pada suatu sistem reaksi yang berupa blok beban, pondasi tiang, maupun blok jangkar Gambar 2.6. Gambar 2.6 Uji pembebanan lateral (Tomlinson, 1997). Pada saat pembebanan, pergerakan kepala tiang dapat diukur dengan dial gauge. Cara pengujian beban lateral dapat bervariasi, akan tetapi umumnya dilakukan dengan cara menambahkan beban secara berangsur-angsur sampai kecepatan gerakan tertentu. Alideth dan Davidson (1970) menunggu sampai 1 jam untuk tiap penambahan beban atau setelah gerakan kepala tiang kurang dari 0,01 inch per jam. Universitas Sumatera Utara 2.11 Metode Percobaan Pembebanan Vertikal (Compressive Loading Test) dengan Pembebanan Langsung Percobaan pembebanan pondasi tiang dilaksanakan berdasarkan Standard Pembebanan (loading) American Standard for Testing Material (ASTM D1143-81. Metode pelaksanaan percobaan pembebanan vertikal yang akan dilaksanakan adalah dengan metode pembebanan langsung (Kentledge System) yaitu dengan menggunakan beban di atas pondasi pondasi tiang yang disusun sedemikian rupa dengan total berat yang lebih besar dari beban test yang direncanakan. Bahan yang digunakan sebagai beban adalah balok beton ukuran 60cmx60cmx120cm sebanyak 850 buah dengan total berat 880.6 ton 60cm 60cm 120cm Volume blok beton = 0.432 m3 Berat 1 buah balok beton = 1.036 kg Total berat balok beton = 1.036 Balok beton disusun di atas sebuah platform yang terbuat dari susunan profil baja (lihat Gambar diatas) yang terdiri dari: Main Beam WF800x300x18x50 panjang 6 m sebanyak 2 batang yang disatukan dengan pengelasan. Total berat Main beam ini 4 btg x 6m' x 0,2168 ton/m' = 5,2032 ton. Sub Beam WF700x300x18x34 panjang 8 m sebanyak 11 batang = 254 x 11 x 8= 22.352 ton Total berat beam 5,2032 ton + 22.352 ton = 27.5552 ton. Beban test diberikan dari Hydraulic Jack, dimana besar beban ini dapat dikontrol pada manometer (pressure gauge) yang dipasang pada pompa (Hydraulic Pump). Pompa ini berfungsi memberikan tekanan (press) kepada Hydraulic Jack. Hydraulik Jack ditumpukan pada 2 buah plat tebal 10 cm yang diatas kepala pondasi tiang ( di bawah Hydraulic Jack ) dan di kepala Hydraulic Jack (di bawah main beam). Plat lebal 10 cm ini berguna untuk Universitas Sumatera Utara menghindari terjadinya konsentrasi tegangan yang akan terjadi akibat beban yang diberikan oleh Hydraulic Jack. Penurunan (Settlement) pondasi tiang yang diuji diukur dengan 4 dial gauge yang dipasang secara diagonal dan jarum dial gauge dihubungkan dengan magnetic stand dimana magnetic stand dilelakkan diatas plat 50 mm atau 100 mm dari kepala tiang. Jarum dial gauge ditumpukan pada reference beam yang dibuat dari profil baja L 50x50x5 mm yang dipasang/disupport ke tanah secara kaku dan bebas getaran-getaran. Pengujian penurunan/settlement dengan menggunakan main beam dan sub beam dari platform dapat dilihat pada Gambar 2.7 dan untuk pekerjaan pembebanan vertikal dapat dilihat pada Gambar 2.8 berikut: Gambar 2.7 Gambar main beam dan sub beam dari platform. (Data Proyek Crystal Square, 2005). BALOK Universitas Sumatera Utara SUB BEAM Gambar 2.8 Gambar kerja percobaan pembebanan vertikal (Compressive Loading Test) dengan beban langsung (ASTM D1143-81) 2.11.1 Prosedur dan Schedule Pembebanan Vertikal (Compressive Loading Test) Prosedur pembebanan pondasi tiang dengan standard pembebanan (loading) berdasarkan pada American Standard for Testing Materials “ Standard Method of Testing Piles Under Axial Compressive Load ” ASTM Destignation D. 1143-81. Percobaan pembebanan vertikal (Compressive Loading Test) 830 ton dengan 4 cycle. Schedule pembebanan vertikal secara mendetail seperti ditunjukkan dalam tabel dan grafik berikut : Cycle I : 0% - 25% - 50% - 25% - 0% Cycle II : 0% - 50% - 75% - 100% - 75% - 50% - 0% Cycle III : 0% - 50% - 75% - 100% - 125% - 150% - 125% - 100% - 50% - 50% 0% Cycle IV : 0% - 50% - 75% - 100% - 150% - 150% - 175% - 200% - 175% 150% - 100% - 75% - 50% - 0%. 2. 12 Metode Elemen Hingga dengan Soft Soil Model. 2.12.1 Pendahuluan. Soft soil model biasanya digunakan untuk tanah lempung NC (Normal Consolidated), untuk itu perlu dijelaskan terlebih dahulu pengertian tanah lempung dan tanah lempung lunak. Tanah lempung merupakan tanah yang bersifat multi component yang terdiri dari tiga fase yaitu padat, cair dan udara. Bagian yang padat merupakan polyamorphous terdiri Universitas Sumatera Utara dari mineral inorganis dan organis. Mineral-mineral lempung merupakan substansisubstansi kristal yang sangat tipis yang pembentukan utamanya berasal dari perubahan kimia pada pembentukan mineral-mineral batuan dasar. Semua lapisan lempung sangat tipis kelompok-kelompok partikel kristalnya berukuran koloid (<0,002 mm) dan hanya dapat dilihat dengan menggunakan mikroskop elektron. Mitchell (1976) memberikan batasan bahwa yang dimaksud dengan ukuran butir lempung adalah partikel tanah yang berukuran lebih kecil dari 0,002 mm, sedangkan mineral lempung adalah kelompokkelompok partikel kristal berukuran koloid (< 0,002 mm) yang terjadi akibat proses pelapukan dan batuan ditambah dengan sifatnya yang dijelaskan lebih lanjut. Sedangkan menurut Craig (1987), tanah lempung adalah mineral tanah sebagai kelompok-kelompok pertikel kristal koloid berukuran kurang dari 0,002 mm, yang terjadi akibat proses pelapukan kimia pada batuan yang salah satu penyebabnya adalah air yang mengandung asam ataupun alkali, dan karbondioksida. Lapisan lunak umumnya terdiri dari butiran-butiran yang sangat kecil seperti lempung atau lanau. Pada lapisan lunak, semakin muda umur akumulasinya, semakin tinggi letak muka airnya. Lapisan muda ini juga kurang mengalami pembebanan sehingga sifat mekanisnya buruk dan tidak mampu memikul beban. Sifat lapisan tanah lunak adalah gaya gesernya yang kecil, kemampatan yang besar, dan koefisien permeabilitas yang kecil. Jadi, bilamana pembebanan konstruksi melampaui daya dukung kritisnya maka dalam jangka waktu yang lama besarnya penurunan akan meningkat yang akhirnya akan mengakibatkan berbagai kesulitan. 2.12.2 Karakteristik Fisik Tanah Lempung Lunak Universitas Sumatera Utara Tanah lempung lunak merupakan tanah kohesif yang terdiri dari tanah yang sebagian terbesar terdiri dari butir-butir yang sangat kecil seperti lempung atau lanau. Sifat lapisan tanah lempung lunak adalah gaya gesernya yang kecil, kemampatan yang besar, koefisien permeabilitas yang kecil dan mempunyai daya dukung rendah dibandingkan tanah lempung lainnya. Tanah lempung lunak secara umum mempunyai sifat-sifat sebagai berikut: 1. Kuat geser rendah. 2. Berkurang kuat gesernya bila kadar air bertambah. 3. Berkurang kuat gesernya bila struktur tanahnya terganggu. 4. Bila basah bersifat plastis dan mudah mampat. 5. Menyusut bila kering dan mengembang bila basah. 6. Kompresibilitasnya besar (Tabel 2.1). Tabel 2.1 Klasifikasi kompresibilitas tanah (Coduto, 1994) Compresibility, C 0 – 0,05 Classification Very slightly compressible 0,05 – 0,1 Slightly compressible 0,1 – 0,2 Moderately compressible 0,2 – 0,35 Highly compressible > 0,35 Very highly compressible Universitas Sumatera Utara 7. Berubah volumenya dengan bertambahnya waktu akibat rangkak pada beban yang konstan. 8. Merupakan material kedap air. Menurut Terzaghi (1967) tanah lempung kohesif diklasifikasikan sebagai tanah lempung lunak apabila mempunyai daya dukung ultimit lebih kecil dari 0,5 kg/cm2 dan nilai standard penetrasi tes lebih kecil dari 4 (N-value < 4). Hasil uji lapangan, lempung lunak secara fisik dapat diremas dengan mudah oleh jari-jari tangan Toha (1989) menguraikan sifat umum lempung lunak seperti dalam Tabel 2.2. Tabel 2.2 Sifat-sifat umum lempung lunak (Toha, 1989) No. 1. 2. 3. 4. 5. Parameter Kadar air Batas cair Batas plastik Lolos saringan no. 200 Kuat geser Nilai 80 – 100% 80 – 110% 30 – 45% > 90% 20 – 40 kN/m2 Menurut Bowles (1989), mineral-mineral pada tanah lempung umumnya memiliki sifatsifat sebagai berikut: 1. Hidrasi. Partikel-partikel lempung dikelilingi oleh lapisan-lapisan molekul air yang disebut sebagai air terabsorbsi. Lapisan ini pada umumnya mempunyai tebal dua molekul karena itu disebut sebagai lapisan difusi ganda atau lapisan ganda. 