Populasi dan Distribusi Bintang di Galaksi { 22 Februari 2011 Tujuan : mengerti konsep tentang populasi dan distribusi bintang Galaksi dan berbagai karakteristik yang membedakannya Prasyarat : mengerti berbagai besaran astrofisika bintang seperti umur, massa, komposisi kimia, temperatur efektif, kelas spektrum, tahap-tahap evolusi bintang Properti yang paling penting dari sebuah bintang adalah massa Semakin masif sebuah bintang akan semakin kuat gaya gravitasinya, hingga menyebabkan meningkatnya tekanan dan temperatur di pusat Review Astrofisika L 4 R T 2 Massa dan suhu yang lebih tinggi luminositas tinggi 4 Massa yang lebih tinggi juga memerlukan dukungan lebih melawan gravitasi (kesetimbangan hidrostatik) Dukungan ini berasal dari generasi peningkatan energi dari reaksi fusi di pusat bintang Ini adalah cara lain untuk melihat mengapa bintang-bintang besar lebih bercahaya Semakin “luminous” bintang akan menghabiskan energi lebih banyak dalam waktu yang lebih singkat Meskipun mereka memiliki lebih banyak bahan bakar, mereka menggunakannya dengan sangat cepat sehingga bintang-bintang raksasa tidak hidup yang sangat panjang. Review Astrofisika Magnitudo F1 m1 2.5 log Fref Kebiasaan lama yang masih digunakan Menggunakan sistem logaritmik M1 disebut magnitudo semu Review Astrofisika Fotometri bintang m M 5 log( d ) 5 Magnitudo semu bergantung pada pengamatan kita, tetapi tidak menjelaskan tetapi tidak memberi tahu kami tentang sifat sejati bintang Untuk itu kita gunakan magnitudo mutlak (M) Komposisi atom dari bintang 70% Hydrogen 28% Helium 2% lainnya Bagaimana kita tahu ? Garis-garis pada spektrum Review Astrofisika Spektroskopi Bintang Comparing Spectra Diagram Hertzsprung-Russel Radius Bima sakti Bima sakti pada berbagai panjang gelombang Populasi Bintang : kumpulan bintang dengan properti (karakteristik) yang sama Parameter penting yang menyatakan properti yang sama adalah umur (bukan massa bintang ). Beberapa parameter lain yang menunjukkan properti yang sama adalah : Komposisi kimia awal (metalisitas) Fungsi massa awal (IMF), fraksi bintang ganda Kinematika Jarak Distribusi ruang Asal-usul, sejarah pembentukan bintang Sebuah populasi dimana semua bintangnya memiliki umur dan metalisitas yang sama disebut : simple stellar population (SSP). Contoh : open cluster Populasi Bintang Sebuah galaksi terdiri dari berbagai populasi (bintang dengan berbagai umur dan metalisitas, gas dan molekul antar bintang) Galaksi = Ni populasii = gabungan (composite) populasi Populasi = Ni SSPi = superposisi dari berbagai SSP Contoh Bima Sakti : Komponen Galaksi dengan berbagai populasi yang terpisah seperti bulge, disk dan halo Setiap komponen terdiri dari gabungan berbagai macam SSP Asumsi Parameter-parameter yang digunakan untuk menjelaskan properti dari populasi bintang : Fungsi massa awal (Initial Mass Function – IMF) : IMF=IMF(x,t) Kelimpahan spesies atom Xj : X=X(x,t,X1,X2,X3,...) Laju pembentukan bintang (Star Formation Rate – SFR): SFR=SFR(x,t) Distrubusi bintang (dan gas) pada ruang fase: f = f (x,v,t) Evolusi terhadap waktu : chemo-dynamical models Beberapa contoh gabungan populasi komponen utama dalam Bima Sakti kita adalah : halo, disk dan bulge. Masing-masing kelompok di atas merupakan kompleks bintang-bintang dan materi antar bintang, tapi dengan sifat global yang berbeda / distribusi kimia / umur / kinematika dari satu sama lain. Perbedaan ini mungkin berhubungan dengan campuran yang berbeda dari SSP. Semakin kecil basis set (n, mn), semakin mudah adalah populasi komposit (dan, akhirnya, sejarah Galactic) untuk diungkap Mengidentifikasi SSPS individu mungkin sulit di galaksi yang kompleks, tapi, mungkin untuk SSP yang dirangkai dalam pola agak sederhana. . Komponen Utama (misalkan pembentukan bintang pada piringan dengan memperkaya serangkaian pembentukan SSP disertai meningkatnya kecepatan rotasi terhadap pusat) . . . yang membentuk populasi komponen utama dari sebuah galaksi Ini adalah satu tujuan dari studi populasi