2. Aktivitas. Tepi–tepi mineral lempung mempunyai muatan negatif netto. Ini mengakibatkan terjadinya usaha untuk menyeimbangkan muatan ini dengan tarikan kation. Tarikan ini Universitas Sumatera Utara akan sebanding dengan kekurangan muatan netto dan dapat juga dihubungkan dengan aktivitas lempung tersebut. Aktivitas ini didefinisikan sebagai: Aktifitas = Indeks Plastisitas / Persentasi Lempung dimana persentasi lempung diambil dari fraksi tanah yang < 2 μm. Aktivitas juga berhubungan dengan kadar air potensial relatif. Nilai-nilai khas dari aktivitas dapat dilihat pada Tabel 2.3. Tabel 2.3 Nilai-nilai khas dari aktivitas (Mitchell, 1976) Kaolinite Illite Montmorillonite 0,4 – 0,5 0,5 – 1,0 1,0 – 7,0 3. Flokulasi dan Dispersi. Flokulasi adalah peristiwa penggumpalan partikel lempung di dalam larutan air akibat mineral lempung umumnya mempunyai pH > 7 dan bersifat alkali tertarik oleh ion- ion H+ dari air, gaya Van Der Waal. Untuk menghindari flokulasi larutan air dapat ditambahkan zat asam. Tiang pancang yang dipancang ke dalam lempung lunak yang jenuh akan membentuk kembali struktur tanah di dalam suatu zona di sekitar tiang tersebut. Kapasitas beban awal biasanya sangat rendah, tetapi sesudah 30 hari atau lebih, beban desain dapat terbentuk akibat adanya adhesi antara lempung dan tiang. 4. Pengaruh air. Air pada mineral–mineral lempung mempengaruhi flokulasi dan disperse yang terjadi pada partikel lempung. Untuk meninjau karakteristik tanah lempung maka perlu diketahui sifat fisik atau Index Properties dari tanah lempung tersebut, yaitu: a. Batas–batas Atterberg (Atterberg Limits). Universitas Sumatera Utara Atterberg telah meneliti sifat konsistensi mineral lempung pada kadar air yang bervariasi yang dinyatakan dalam batas cair, batas plastis, dan batas susut. Ada tiga jenis mineral lempung yang diteliti, yaitu montmorillonite, illite, dan caolinite. Hasil penelitian Batas – batas Atterbeg untuk mineral lempung tersebut dapat dilihat pada Tabel 2.4. Tabel 2.4 Batas-batas atterberg untuk mineral lempung (Mitchell, 1976) Mineral Montmorillonite Illite Kaolinite Batas Cair 100 – 90 60 – 120 30 – 110 Batas FEM 50 – 100 35 – 60 25 – 40 Batas Susut 8,5 – 15 15 – 17 25 – 29 Batas-batas Atterberg untuk mineral lempung Tabel 2.4 maka tanah lempung lunak dapat dikategorikan ke dalam kelompok MH atau OH berdasarkan sistem klasifikasi tanah unified. Dalam sistem Unified, yang dikembangkan di Amerika Serikat oleh Casagrande (1948) simbol kelompok terdiri dari huruf-huruf deskriptif primer dan sekunder. Klasifikasi didasarkan atas prosedur-prosedur di laboratorium dan di lapangan. Tanah yang menunjukkan karakteristik dari dua kelompok harus diberi klasifikasi pembatas yang ditandai oleh simbol yang dipisahkan oleh tanda hubung. Plastisitas, sistem ini dapat dilihat pada Gambar 2.9. Universitas Sumatera Utara Gambar 2.9 Plastisitas, sistem USCS (Das, 1994) b. Berat Jenis (S G ). Nilai Specific Gravity yang didasarkan pada tiap-tiap mineral pada tanah lempung lunak dapat dilihat pada Tabel 2.5. Tabel 2.5 Nilai specific gravity untuk tiap mineral tanah lempung (Mitchell, 1976) Mineral Lempung Lunak Kaolinite Illite Montmorillonite Specific Gravity (G s ) 2,6 – 2,63 2,8 2,4 c. Permeabilitas Tanah (k). Struktur tanah, konsistensi ion, dan ketebalan lapisan air yang menempel pada butiran lempung berperan penting dalam menentukan koefisien permeabilitas tanah lempung. Umumnya nilai k untuk lempung kurang dari 10-6 cm/detik2. d. Komposisi Tanah. Angka pori, kadar air, dan berat volume kering pada beberapa tipe tanah lempung dapat dilihat pada Tabel 2.6. Tabel 2.6 Nilai angka pori, kadar air, dan berat volume kering pada tanah lempung (Mitchell, 1976) Tipe Tanah Angka Pori, e Kadar air dalam keadaan jenuh Lempung kaku Lempung lunak Lempung organik lembek 0,6 0,9 – 1,4 2,5 – 3,2 21 30 – 50 30 – 120 Berat volume kering (kN/m3) 17 11,5 – 14,5 6-8 Universitas Sumatera Utara Kesimpulannya adalah tanah kohesif seperti lempung memiliki perbedaan yang cukup mencolok terhadap tanah non kohesif seperti pasir. Perbedaan tersebut adalah: - Tahanan friksi tanah kohesif < tanah non kohesif. - Kohesi Lempung > tanah granular. - Permeability lempung < tanah berpasir. - Pengaliran air pada lempung lebih lambat dibandingkan pada tanah berpasir. - Perubahan volume pada lempung lebih lambat dibandingkan pada tanah granular. Agar dapat melakukan proses perhitungan antara korelasi beban vertikal batas (ultimate) dengan displacement yang terjadi pada suatu pondasi tiang bor beton dengan elemen hingga dimana metode numerik dapat digunakan dengan bantuan finite element. Model tanah yang digunakan adalah soft soil model. 2.12.3 Parameter Model Tanah (Material Model) Plaxis (Finite Element Code For Soil and Rock Analyses) merupakan suatu rangkuman program elemen hingga yang telah dikembangkan untuk menganalisa deformasi dan stabilitas geoteknik dalam perencanaan-perencanaan sipil. Berdasarkan prosedur input data yang sederhana, mampu menciptakan perhitungan elemen hingga yang kompleks dan menyediakan fasilitas output tampilan secara detail berupa hasil perhitungan. Perhitungan program ini hasilnya didapat secara otomatis berdasarkan prinsip penulisan angka yang benar. Konsep ini dapat dipelajari dalam waktu yang relatif singkat setelah melakukan beberapa latihan (Brinkgreve dan Vermeer, 1998). Universitas Sumatera Utara Dalam penelitian ini data yang dibutuhkan adalah mengenai nilai parameter pada tanah yang didapat dari hasil penyelidikan tanah dalam hal ini tanah yang akan dianalisa adalah tanah yang diperoleh dari lapangan. Pada versi sebelumnya model material dalam finite element telah terdiri dari model Mohr-Coulomb, model Soft Soil dan model Hard Soil. Namun dalam perkembangan untuk versi selanjutnya ide penggunaan model yang terpisah untuk tanah lunak dan tanah keras telah ditinggalkan. Sebagai gantinya, model Hard-Soil telah dikembangkan lebih jauh hingga menjadi model Hardening Soil. Pada saat yang sama model Soft Soil Creep juga dikembangkan untuk memodelkan beberapa sifat utama dari tanah lunak. Hasilnya, model Soft Soil dapat digantikan oleh model Hardening Soil yang baru atau model Soft Soil Creep. Walaupun demikian, agar pengguna tetap dapat menggunakan model yang telah dikenal dengan baik, maka diputuskan bahwa model Soft Soil tetap ada dalam finite element. Beberapa sifat dari model Soft Soil adalah: • Kekakuan bergantung pada tegangan (perilaku kompresi logaritmik). • Pembedaan antara pembebanan primer dan pengurangan/pembebanan kembali. • Tekanan prakonsolidasi. • Perilaku keruntuhan mengikuti kriteria Mohr-Coulomb. 2.12.3.1 Kondisi Isotropis Tegangan Dan Regangan (σ’1 = σ’2 = σ’3) Dalam model Soft Soil, diasumsikan bahwa hubungan antara regangan volumetrik, ε v dan tegangan efektif rata-rata, p′, berupa hubungan logaritmik yang dapat diformulasikan sebagai berikut: Universitas Sumatera Utara (kompresi alami di lapangan) (2.5) Pers. (2.5) tetap berlaku, nilai p′ minimum diatur sebesar satu dimensi tegangan. Parameter λ* adalah indeks kompresi termodifikasi, yang menentukan kompresibilitas material dalam pembebanan primer. Perhatikan bahwa λ* berbeda dari indeks λ yang digunakan oleh (Burland, 1965). Perbedaannya adalah bahwa persamaan (2.5) merupakan fungsi dari regangan volumetrik dan bukan angka pori. Penggambaran persamaan (2.5) akan menghasilkan sebuah garis lurus seperti ditunjukkan dalam Gambar 2.10. Gambar 2.10 Hubungan logaritmik antara regangan volumetrik dan tegangan rata-rata (Plaxis 8,2) Pengurangan dan pembebanan kembali secara isotropis akan menghasilkan lintasan tegangan yang berbeda, yang dapat dinyatakan sebagai: (pengurangan dan pembebanan kembali) (2.6) Nilai p′ minimum diatur sebesar satu dimensi tegangan. Parameter κ* adalah indeks muai termodifikasi, yang menentukan kompresibilitas material saat pengurangan beban dan Universitas Sumatera Utara pembebanan kembali. Perhatikan bahwa κ* berbeda dengan indeks κ yang digunakan oleh Burland. Walaupun demikian, rasio λ*/κ* adalah sama dengan rasio λ/κ. Respon tanah selama pengurangan dan pembebanan kembali diasumsikan bersifat elastis dan dinotasikan dengan notasi atas εe v dalam persamaan (2.5). Perilaku elastis dideskripsikan oleh hukum Hooke dan persamaan (2.5) menyatakan ketergantungan tegangan secara linier pada modulus bulk tangensial sebagai berikut: (2.7) dimana notasi bawah K ur menyatakan pengurangan/pembebanan kembali. Perhatikan bahwa digunakan parameter efektif dan bukan sifat tanah yang tak terdrainase. Modulus elastisitas bulk, K ur , maupun modulus elastisitas Young, E ur , tidak digunakan sebagai parameter masukan, melainkan v ur dan κ* yang digunakan sebagai konstanta masukan untuk bagian dari model yang menghitung regangan elastis. Kurva pengurangan/pembebanan kembali dalam jumlah yang tak terbatas dapat dibentuk dalam hubungan logaritmik antara volumetric dan tegangan rata – rata dapat dilihat pada Gambar 2.10 dimana tiap kurva menyatakan nilai tekanan prakonsolidasi isotropis p p tertentu, yaitu tegangan tertinggi yang pernah dialami oleh tanah. Selama pengurangan/pembebanan kembali, tekanan prakonsolidasi ini tidak berubah. Walaupun demikian, dalam pembebanan utama tekanan prakonsolidasi akan semakin meningkat sesuai dengan tingkat tegangan yang bekerja, dan menyebabkan regangan volumetrik (plastis) yang tidak dapat kembali ke kondisi semula. 2.12.3.2 Fungsi Leleh Untuk Kondisi Tegangan Triaksial (σ′2 = σ′3). Universitas Sumatera Utara Model Soft Soil Creep dapat memodelkan perilaku tanah pada kondisi tegangan secara umum. Namun demikian, agar lebih jelas maka dalam bab ini diambil batasan pada kondisi pembebanan triaksial dengan σ′2 = σ′3. Untuk kondisi tegangan seperti itu fungsi leleh dari model Soft Soil didefinisikan sebagai: Dimana, (2.8) adalah fungsi dari kondisi tegangan (p′, q) dan tekanan prakonsolidasi, p p , adalah fungsi dari regangan plastis sehingga : (2.9) (2.10) Fungsi leleh f mendeskripsikan sebuah elips dalam bidang p′-q, seperti ditunjukkan bidang leleh dari model Soft Soil dalam bidang p’- q dapat dilahat pada Gambar 2.11. Parameter M dalam persamaan (2.9) menentukan tinggi dari elips. Tinggi dari elips akan menentukan rasio dari tegangan horisontal terhadap tegangan vertikal dalam kompresi primer satu dimensi. Kemudian parameter M akan banyak menentukan nilai koefisien tekanan tanah lateral, K0NC. Dari sudut pandang ini, nilai M dapat dipilih sedemikian rupa sehingga nilai K0NC yang telah diketahui dapat sesuai dengan kompresi primer satu dimensi. Interpretasi dan penggunaan M semacam ini berbeda dengan ide dasar dari garis critical state, tetapi hal ini menjamin nilai K0NC yang sesuai. Titik-titik puncak dari seluruh elips berada pada garis dengan kemiringan M dalam bidang p′-q. Pada model Modified Cam-Clay Burland (1965, 1967) garis M disebut sebagai garis critical state dan menyatakan kondisi tegangan setelah puncak keruntuhan Universitas Sumatera Utara terlampaui. Parameter M kemudian didasarkan pada sudut geser critical state. Namun demikian, dalam model Soft Soil, keruntuhan tidak harus berkaitan dengan kondisi kritis atau critical state. Kriteria keruntuhan Mohr-Coulomb adalah fungsi dari parameter kekuatan φ dan c, yang mungkin tidak berkaitan dengan garis M. Gambar 2.11 Bidang leleh dari model Soft Soil dalam bidang p′- q (Plaxis 8,2) Tekanan prakonsolidasi isotropis, p p , menentukan besarnya elips sepanjang sumbu p′. Selama pembebanan, elips dalam jumlah tak terhingga dapat terbentuk Gambar 2.11 dimana tiap elips berkaitan dengan nilai p p tertentu. Dalam kondisi tegangan tarik (p′ < 0), elips akan berkembang hingga mencapai c.cot φ persamaan. 2.9 dan Gambar 2.11. Untuk memastikan agar bagian kanan dari elips (yaitu "cap") tetap berada dalam daerah "kompresi" (p′ > 0) maka digunakan nilai minimum dari p p sebesar c.cot φ. Untuk c = 0, nilai minimum p p diambil sebesar satu dimensi tegangan. Karena itu, terdapat suatu elips "pembatas" seperti ditunjukkan dalam Gambar 2.11. Nilai p p ditentukan oleh regangan plastis volumetrik yang mengikuti hubungan yang bersifat hardening, persamaan (2.10). Persamaan ini mencerminkan prinsip bahwa tekanan prakonsolidasi meningkat secara eksponensial dengan meningkatnya regangan plastis volumetrik (pemampatan). p p 0 dapat dianggap sebagai nilai awal dari tekanan Universitas Sumatera Utara prakonsolidasi. Menurut persamaan (2.10) nilai regangan plastis volumetrik awal diasumsikan sebesar nol. Gambar 2.12 Ilustrasi dari seluruh kontur bidang leleh dari model Soft Soil dalam ruang tegangan utama (Plaxis 8,2) Fungsi leleh merupakan sebuah garis lurus dalam bidang p′- q seperti ditunjukkan dalam Gambar 2.12. Kemiringan garis keruntuhan akan lebih kecil dibandingkan kemiringan garis M. Seluruh bidang leleh, seperti ditunjukkan oleh garis tebal dalam Gambar 2.12, merupakan batas dari daerah tegangan elastis. Garis keruntuhan mempunyai lokasi tetap, tetapi "cap" dapat meningkat secara primer. Lintasan tegangan di dalam batas ini hanya akan menghasilkan peningkatan regangan elastis, dimana lintasan tegangan yang cenderung memotong batas umumnya akan menghasilkan peningkatan regangan elastis dan plastis. Untuk kondisi tegangan secara umum, perilaku plastis dari model Soft Soil didefinisikan oleh enam buah fungsi leleh, tiga buah fungsi leleh kompresi dan tiga buah fungsi leleh Mohr-Coulomb. Seluruh kontur bidang leleh dalam ruang tegangan utama yang dihasilkan oleh keenam fungsi leleh ini ditunjukkan dalam Gambar 2.12. Universitas Sumatera Utara 2.12.3.3 Parameter Model Soft Soil Parameter model Soft Soil sama dengan parameter dalam model Soft Soil Creep. Model Soft Soil tidak melibatkan waktu, maka indeks rangkak termodifikasi μ* tidak diikutsertakan. Model Soft Soil membutuhkan konstanta-konstanta material berikut: Parameter dasar: λ* : Indeks kompresi termodifikasi [-] κ* : Indeks muai termodifikasi [-] c : Kohesi [kN/m2] φ : Sudut geser [°] ψ : Sudut dilatansi [°] Parameter tingkat lanjut (gunakan pengaturan pra-pilih): ν ur : Angka Poisson untuk pengurangan/pembebanan [-] kembali K0NC : Koefisien tekanan lateral dalam kondisi [-] terkonsolidasi normal M : Parameter yang berhubungan dengan n K0NC [-] Gambar Lampiran 2 menunjukkan jendela finite element untuk memasukkan nilai-nilai dari parameter model. M dihitung secara otomatis dari koefisien tekanan tanah lateral, K0NC, dengan menggunakan Persamaan. (2.18). Perhatikan bahwa dalam model ini, secara fisik parameter M berbeda dari parameter M dalam model Modified Cam-Clay dimana parameter tersebut dikaitkan dengan sudut geser material. a. Indeks muai termodifikasi dan indeks kompresi termodifikasi Parameter-parameter ini dapat diperoleh dari uji kompresi isotropis termasuk pengurangan beban secara isotropis. Saat menggambarkan logaritma dari tegangan rata rata sebagai fungsi dari regangan volumetrik untuk material yang bersifat seperti lempung, hasil penggambaran dapat didekati dengan dua buah garis lurus Gambar 2.11. Kemiringan Universitas Sumatera Utara dari garis pembebanan primer memberikan indeks kompresi termodifikasi, dan kemiringan dari garis pengurangan beban (atau muai) akan memberikan indeks muai termodifikasi. Perhatikan bahwa terdapat perbedaan antara indeks-indeks termodifikasi κ* dan λ* terhadap parameter-parameter κ dan λ dari model asli Cam-Clay, yang didefinisikan dalam angka pori, e, dan bukan dalam regangan volumetrik, ε v . Dari uji kompresi isotropis, parameter κ* dan λ* dapat diperoleh dari uji kompresi satu dimensi. Disini terdapat suatu hubungan dengan parameter-parameter yang telah dikenal secara luas untuk kompresi satu dimensi dan pembebanan kembali, yaitu C c dan C r . Hubungan yang lain adalah terhadap parameter dalam peraturan di Belanda untuk kompresi satu dimensi, yaitu C p′ dan A p . Hubungan-hubungan ini dirangkum dalam Rumus – rumus berikut: Hubungan dengan parameter Cam-Clay. λ∗ = 𝐾∗ = 𝑛𝑥𝜆 (2.11) 𝐾 (2.12) 1+𝑒 1+𝑒 Hubungan dengan peraturan di Belanda λ∗ = 1 𝐶′𝑝 K∗ = (2.13) 2 (2.14) 𝐴𝑝 Hubungan dengan parameter internasional yang dinormalisasi λ∗ = Catatan pada Rumus: K∗ = 𝑐𝑐 (2.15) 𝟐.𝑪𝒓 (2.16) 2,3.(1+e) 𝟐,𝟑.(𝟏+𝒆) Universitas Sumatera Utara • Dalam hubungan 2.11 dan 2.12 angka pori e diasumsikan bernilai konstan. Nilai, e akan berubah selama uji kompresi, hal ini hanya akan menghasilkan nilai yang relatif kecil pada angka pori. Untuk nilai e dapat digunakan angka pori rata-rata selama uji atau pun angka pori awal. • Dalam hubungan 2.14 dan 2.16 tidak terdapat hubungan eksak antara κ* dan indeks muai satu dimensi, karena rasio dari tegangan horisontal terhadap tegangan vertikal berubah selama pengurangan beban satu dimensi. Diasumsikan bahwa kondisi tegangan rata-rata selama pengurangan beban adalah isotropis, yaitu tegangan horisontal adalah sama dengan tegangan vertikal. • Faktor persamaan 2.13 dan 2.14 dalam hubungan persamaan 2.15 dapat diperoleh dari rasio antara logaritma dengan bilangan dasar 10 terhadap nilai logaritma (ln). • Rentang rasio λ*/κ* (= λ/κ) pada umumnya berkisar antara 3 – 7. b. Kohesi Setiap nilai kohesi efektif dapat digunakan, termasuk kohesi sebesar nol. Saat menggunakan pengaturan standard, kohesi ditetapkan sebesar 1 kPa. Memasukkan suatu nilai kohesi akan menghasilkan daerah elastis yang sebagian berada di daerah "tegangan tarik". Bagian kiri dari elips akan memotong sumbu p′ pada nilai -c⋅cot φ. Untuk menjaga agar bagian kanan dari elips (yaitu "cap") tetap berada dalam daerah "tegangan kompresif" dari ruang tegangan, maka tekanan prakonsolidasi isotropis, p p , harus mempunyai nilai minimum sebesar c⋅cot φ. Hal ini berarti bahwa dengan memasukkan kohesi yang lebih besar dari nol dapat mengakibatkan kondisi Over Konsolidasi, tergantung dari besarnya nilai kohesi dan kondisi tegangan awal. Hal ini mengakibatkan perilaku yang lebih kaku Universitas Sumatera Utara pada awal pembebanan. Masukan parameter model harus selalu didasarkan pada nilai-nilai efektifnya. c. Sudut geser Sudut geser efektif merupakan peningkatan kuat geser terhadap tingkat tegangan efektif, dinyatakan dalam derajat. Sudut geser nol tidak diperbolehkan. Sebaliknya, dalam menggunakan sudut geser yang tinggi disarankan untuk menggunakan φ cv , yaitu sudut geser critical state, dan bukan nilai yang lebih tinggi, berdasarkan regangan kecil. d. Sudut dilatansi Untuk jenis material, yang dapat dideskripsikan oleh model Soft Soil, sudut dilatansi umumnya dapat diabaikan. Sudut dilatansi sebesar nol derajat digunakan dalam pengaturan standar dari model Soft Soil. e. Angka Poisson Dalam model Soft Soil, angka poisson murni merupakan konstanta elastisitas dan bukan konstanta pseudo-elastisitas seperti digunakan dalam model Mohr-Coulomb. Nilai angka poisson umumnya berkisar antara 0,1 dan 0,2. Jika dipilih pengaturan standar untuk parameter model Soft Soil, maka ν ur = 0,15 akan digunakan secara otomatis. Untuk pembebanan material yang terkonsolidasi secara normal, angka poisson hanya memegang peranan yang kecil, tetapi akan menjadi penting dalam masalah pengurangan beban. Sebagai contoh, untuk pengurangan beban dalam uji kompresi satu dimensi (oedometer), angka Poisson yang relatif kecil akan menghasilkan penurunan tegangan lateral yang kecil dibandingkan dengan penurunan tegangan vertikal. Hal ini akan menyebabkan peningkatan rasio tegangan horisontal terhadap tegangan vertikal, yang merupakan suatu fenomena yang telah dikenal dengan baik pada material yang terkonsolidasi secara berlebih. Karena itu, angka poisson seharusnya tidak didasarkanpada nilai K0NC pada kondisi yang Universitas Sumatera Utara terkonsolidasi secara normal, tetapi pada rasio dari peningkatan tegangan horisontal terhadap peningkatan tegangan vertikal dalam pengurangan dan pembebanan kembali pada uji oedometer sedemikian rupa sehingga: (2.17) f. Parameter K0NC Parameter M secara otomatis ditentukan berdasarkan koefisien tekanan tanah lateral dalam kondisi terkonsolidasi normal, K0NC, seperti yang dimasukkan oleh pengguna. Hubungan eksak antara M dan K0NC (Brinkgreve, 1994) adalah: (2.18) Nilai M ditunjukkan dalam jendela masukan. Seperti dapat terlihat dari Persamaan. (2.15), nilai M juga dipengaruhi oleh angka Poisson ν ur dan oleh rasio λ*/κ*. Namun demikian, pengaruh dari K0NC adalah dominan. Sehingga Persamaan (2.19) (2.19) 2.13 Parameter model tanah Pemahaman parameter tanah yang akan digunakan sebagai input pada finite element harus dimengerti oleh pengguna program. Kesalahan di dalam penentuan parameter tanah akan memberikan output yang keliru, sehingga hasil yang didapat tidak mencerminkan respon yang sesungguhnya. Parameter tanah yang diperlukan disesuaikan dengan model yang dipilih, model Linier elastic, Mohr-Coulumb, Advanced Mohr-Coulumb, Soft Soil Universitas Sumatera Utara (Cap), Jointed Rock, Soft Soil Creep User-defined Soil, dan Modified Cam-Clay, masingmasing memerlukan parameter tanah tersendiri, meskipun ada beberapa parameter tanah yang sesuai. Parameter ini didapatkan dari laporan akhir hasil penelitian tanah (Soil Investigation) dan data loading test oleh PT Perintis Pondasi Teknotama, hasil pengujian laboratorium, lapangan dan korelasi keduanya, dan sebahagian parameter diasumsikan berdasarkan buku referensi. Pada penelitian ini model tanah yang digunakan adalah Soft Soil (Cap). 2.13.1 Material Model Soft Soil (Cap) Sesuai dengan penjelasan di atas, parameter yang dibutuhkan pada perhitungan plaxis dengan pendekatan perhitungan yang mengacu kepada model Soft Soil (Cap) adalah: 1. Karaketristik tanah dasar terdiri dari: - Tanah tidak jenuh (γ unsat ) dan tanah jenuh (γ sat ). - Permeabilitas tanah dalam arah x dan y ( k x dan k y ). 2.14 Pondasi Bore Pile. Bore pile dipasang ke dalam tanah dengan cara mengebor tanah terlebih dahulu, baru kemudian diisi tulangan dan dicor beton. Tiang ini biasanya, dipakai pada tanah yang stabil dan kaku, sehingga memungkinkan untuk membentuk lubang yang stabil dengan alat bor. Jika tanah mengandung air, pipa besi dibutuhkan untuk menahan dinding lubang dan pipa ini ditarik ke atas pada waktu pengecoran beton. Pada tanah yang keras atau batuan Universitas Sumatera Utara lunak, dasar tiang dapat dibesarkan untuk menambah tahanan dukung ujung tiang (Gambar 2.13). Ada berbagai jenis pondasi bore pile yaitu: 1. Bore pile lurus untuk tanah keras. 2. Bore pile yang ujungnya diperbesar berbentuk bel. 3. Bore pile yang ujungnya diperbesar berbentuk trapesium. 4. Bore pile lurus untuk tanah berbatu-batuan. Gambar 2.13 Jenis-jenis bore pile (Das, 1941) 1. Metode Kering. Rangkaian pembuatannya seperti pada Gambar 2.14. Pertama sumuran digali (dan dasarnya dibentuk lonceng jika perlu). Kemudian sumuran diisi sebagian dengan beton dan kerangka tulangan dipasang dan setelah itu sumuran telah selesai dikerjakan. Harap diingat bahwa kerangka tulangan tidak boleh dimasukkan sampai mencapai dasar sumuran karena diperlukan pelindung beton minimum, tetapi kerangka tulangan boleh Universitas Sumatera Utara diperpanjang sampai akhir mendekati kedalaman penuh dari pada hanya mencapai kira – kira setengahnya saja. Metode ini membutuhkan tanah (kohesif) dan permukaan air di bawah dasar sumuran permeabilitasnya yang cukup rendah, sehingga sumuran bisa digali (mungkin juga dipompa) dan ini dapat mempengaruhi kekuatan beton. Metode kering konstruksi pondasi yang dibor dapat dilihat pada Gambar 2.14. Gambar 2.14 Metode kering konstruksi pondasi yang dibor (Bowles,1998) 2. Metode Acuan. Pada metode Acuan ini, acuan dipakai pada konstruksi proyek yang mengalami lekukan atau deformasi lateral yang belebihan terhadap rongga sumur (sharf cavity). Metode ini juga dipakai sebagai sambungan (seal) lubang terhadap masuknya air tanah tetapi hal ini membutuhkan lapisan tanah yang tak bisa ditembus air di bawah daerah lekukan tempat acuan dipasang. Perlu kita ingat bahwa sebelum casing dimasukkan, suatu adonan spesi encer (slurry) digunakan untuk mempertahankan lubang. Setelah acuan dipasang, adonan dikeluarkan dan sumur diperdalam hingga pada kedalaman yang diperlukan dalam keadaan kering. Bila proyek, sumuran di bawah acuan akan dikurangi paling tidak sampai ID acuan mencapai 25 sampai 50 mm untuk jarak ruang bor tanah (auger) Universitas Sumatera Utara yang lebih baik. Acuan bisa saja ditinggalkan dalam sumuran atau bisa juga dikeluarkan jika dibiarkan ditempat, maka ruangan melingkar antara OD acuan dan tanah (yang diisi dengan adonan atau lumpur hasil pengeboran) diganti dengan adukan encer (grout) maka adonan akan dipindahkan keatas puncak sehingga rongga tersebut diisi dengan adukan encer. Pelaksanaan metode acuan konstrusi ponadi yang dibor dapat dilihat pada Gambar 2.15. Gambar 2.15 Metode acuan konstruksi pondasi yang dibor (Bowles, 1998) 3. Metode Adonan. Metode ini bisa diterapkan pada umumnya menggunakan acuan. Hal ini diperlukan jika tidak mungkin mendapatkan penahan air (water seal) yang sesuai dengan acuan untuk menjaga agar air tidak masuk ke dalam rongga sumuran (shaft cavity). Langkahlangkah metode adonan konsrtuksi pondasi ini diuraikan dalam Gambar 2.16 Universitas Sumatera Utara Gambar 2.16 Metode adonan konstruksi pondasi yang dibor (Bowles, 1998) Hal-hal yang perlu diperhatikan dalam metode ini adalah: a. Jangan membiarkan adonan terlalu lama dalam sumuran sehingga terbentuk lapisan penyaring yang terlalu tebal pada dinding sumuran karena lapisan yang tebal sukar untuk digeserkan oleh beton selama pengisian sumuran. b. Memompa adonan keluar dan partikel-partikel yang lebih besar dalam suspensi dipisahkan dengan memakai adonan ‘conditioned’ yang dikembalikan lagi kedalam sumuran sebelum beton. c. Hati-hati sewaktu menggali lempung melalui adonan, sehingga penarikan kepingan yang besar tidak menyebabkan tekanan atau pengisapan pori negatif yang bisa meruntuhkan sebagian dari sumuran. Setelah sumuran selesai digali, tulangan kerangka dimasukkan ke dalam sumuran dan corong pipa-cor (treme) dipasang (urutan ini perlu diperhatikan sehingga corong pipa-cor tidak perlu ditarik sewaktu akan memasang kerangka (cage) dan lalu dipasang kembali yang pasti akan mengakibatkan terputusnya pembentukan lapisan adonan dalam sumuran). Beton dipompa dengan hati-hati sehingga corong pipacor selalu terendam dalam beton sehingga hanya ada sedikit daerah permukaan yang terbuka dan yang terkontaminasi oleh adonan. 2.15 Pengaruh Pemasangan Bore Pile 1. Bore pile dalam tanah granuler. Universitas Sumatera Utara Dalam pelaksanaan pengeboran, biasanya digunakan tabung luar (casing) sebagai penahan longsoran dinding galian dan larutan tertentu, dengan maksud yang sama untuk melindungi dinding galian tersebut. Gangguan kepadatan tanah, terjadi saat tabung pelindung ditarik keatas saat pengecoran. Bore pile berada di dalam tanah pasir, Tomlinson (1997) menyarankan untuk menggunakan sudut gesek dalam ( φ ) ultimit dari contoh terganggu, kecuali jika tiang diletakkan pada kerikil padat dimana dinding lubang yang bergelombang tidak terjadi. Jika pemadatan dilakukan pada beton yang berada di dasar tiang, maka gangguan kepadatan tanah dapat dieliminasi sehingga sudut geser dalam ( φ ) pada kondisi padat dapat digunakan. Akan tetapi, pemadatan tersebut mungkin sulit dikerjakan karena terhalang oleh tulangan beton. 2. Bore pile dalam tanah kohesif. Pengaruh pekerjaan pemasangan bore pile pada kondisi tanah yang basah dengan dinding tiang terhadap tanah sekitarnya, menunjukkan bahwa nilai adhesi lebih kecil dari pada nilai kohesi tak terdrainase (undrained cohesion) tanah sebelum pemasangan tiang. Hal ini, diakibat tanah lunak lempung disekitar dinding lubang. Tanah lunak tersebut akibat pengaruh bertambahnya kadar air lempung oleh pengaruh-pengaruh air pada pengecoran beton, pengaliran air tanah ke zone yang bertekanan yang lebih rendah disekitar lubang bor, dan air yang dipakai untuk pelaksanaan pembuatan lubang bor. Pelunakan pada tanah lempung dapat dikurangi jika pengeboran dan pengecoran dilaksanakan dalam waktu 1 atau 2 jam (Palmerd dan Holland, 1966). Pelaksanaan pengeboran juga mempengaruhi kondisi dasar lubang yang dibuat. Hal ini, mengakibatkan pelunakan dan gangguan tanah lempung di dasar lubang tiang, yang berakibat bertambah besarnya penurunan. Pengaruh gangguan ini sangat besar terutama Universitas Sumatera Utara bila diameter ujung tiang diperbesar, dimana tahanan ujungnya sebagian ditumpu oleh ujung tiang. Gangguan yang lain dapat pula terjadi akibat pemasangan tiang yang tidak baik, seperti: pengeboran yang melengkung, pemisahan campuran beton saat pengecoran dan pelengkungan tulangan beton saat pemasangan. Hal-hal tersebut, perlu diperhatikan saat pemasangan. 2.16 Pemakaian Tiang yang Dibor Pondasi yang di bor bisa dipakai pada hampir semua kasus yang memerlukan pondasi tiang pancang. Jika proyek memerlukan pemakaian pondasi dalam, seseorang perlu mengadakan analisis perbandingan untuk menentukan mana yang lebih ekonomis antara tiang–tiang pancang atau pondasi–pondasi yang di bor. Tiang yang dibor mempunyai kelebihan sebagai berikut: 1. Kedalaman tiang dapat bervariasi. 2. Tidak ada resiko kenaikan muka air tanah. 3. Memerlukan lebih sedikit tiang yang dibor yang berdiameter besar. 4. Tanah dapat diperiksa dan dicocokan dengan data laboraturium. 5. Eliminasi sungkup tiang (pile caps) seperti penyambung (dowels) bisa dipasang dalam beton basah diperlukan meskipun pusat pilar agak tidak ditempatkan segaris (misaligned) sebagai sambungan kolom. 6. Meniadakan cukup banyak getaran (vibrasi) dan suara gaduh yang biasanya merupakan akibat dari pendorongan tiang pancang. 7. Bisa menembus tanah kerikil yang dapat mengakibatkan tiang-tiang pancang yang didorong bengkok. Kerikil yang berukuran kurangdari sepertiga diameter sumuran bisa lansung dipindahkan. Kerikil lainnya bisa dihancurkan Universitas Sumatera Utara dengan alat khusus atau acuan sementara bisa dipasang sebagai jalan masuk untuk penggalian dengan tangan dan penghancuran bebatuan yang lebih besar. 8. Lebih mudah memperluas bagian puncak sumuran tiang sehingga memungkinkan momen-momen lentur yang lebih besar. 9. Sumuran yang berdiameter lebih besar memungkinkan pemeriksaaan langsung kapasitas dukung dan tanah yang lebih besar. 10. Penulangan tidak diperngaruhi oleh tegangan pada waktu pengangkutan dan pemancangan. Beberapa kelemahan tiang yang dibor, antara lain: 1. Keadaan cuaca yang buruk dapat mempersulit pengeboran dan pembetonan. 2. Pengeboran dapat mengakibatkan gangguan kepadatan, bila tanah berupa pasir atau kerikil. 2.17 Metode Pelaksanaan Pondasi Bore Pile dengan Metode Kerja Kellybar Aspek teknologi sangat berperan dalam suatu proyek konstruksi. Umumnya, aplikasi teknologi ini banyak diterapkan dalam metode pelaksanaan pekerjaan konstruksi. Penggunaan metode yang tepat, praktis, cepat dan aman, sangat membantu dalam penyelesaian pekerjaan pada suatu proyek konstruksi. Sehingga target waktu, biaya dan mutu sebagaimana ditetapkan dapat tercapai. Tahapan pekerjaan pondasi bore pile adalah sebagai berikut: 2.17.1 Persiapan Lokasi dan Setting Out Universitas Sumatera Utara 1. Dilaksanakan pengukuran pada area yang akan menjadi lokasi pekerjaan pembuatan tiang bor. Koordinat-koordinat tiang bor yang direncanakan mengacu pada BM (Bench Mark) yang ada di lokasi pekerjaan. 2. Dilaksanakan stripping, cut and fill pada lokasi pembuatan tiang bor, agar kinerja peralatan yang digunakan effisien dan stabil. 3. Dipersiapkan akses yang akan dilalui truk–truk mixer dari batching plant ke lokasi pembuatan tiang bor, agar terjadi kendala yang signifikan. 2.17.2 Daftar Peralatan Utama untuk Pekerjaan Pembuatan Tiang Bor 1. Hydraulic/Mechanical bored pile ring. 2. Service Crane. 3. Vibro Hammer. 4. Peralatan Las. 5. Peralatan Potong (oksigen dan LPG ). 6. Temporary Casing. 7. Perlengkapan Bor (soil auger, bucket, rock auger, core barrel, chisel). 8. Accessoris (sorong tremie, pipa tremie, plat landasan, dll). 2.17.3 Proses Pelaksanaan Pekerjaan 1. Mesin bor yang digunakan dilengkapi dengan kelly bar dan soil auger. Mesin ini mempunyai kemampuan maksimum membuat tian bor sampai dengan kedalaman 40 meter. Universitas Sumatera Utara 2. Setelah mempersiapkan posisi/ titik yang akan di bor, mesin bergerak menuju titik, kemudian meletakan soil auger tetap dititik tersebut dan setting Kelly bar pada posisi vertical. 3. Pengeboran dapat dimulai pada pengeboran awal, maka segera dipasang preliminary casing panjang 3–6 meter pada lubang bagian atas. Pemasangan casing ini membantu juga dalam proses pengeboran pondasi tiang bor, karena dianggap sebagai leading sehingga prosses pengeboran pada kedalaman selanjutnya dapat tegak/lurus. 4. Setelah pegeboran menemukan air tanah, soil auger akan kesulitan mendapatkan tanah, maka perlu diganti dengan bore bucket yang mempunyai kemampuan menangkap/mengumpulkan tanah pengeboran, core barrel diperlukan, jika dalam proses pengeboran menemukan lapisan tanah keras/batu. 5. Prosses pengeboran dilanjutkan sampai dengan kedalaman yang direncanakan dan dikomfirmasikan kepada pengawas. 6. Setelah kedalaman tiang bor rencana sudah tercapai, maka dilaksnakan pembersihan lubang dengan cleaning bucket. Lubang sudah dianggap bersih jika bahan yang terangkat dalam cleaning bucket berupa ait. Praktis dasar lubang dinyatakan bersih/bebas dari endapan dan siap untuk melaksanakan pengecoran. 2.17.4 Instalasi Besi Keranjang Tiang Bor (Reinforcement Cage) 1. Keranjang besi tiang bor di pabrikasi di area yang tidak jauh dari lokasi pengecoran dan dibuat per section sesuai dengan tinggi angkat maksimum service crane. Sehingga akan memudahkan proses handling keranjang besi ke dalam lubang bor. Universitas Sumatera Utara 2. Besi keranjang tiang bor yang sudah siap diangkat dan dimasukan ke dalam lubang bor dengan menggunakan service crane. Joint per section didambung dengan cara pengelasan. 3. Keranjang besi tinag bor terpsaang sesuai dengan cut off level yang telah direncanakan. 2.17.5 Proses Pengecoran Lubang Bor 1. Lubang yang sudah siap cor (kondisi besi keranjang tiang bor sudah terinstalisasi dalam lubang), kemudian dilaksanakan install pipa trimie, dimana panjang pipa trimie sesuai dengan kedalaman pipa. 2. Gunakan beton siap pakai (concrete ready mix) yang mempunyai nilai slump 18 ± 2 cm, agar beton dapat mengalir dengan mudah melalui pipa tremie yang berdiameter 8” = 20 cm. Setelah truk mixer beton tiba dilokasi proyek, pengecoran dapat segera di mulai. Beton lansung dituang dari truck mixer menuju lubang tremie melalui corong tremie yang sudah disediakan. 3. Selama pengecoran berlansung dan terutama pada saat pemotongan pipa tremie, agar ujung dari pipa tremie yang bawah selalu dijaga “terendam” dibawah lapisan beton yang paling awal dituang kedalam lubang. 4. Penuangan beton dilajutkan sampai dengan ± 1.00 meter di atas cut off level. Maksudnya agar beton yang paling awal (yang tercampur dengan endapan lumpur) dapat terbuang. Selain itu untuk meyakinkan bahwa beton baik (tidak terkontaminasi) tercampur sampai dengan cut off level yang telah ditentukan. 5. Setelah proses pengecoran selesai, casing dicabut secara perlahan–lahan. Hal ini untuk menjaga agar tidak terjadi kelongsoran (gap) antara besi keranjang bagian luar dan pinggir lubang, juga segresi dari beton sepanjang permukaan beton (shaff). Universitas Sumatera Utara 6. Apabila diperlukan, sebelum proses pencabutan casing selesai, lakukan pengisian casing sementara tersebut dengan beton secukupnya. Beton baru dalam casing diharapkan dapat mengalir kedalam ruang–ruang kosong pada permukaan beton yang terjadi akibat pencabutan casing. 2.18 Mekanisme Penyaluran Daya Dukung Friksi (Kurva t-z) Penelitian tentang bagaimana mekanisme transfer beban dari tiang terhadap tanah disekelilingnya merupakan aspek yang sangat penting dalam bidang rekayasa pondasi terutama dalam bidang pondasi tiang. Uji beban statis yang diinstrumentasi sering dilakukan dalam menentukan pola transfer beban pada struktur. Kapasitas statis dan penurunan tiang dapat dikalkulasi balk dari data transfer beban. Perbedaan pengukuran beban antara dua lokasi strain gages merupakan transfer beban ke tanah oleh gesekan selimut dan diasumsikan konstan sepanjang segmen tersebut. Gesekan selimut tiang dapat dihitung jika keliling dan panjang segmen diketahui. Gambar 2.17 Kurva transfer beban (t-z curve) Kurva yang menggambarkan pergerakan tiang terhadap tahanan friksi kurva transfer beban (t – z Curve) dapat digambarkan seperti pada Gambar 2.17 yang kemudian Universitas Sumatera Utara digunakan untuk menghitung kapasitas statis sepanjang segmen tersebut. Kurva pada Gambar 2.17 umumnya disebut kurva t-z (atau q-z). Simbol t (tau) adalah simbol yang sering digunakan untuk kuat geser yang dalam hal ini adalah gesekan selimut tiang sedangkan simbol z adalah pergerakan yang terjadi pada selimut tiang. Dari Gambar 2.17 terlihat bahwa pada tanah lempung kurva transfer bebannya terdapat suatu titik puncak yang merupakan efek dari strain softening yang merupakan karakteristik dari tanah lempung. Setelah mencapai nilai ultimit, lempung akan memberikan tahanan residu (Q rs ) yang nilainya lebih kecil dari nilai ultimitnya (Q uc ). Sedangkan kurva pada pasir bersifat linear plastic. Gambar 2.18 Data-data yang didapatkan dari hasil instrumentasi Keuntungan dari kurva t-z ini adalah dapat memberikan informasi transfer beban pada masing-masing lapisan tanah sesuai dengan karakteristik tanah disuatu lokasi yang sifatnya unik seperti yang diilustrasikan pada Gambar 2.18. Data transfer beban ini Universitas Sumatera Utara kemudian akan digunakan untuk melakukan perhitungan balik untuk mendapatkan kapasitas statis tiang. 2.19. Prosedur Pembebanan Tiang Tunggal 2.19.1 Teori Dasar Pada prinsipnya prosedur pembebanan tiang ini dilakukan dengan cara memberikan beban vertikal yang diletakkan diatas kepala tiang Gambar 2.19, kemudian besarnya deformasi vertikal yang terjadi diukur dengan menggunakan arloji ukur yang dipasang pada tiang. Deformasi yang terjadi terdiri dari deformasi elastis dan plastis. Deformasi elastis adalah deformasi yang diakibatkan oleh pemendekan elastis dari tiang dan tanah, sedangkan deformasi plastis adalah deformasi diakibatkan runtuhnya tanah pendukung pada ujung atau sekitar tiang. Gambar 2.19 Pembebanan arah axial (vertikal) Dengan demikian percobaan pembebanan tiang ini akan memberikan hasil yang cukup teliti jika diukur dengan teliti besarnya deformasi tersebut. Karena yang ingin diketahui adalah sampai beban berapa, lapisan pendukung akan mengalami keruntuhan total. Keruntuhan total akan terjadi pada suatu beban tertentu, dan akan mengalami perilaku penurunan terus menerus. Jika hubungan antara deformasi dan beban digambarkan dalam bentuk Grafik maka terlihat bahwa grafik tersebut akan terdiri tiga bagian, lihat Gambar 2.20 (Sardjono, 1991). Universitas Sumatera Utara Gambar 2.20 Hubungan Beban (P) dan Deformasi (S). (Sardjono, 1991). 1. Pada daerah I, dimana sampai suatu beban tertentu bentuk grafik deformasi beban merupakan garis lurus. Pada bagian ini secara matematis dapat ditulis: dp/ds = C (tetap) (2. 20) Pada beban tertentu besarnya penurunan sebanding dengan besarnya beban yang bekerja. Disini dapat diinterpretasikan, bahwa beban-beban yang bekerja sebagian besar dipakai untuk menimbulkan deformasi elastis, baik pada tiang itu sendiri maupun pada tanah pendukungnya. Deformasi elastis pada tiang ini merupakan pemendekan elastis, sedang pada lapisan pendukung merupakan proses konsolidasi. Pada point bearing pile, bentuk garis yang lurus ini lebih jelas dibandingkan pada friction pile. 2. Pada daerah II, dimana bagian yang berbentuk lengkung parabolis (garis AB) terjadi jika penurunan yang terjadi tidak sebanding dengan besarnya beban yang bekerja. Disini penurunan merupakan fungsi dari waktu artinya jika suatu beban dibiarkan bekerja lebih lama, akan mengakibatkan deformasi yang lebih besar. Secara matematis dapat ditulis: dp/ds = f(t) (2.21) Dengan kata lain keadaan ini dapat diterjemahkan, bahwa pada bagian ini beban yang bekerja telah mengakibatkan terjadinya keruntuhan pada tanah pendukung. Menurut Universitas Sumatera Utara pengalaman jika tanah pendukung bersifat rapuh (misalnya batu tufa, batu pasir, batu tufaan), maka bagian lengkung parabolis ini lebih pendek dibandingkan pada batuan jenis lainnya. Sedang pada friction jika dimasukan dalam lapisan lempung lembek, bagian parabolis ini seringtidak jelas. 3. Pada daerah III, dimana bagian grafik yang curam terhadap garis vertikal yang cara matematis dapat ditulis: dp/ds = ~ (2.22) pada bagian ini terlihat, bahwa pada suatu beban tertentu yang besarnya tetap, akan terjadi deformasi terus menerus atau makin lama makin besar. Beban dimana akan mengakibatkan terjadinya deformasi yang makin lama makin besar disebut beban maximum. Perlu dijelaskan disini, bahwa dari hasil percobaan pembebanan tiang tidak dapat untuk menentukan besarnya. penurunan akibat proses konsolidasi pada kelompok tiang. Dalam lapisan tanah yang kohesif, besarnya penurunan akibat proses konsolidasi pada umumnya berlangsung dalam jangka waktu percobaan yang lebih singkat. Pada lapisan yang bersifat cohessionless, waktu yang diperlukan untuk mencapai settlement maximum masih lebih lama dibandingkan waktu untuk melakukan percobaan pembebanan, dengan demikian percobaan pembebanan belum dapat memberikan indikasi besarnya penurunan maksimum. Dari uraian ini dapat disimpulkan, bahwa dalam percobaan pembebanan tiang kita hanya dapat menentukan besarnya beban maksimum dan bukan settlement maximum. Universitas Sumatera Utara 2.19.2 Menggunakan Meja Beban 2.19.2.1 Peralatan Percobaan pembebanan dengan menggunakan meja beban yang diperkuat tiangtiang angker memerlukan peralatan sebagai berikut: a. Tiang Percobaan. 1) Tiang percobaan bersifat point bearing, maka untuk tiang pancang percobaan dapat dilakukan setelah selesai pemancangan, sedangkan pada tiang-tiang beton cast in place percobaan dapat dilakukan setelah tiang berumur empat minggu atau setelah beton cukup keras. 2) Tiang yang bersifat friction, maka percobaan baru dapat dilakukan setelah empat minggu tiang ditanamkan kedalam tanah. Hal ini dimaksudkan untuk memberikan waktu lekatan (friction), dapat bekerja penuh disekeliling tiang. b. Tiang angker. Karena tiang-tiang angker bekerja sebagai friction pile, maka tiang-tiang angker itu minimal harus sudah berumur empat minggu ditanam kedalam tanah, sehingga gaya lekatan sudah dapat bekerja penuh. Jumlah tiang angker yang diperlukan tergantung pada sifat tanah pendukung dan besarnya beban maksimum percobaan. c. Meja beban. Meja beban dibuat dari susunan profil baja yang cukup kaku sedemikian sehingga lendutan maksimum tidak melebihi 0,25 mm. d. Arloji ukur. Universitas Sumatera Utara Arloji yang dipakai mempunyai panjang tangkai 10 cm dengan ketelitian 0,01 cm. Arloji ukur ini dipasang sebanyak dua buah pada tiang percobaan satu buah pada setiap angker dan dua buah pada meja beban diatas tiang percobaan. e. Dongkrak hidrolis. Dongkrak yang dipakai harus mempunyai kapasitas sebesar beban maksimum yang direncanakan ditambah 20%, dengan ketelitian 1 ton. f. Beban Kontra. Beban kontra: beban kontra dapat menggunakan balok-balok beton besi profil, karung berisi pasir batu atau tanah, tangki diisi air dan lain-lain. Jumlah beban kontra yang dibutuhkan minimal 1,5 kali beban maksimum yang direncanakan. Beban kontra ini harus dipasang sesentris mungkin terhadap tiang percobaan. 2.19.2.2. Jenis-jenis Pembebanan Tiang a. Pembebanan bertahap. Disini beban diberikan secara bertahap, dengan variasi sebesar 25, 50, 75, dan 100% dari beban maksimum yang direncanakan. Pada setiap tahap, beban dibiarkan bekerja sedemikian lamanya sehingga deformasi yang terjadi akibat beban itu mencapai maksimum. Setelah beban maksimum tercapai, maka secara berangsur-angsur beban dikurangi menjadi 80, 60, 40, 20, dan 0% dengan catatan setiap tahap pengurangan beban ini dilakukan sampai tercapai pantulan (rebound) maksimum. Menurut pengalaman, cara ini akan memberikan hasil yang cukup teliti untuk tiang-tiang yang bersifat point bearing piles, sedang untuk friction hasilnya tidak begitu memuaskan. b. Pembebanan berulang (cyclic loading). Universitas Sumatera Utara Cara ini hampir sama dengan pembebanan bertahap, yaitu pembebanan dilakukan secara bertahap sebesar 25, 50, 75 dan 100% dari beban maksimum yang direncanakan, tetapi pada setiap akhir saat sebelum pembebanan berikutnya dilanjutkan beban dihilangkan dahulu sehingga kita dapat mengukur besarnya penurunan tetap. Cara ini akan memberikan hasil yang cukup teliti untuk tiang - tiang point bearing maupun friction. 2.20 Penurunan Tiang Tunggal Penurunan jangka panjang untuk pondasi tiang tidak perlu ditinjau karena penurunan tiang akibat konsolidasi dari tanah relative kecil (Poulus dan Davis, 1980). Daya dukung ujung dan daya dukung friksi dijumlahkan dalam perencanaan suatu pondasi tiang. Perencanaan pondasi tiang daya dukung tiang tunggal dapat dihitung dengan persamaan berikut: a. Untuk tiang Friksi I =I o R k R h R µ 𝑆₁ = (2.23) 𝑄𝐼 (2.24) 𝐸𝑠𝑑 b. Untuk Tiang Ujung (End Bearing) I =I o R k R b R µ 𝑆₁ = Dimana, (2.25) 𝑄𝐼 (2.26) 𝐸𝑠𝑑 D = Diameter tiang (mm) S = Penurunan untuk tiang tunggal (mm) I0 = Faktor Penurunan tiang Rk = Faktor koreksi tiang Universitas Sumatera Utara Rh = Faktor ketebalan lapisan pada tanah keras Rµ = Faktor koreksi angka poisson µ Rb = Faktor untuk lapisan ujung h = Kedalaman lapisan tanah dari ujung tiang kemuka tanah (mm) Untuk nilai K adalah suatu ukuran kekuatan dari tiang dan tanah yang dinyatakan dalam persamaan berikut: 𝐾= Dimana, K 𝐸𝑝 𝑅𝐴 (2.27) 𝐴𝑝 (2.28) 𝑅𝐴 = 𝐸𝑠 ¼𝜋𝑑² = Faktor Kekakuan Tiang Ep = Modulus Elastisitas tiang (Mpa) Es = Modulus Elastisitas tanah sekitar tiang (Mpa) 2.21 Penyaluran Beban Cara penyaluran beban ketanah, ada 3 macam (Hardiatmo, 2010), yaitu: 2.21.1 Pondasi Tiang dengan Tahanan Ujung (End Bearing Pile) Tiang akan meneruskan beban melalui tahanan ujung tiang ke lapisan tanah. Tahanan ujung tiang berada pada zone tanah lunak yang berada diatas tanah keras. Tiang yang dipancang harus mencapai batuan dasar atau lapisan tanah keras yang dapat mendukung beban yang tidak mengakibatkan penurunan. Kapasitas tanah sepenuhnya ditentukan dari lapisan tanah keras yang berada diujung tiang. Gaya tahanan ujung akan bekerja bila displacement terjadi dalam batas 0,6 % dari diameter pile. Universitas Sumatera Utara End Bearing 6 % diameter pile Displacement Gambar 2.21 Transfer beban tahanan ujung. 2.21.2 Pondasi tiang dengan Tahanan Gesek (Friction Pile) Penurunan akibat beban terjadi perlawanan gesek antara dinding tiang dan tanah sekitar dimana tahan gesek tersebut juga dipengaruhi konsolidasi lapisan tanah. Penyaluran beban tiang akan tersalurkan ke tanah melalui gesekan antara tiang dengan tanah disekelilingnya. Butiran tanah halus tidak menyebabkan tanah padat, dan tanah butiran kasar akan menyebabkan tanah makin padat. Gaya gesekan ini akan bekerja bila displacement terjadi dalam batas 0,4 % dari diameter pile Friksi 0,4 % Diameter pile Displacement Gambar 2.22 Transfer beban Friksi. 2.21.3 Pondasi tiang dengan Tahanan Lekatan (Adhesive Pile) Tanah pondasi yang memiliki nilai kohesi tinggi, maka beban yang diterima oleh tiang akan ditahan oleh lekatan antara tanah sekitar dan permukaan tiang. Universitas Sumatera Utara 2.22 Elemen pada Program Plaxis Pada program Plaxis dapat dipilih jenis elemen segitiga dengan 6 titik nodal atau 15 titik nodal Gambar 2.23 untuk memodelkan lapisan tanah. Elemen segitiga dengan 15 titik nodal adalah elemen pra-pilih. Elemen ini menggunakan interpolasi dengan ordo empat untuk perpindahan dan integrasi numerik melibatkan 12 titik Gauss (titik tegangan). Untuk elemen segitiga dengan 6 titik nodal, ordo interpolasi adalah dua dan integrasi numerik melibatkan tiga buah titik Gauss. Gambar 2.23 Pengaturan global (Plaxis 8,2) Universitas Sumatera Utara Gambar 2.24 Regangan bidang dan axi-simetri (Plaxis 8,2) Gambar 2.25 Posisi titik-titik nodal dan titik-titik tegangan pada elemen tanah (Plaxis 8,2) Elemen segitiga dengan 15 titik nodal merupakan elemen yang sangat akurat yang telah memberikan perhitungan tegangan dengan hasil yang sangat baik, misalnya dalam perhitungan keruntuhan untuk tanah-tanah yang tidak kompresibel. Penggunaan elemen segitiga dengan 15 titik nodal akan menyebabkan penggunaan memori yang relatif tinggi serta kinerja operasional dan perhitungan yang relatif lebih lambat. Karena itu jenis elemen yang lebih sederhana juga disediakan. Elemen segitiga dengan 6 titik nodal merupakan elemen yang cukup akurat dan dapat memberikan hasil yang baik dalam analisis deformasi secara umum, tetapi jika digunakan elemen dalam jumlah yang cukup banyak. Walaupun demikian, perhatian khusus perlu diberikan pada penggunaan model axi-simetri atau pada kondisi dimana Universitas Sumatera Utara keruntuhan (dapat) memegang peranan yang penting, seperti pada perhitungan daya dukung ataupun pada analisis tingkat keamanan dengan menggunakan Reduksi phi-c. Beban runtuh maupun faktor keamanan yang diperoleh umumnya berlebihan pada penggunaan elemen dengan 6 titik nodal. Dalam kasus-kasus seperti ini lebih dipilih untuk menggunakan elemen dengan 15 titik nodal. Sebuah elemen dengan 15 titik nodal dapat dianalogikan sebagai empat buah elemen dengan 6 titik nodal yang digabungkan, karena jumlah seluruh titik nodal dan seluruh titik tegangan adalah sama. Meskipun demikian, sebuah elemen dengan 15 titik nodal tetap jauh lebih baik dibandingkan empat buah elemen dengan 6 titik nodal. 2.23 Fungsi Interpolasi untuk Elemen Segitiga Untuk elemen segitiga terdapat dua buah koordinat (ξ dan η). Selain itu digunakan juga koordinat penolong ζ = 1 – ξ – η. Untuk elemen segitiga dengan 6 buah titik nodal, fungsi bentuk dapat dituliskan sebagai berikut (lihat penomoran lokal dari titik nodal yang ditunjukkan dalam Gambar 2.26 Gambar 2.26 Fungsi bentuk untuk elemen segitiga dengan 6 buah titik nodal (Plaxis 8,2) Hasil perhitungan untuk fungsi bentuk N1 = ζ. (2ζ−1) N2 = ξ. (2ξ−1) Universitas Sumatera Utara N3 = η. (2η−1) N4 = 4. ζ. ξ N5 = 4. ξ. η N6 = 4. η. ζ Untuk elemen segitiga dengan 15 buah titik nodal, fungsi bentuk dapat dituliskan sebagai berikut: Gambar 2.27 Fungsi bentuk untuk elemen segitiga dengan 15 buah titik nodal (Plaxis 8,2) Hasil perhitungan untuk fungsi: N1 = ζ⋅(4⋅ζ– 1)⋅(4⋅ζ– 2)⋅(4⋅ζ– 3) / 6 N2 = ξ⋅(4⋅ξ– 1)⋅(4⋅ξ– 2)⋅(4⋅ξ– 3) / 6 N3 = η⋅(4⋅η– 1)⋅(4⋅η– 2)⋅(4⋅η– 3) / 6 N4 = 4⋅ζ⋅ξ⋅(4⋅ζ– 1)⋅(4⋅ξ– 1) N5 = 4 ⋅ξ⋅η⋅(4⋅ξ– 1)⋅(4⋅η– 1) N6 = 4 ⋅η⋅ζ⋅(4⋅η– 1) ⋅(4⋅ζ– 1) N7 = ξ⋅ζ⋅(4⋅ζ– 1)⋅(4⋅ζ – 2)⋅8/3 N8 = ζ⋅ξ⋅(4⋅ξ– 1)⋅(4⋅ξ– 2)⋅8/3 N9 = η⋅ξ⋅(4⋅ξ– 1)⋅(4⋅ξ– 2)⋅8/3 N10 = ξ⋅η⋅(4⋅η– 1)⋅(4⋅η– 2)⋅8/3 N11 = ζ⋅η⋅(4⋅η– 1)⋅(4⋅η– 2)⋅8/3 N12 = η⋅ζ⋅(4⋅ζ– 1)⋅(4⋅ζ– 2)⋅8/3 N13 = 32⋅η⋅ξ⋅ζ⋅(4⋅ζ– 1) N14 = 32⋅η⋅ξ⋅ζ⋅(4⋅ξ– 1) N15 = 32⋅η⋅ξ⋅ζ⋅(4⋅η– 1) 2.23.1 Pembahasan Kasus plane stress dan elemen T6 diminta untuk menghitung matrik kekakuan [K ] pada titik integrasi Hammer ke-2, apabila diketahui data-data sebagai berikut: Universitas Sumatera Utara 2.23.1.1 Menghitung Shape Function (N) Dari segitiga paskal didapat P = 1 ξ η ξη ξ 2 η 2 1 1 1 [P] = 1 1 1 N = N1 0 1 2 1 1 2 0 0 N2 0 0 0 1 2 1 1 2 0 1 4 1 1 4 0 0 1 4 0 0 0 N3 0 0 N4 0 0 0 1 ; 4 1 1 4 N5 [P]−1 0 0 1 − 3 4 − 1 − 3 0 0 = 2 −4 2 4 −4 0 0 0 2 (2.29) 0 0 0 0 0 0 0 −1 4 0 0 0 4 0 − 4 0 2 − 4 N 6 = P [P ] −1 N1 = (1 − ξ − η )(2 − 2ξ − 2η − 1) = 1 − 3ξ − 3η + 4ξη + 2ξ 2 + 2η 2 N 2 = 4(1 − ξ − η )ξ = 4ξ − 4ξ 2 − 4ξη N 4 = 4ξη , N 3 = ξ (2ξ − 1) = 2ξ 2 − ξ , N 5 = η (2η − 1) = 2η 2 − η N 6 = 4(1 − ξ − η )η = 4η − 4ξη − 4η 2 2.23.1.2 Menentukan Fungsi Geometri X (ξ ,η ) = N1 Y (ξ ,η ) = N1 N2 N2 N3 N3 N4 N4 N5 x1 x 2 x N6 3 x4 x5 x6 N5 y1 y 2 y N6 3 y4 y5 y6 X (ξ ,η ) = N1 X 1 + N 2 X 2 + N 3 X 3 + N 4 X 4 + N 5 X 5 + N 6 X 6 (2.30) Y (ξ ,η ) = N1Y1 + N 2Y2 + N 3Y3 + N 4Y4 + N 5Y5 + N 6Y6 (2.31) 2.23.1.3 Menentukan Matrik Jacobian [J ] Universitas Sumatera Utara [J ] = J11 J 21 J 11 = J12 J 22 ∂{X (ξ ,η )} = 5 − 4ξ ∂ξ (2.32) J12 = J 21 = ∂{Y (ξ ,η )} = −(1 + 4ξ ) ∂ξ (2.33) ∂{X (ξ ,η )} = 5 − 4η ∂η (2.34) J 22 = Matrik Jacobian: ∂{Y (ξ ,η )} =4 ∂η (2.35) 5 − 4ξ − 1 − 4ξ 4 5 − 4η [J ] = (2.36) Untuk titik integrasi Hummer ke-2 : ξ = 0 ; η = 0.5 dan wi = 1 6 5 − 1 ; determinan matrik J = (5)(4) − (3)(−1) = 23 3 4 Jadi : [J ] = j11 j21 Menentukan invers matrik jacobian : [J ] = −1 = (2.37) j12 1 = adjo int[J ] j22 J 1 4 1 23 − 3 5 2.23.1.4 menentukan Matrik Regangan Peralihan [Bm ] Ni , x [Bm ] = .......... 0 Ni , y 0 N i , y ... i = 1,6 Ni , x dimana : N i , x = j12 N i ,ξ + j12 N i ,η ; N i , y = j21 N i ,ξ + j22 N i ,η N1 , x = (2.38) 5 1 4 (−3 + 4η + 4ξ ) + (−3 + 4ξ + 4η ) = − 23 23 23 Universitas Sumatera Utara N1 , y = 2 5 3 (−3 + 4η + 4ξ ) + (−3 + 4ξ + 4η ) = − 23 23 23 N2 , x = 8 1 4 (4 − 8ξ − 4η ) + (−4ξ ) = 23 23 23 N2 , y = − N3 , x = 4 1 4 (4ξ − 1) + (0) = − 23 23 23 N3 , y = − N4 , x = 6 5 3 (4η ) + (4ξ ) = − 23 23 23 4 1 1 (0) + (4η − 1) = 23 23 23 N5 , y = − N6 , x = 3 5 3 (4ξ − 1) + (0) = 23 23 23 8 1 4 (4η ) + (4ξ ) = 23 23 23 N4 , y = − N5 , x = 6 5 3 (4 − 8ξ − 4η ) + (−4ξ ) = − 23 23 23 5 5 3 (0) + (4η − 1) = 23 23 23 8 1 4 (−4η ) + (4 − 4ξ + −8η ) = − 23 23 23 N6 , y = − 5 6 3 (−4η ) + (4 − 4ξ + −8η ) = 23 23 23 8 0 −4 0 8 0 1 0 −8 0 − 5 0 1 [Bm ] = 0 − 2 0 − 6 0 3 0 − 6 0 5 0 6 23 − 2 − 5 − 6 8 3 − 4 − 6 8 5 1 6 − 8 2.23.1.5 Menentukan Matrik Kekakuan [K ] 1 v 0 E v 1 0 dimana : [ H σ ] = 2 1− v 1− v 0 0 2 Universitas Sumatera Utara 0 1 0.3 2 x106 = 0.3 1 0 1 − 0.09 0 0 0.35 = 2197802.19 [ ] Jadi [k ] = (0.1)( )( 1 1 1 )( )(2197802.19) K ∗ 6 23 23 [k ] = [Bm ]T [Hσ ][Bm ] 26.4 6.5 − 35.8 3.4 12.75 5.7 −2 76.6 − 31.2 59.4 [k1 ] = simetris (2.39) 17.9 − 2.85 − 38.3 15.6 19.15 − 1.7 1 15.6 − 29.2 − 7.8 14.6 − 35.8 5.7 76.6 − 31.2 − 38.3 15.6 76.6 3.4 −2 − 31.2 58.4 15.6 − 29.2 − 31.2 58.4 − 8.5 − 9.35 − 2.5 12.2 1.25 − 6.1 − 2.5 12.2 9.75 Dengan cara yang sama di atas untuk integrasi Hummer ke-2 : ξ = − 8.2 − 11.75 9.9 − 27.2 − 4.95 13.6 9.9 − 29.2 3.25 25.35 35.8 − 5.75 − 76.6 31.2 38.3 − 15.6 − 76.6 31.2 2.5 − 9.9 76.6 − 3.4 2 31.2 − 58.4 − 15.6 29.2 31.2 − 58.4 − 12.2 2.72 − 31.2 58.4 1 1 dan η = 2 2 Universitas Sumatera Utara 4 28.6 17.9 − 1.7 52.8 13 8.5 26.4 6.5 12.75 33.8 36.5 − 2.85 1 13 25.5 9.35 144 − 26 − 29 29.8 8 67.6 33 401.4 26.1 − 62.8 57.2 73 2.5 19.15 − 7.8 35.8 − 5.7 − 1.25 14.6 − 3.4 2 6.1 [k2 ] = 105.6 26 17 51 18.7 simetris 9.75 26.4 6.5 − 39.8 − 25.2 − 22.1 12.75 − 28.1 − 38.5 − 7.65 108.6 54.6 38.7 208.6 23.1 19.15 [k 3 ] = simetris − 7.3 − 13 25 50.4 7.8 14.6 − 27 − 19.9 73 37.8 26.5 17.6 51 − 17.8 − 27 37.6 148.4 16.2 35.6 26 105.6 82 11.75 4 99.3 4.95 − 13.6 16.4 23.5 3.25 25.35 8.5 9.35 − 30.5 − 14.7 − 9.25 − 7.9 − 21.5 − 10 9.75 − 80.2 59 − 83 70.5 − 288 − 96.4 − 29.2 887 6.2 63.3 − 52.6 − 146 161.6 118 − 166 141 − 87 − 4.3 − 30.4 216 777.6 22 1000 8.2 11.75 − 13.9 − 72.1 − 7.05 − 16.4 − 9.5 − 51.4 3.25 25.35 11 51.3 − 135 − 54.6 − 23.5 − 40.2 − 97 − 36 50.5 7.5 319 43.6 56.5 − 44.2 − 415.8 − 33.9 − 87.2 − 29 − 297.2 5.5 149.3 − 39 901.4 menghitung matrik kekakuan struktur K adalah: K = K11 + K 22 + K 33 dimana : (2.40) 1 1 1 K11 = (0.1)( )( )( )(2197802.19)[k1 ] 6 23 23 1 1 1 K 22 = (0.1)( )( )( )(2197802.19)[k2 ] 6 27 27 1 1 1 K 33 = (0.1)( )( )( )(2197802.19)[k3 ] 6 21 21 jadi K adalah: [K12 x12 ] = K11 + K 22 + K33 = Universitas Sumatera Utara 5.6 5.3 1.3 2.58 0.24 21.2 symetris 0.42 0.3 0.8 − 1.5 0.98 − 0.96 1.07 0.89 4.65 41.5 4.13 0.99 3.88 0.28 2.96 2.07 − 0.59 0.61 − 1.5 10.18 4.36 3.85 20 1.35 2.14 2.37 1.04 14.8 1.31 15.4 0.55 0.53 0.67 6.35 0.59 0.75 0.304 8.37 1.05 0.27 − 30.1 6.35 0.25 2.88 3.84 5.99 0.75 − 0.68 1.01 0.72 0.77 − 1.1 7.06 12.6 x 103 − 1.1 0.72 21.5 5.68 0.95 4.97 9.17 21.6 1.97 0.66 − 0.0037 0.604 5.13 1.59 25.2 71.9 4.29 4.29 178 2.23.2 Integrasi Numerik dari Elemen Segitiga Integrasi numerik terhadap elemen segitiga dapat diformulasikan sebagai berikut: (2.41) PLAXIS menggunakan integrasi Gauss untuk elemen segitiga. Untuk elemen dengan 6 buah titik nodal, integrasi didasarkan pada 3 buah titik sampel, sedangkan untuk elemen dengan 15 buah titik nodal, digunakan 12 buah titik sampel. Posisi dan faktor bobot dari titik integrasi diberikan dalam Tabel 2.7 dan 2.8 berikut: Tabel 2.7. Integrasi 3-titik untuk elemen dengan 6 titik nodal Titik 1 2 3 ξi 1/6 1/6 2/3 ηi 2/3 1/6 1/6 ζi 2/3 2/3 2/3 wi 1/3 1/3 1/3 Universitas Sumatera Utara Tabel 2.8 Integrasi 3-titik untuk elemen dengan 6 titik nodal Titik wi ξi ηi ζi 0.063089… 0.063089… 0.873821… 0.050845… 1, 2 dan 3 0.249286… 0.249286… 0.501426… 0.116786… 4,5,6 7,8,9,10,11,12 0.310352… 0.053145… 0.636502… 0.082851… 2.23.3 Turunan dari Fungsi Bentuk Untuk menghitung komponen regangan Cartesius dari perpindahan, seperti yang diformulasikan dalam persamaaan (2.42) turunan perlu diperhitungkan terhadap sistem sumbu global (x, y, z). (2.43) Dimana, Di dalam elemen, turunan dihitung sesuai sistem koordinat lokal (ξ, η, ζ). Hubungan antara turunan lokal dan global melibatkan matriks Jacobi, J: Universitas Sumatera Utara Atau dalam bentuk invers: Turunan lokal ∂Ni/∂ξ, dan lain-lain, dapat dengan mudah diturunkan dari fungsi bentuk elemen, karena fungsi bentuk diformulasikan dalam koordinat lokal. Komponen Jacobi diperoleh dari perbedaan pada koordinat titik nodal. Invers matriks Jacobi, J-1, diperoleh dengan melakukan invers secara numerik terhadap J. Komponen regangan Cartesius sekarang dapat dihitung dengan penjumlahan dari kontribusi seluruh titik nodal adalah: dimana vi adalah komponen perpindahan dalam titik nodal i. Untuk analisis regangan bidang, komponen regangan dalam arah-z secara definitif adalah nol, yaitu εzz = γyz = γzx = 0. Untuk analisis axi-simetri, berlaku kondisi εzz = ux / r dan γyz = γzx = 0 (r = radius atau jari-jari). Universitas Sumatera Utara 2.23.4 Perhitungan Matriks Kekakuan Elemen Matriks kekakuan elemen, Κe, dihitung dengan integral: (2.44) Integral diestimasi dengan integrasi numerik. Pada kenyataannya, matriks kekakuan elemen terdiri dari sub-matriks Ke ij dimana i dan j adalah titik nodal lokal. Proses perhitungan dari matriks kekakuan elemen dapat diformulasikan sebagai berikut: (2.45) 2.23.5 Proses Perhitungan pada Program Plaxis Proses perhitungan elemen hingga berdasarkan matriks kekakuan elastik - Baca data masukan - Bentuk matriks kekakuan (2.46) Langkah baru - Bentuk vektor beban baru - Bentuk vektor reaksi (2.47) (2.48) - Hitung ketidakseimbangan (2.49) - Atur ulang peningkatan perpindahan (2.50) - Iterasi baru Universitas Sumatera Utara (2.51) - Selesaikan perpindahan - Perbaharui peningkatan perpindahan (2.52) (2.53) - Hitung peningkatan regangan (2.54) - Hitung tegangan: - Elastis - Keseimbangan (2.55) (2.56) - Konstitutif Bentuk vektor reaksi - (2.57) Bentuk vektor reaksi (2.58) - Hitung ketidakseimbangan (2.59) - Hitung kesalahan (2.60) - Pemeriksaan akurasi Universitas Sumatera Utara jika e > etolerated → iterasi baru - Perbaharui perpindahan (2.61) - Tulis data keluaran (hasil) - Jika tidak dapat diselesaikan → langkah baru - Selesai Universitas Sumatera Utara