bintang. Kita berharap untuk menyederhanakan apa yang mungkin menjadi masalah yang rumit untuk menemukan salah satu pola dalam Populasi Komponen Utama. Lebih spesifik lagi: Kita mencari: Korelasi antara bebrbagai parameter seperti: DISTRUBUSI RUANG, e.g., stellar density laws, phase space density KINEMATIKA, kecepatan, dispersi kecepatan (i.e. Fitur dinamika sistem yang teramati) KIMIAWI, misal: metalisitas rata-rata (mean [Fe/H]), pola kelimpahan kimiawi ([O/Fe], [Ca/Fe], [Zn/Fe], ...) UMUR, direfleksikanoleh berbagai tipe spektrum bintang (keadaan evolusinya) UNTUK MENGIDENTIFIKASI DAN MENDEFINISIKAN: Komponen populasi utama, yang akan memungkinkan kita UNTUK MEREKONSTRUKSI: Sebuah model yang lengkap secara fisikal, evolusi kimiawi dan dinamik dari Galaksi Bima Sakti (atau sistem galaksi lainnya) The Ultimate Chemodynamical Model untuk evolusi sebuah galaksi dapat memasukan berbagai variabel (bergantung pada waktu) seperti : : evolusi dari distribusi ruang ruang fase bintang, gas dan materi gelap : evolusi dari spesies atom Xi dari pengayaan gas antar bintang tempat bintang terbentuk : Laju pembentukan bintang (SFR) : IMF, bagaimana bintang baru terdistribusi terhadap massa (yang menjelaskan bagaimana populasi berevolusi secara kimiawi dan apa saja jenis sisa (spesies atom) yang dihasilkan { W. Baade CMD types structural components First sweeping collectivization of “stellar population” properties The Andromeda system M31, M32 and N205. Baade's famous plate, reproduced from Majewski (ed.), Galaxy Evolution: The Milky Way Perspective, ASP Conf. Ser. 49. High contrast zoom of previous image to show the incipient resolution of the "Baade sheet". Baade's famous plate, reproduced from Majewski (ed.), Galaxy Evolution: The Milky Way Perspective, ASP Conf. Ser. 49. Baade's definition of populations based on CMD type. A modern HR diagram of the solar neighborhood. From Wikipedia. Bingelli's famous diagram, taken from Sparke & Gallagher, Galaxies in the Universe Spheroidal/elliptical characteristics by Kormendy, taken from Sparke & Gallagher, Galaxies in the Universe Baade's Population II: K giants brighter than Pop I (now known to be an abundance effect). No red and blue supergiants (now known to be an age effect). Has short period, cluster Cepheids (i.e. RR Lyrae stars -now known to be an age/metallicity effect). "high velocity stars (w.r.t. Sun)" (kinematics). subdwarfs (now known to be an abundance effect). weak-lined stars (now known to be an abundance effect). globular clusters dE, Sa galaxies (central parts anyway; location). outer Milky Way and bulge (location). "Pop II can be found without associated Pop I". Baade's Population I: • Open clusters (already known to be connected to slow moving stars). • OB stars (now known as an age effect). • solar neighborhood stars (location). • "slow moving stars (w.r.t. Sun)": (kinematics). • strong lines stars (abundance). • "only seen with Population II stars associated" (e.g., Milky Way, Spirals, Magellanic Cloud clusters). halo disk bulge Spiral Galaxy Disk Component: Bintang dengan berbagai umur dan banyak awan gas Spheroidal Component: bulge & halo, bintang-bintang tua, dan sedikit awan gas Disk Component: Bintang dengan berbagai umur dan banyak awan gas Spheroidal Component: bulge & halo, bintangbintang tua, dan sedikit awan gas Disk Component: Bintang dengan berbagai umur dan banyak awan gas Spheroidal Component: bulge & halo, bintangbintang tua, dan sedikit awan gas Warna biru-putih mengindikasikan adanya proses pembentukan bintang Warna merahkuning mengindikasikan bintang-bintang tua Disk Component: Bintang dengan berbagai umur dan banyak awan gas Spheroidal Component: bulge & halo, bintangbintang tua, dan sedikit awan gas Warna biru-putih mengindikasikan adanya proses pembentukan bintang Warna merahkuning mengindikasikan bintang-bintang tua Subdivide/refine Baade's broad groupings: Summary tables from the 1957 Vatican Conference proceedings. This book makes great reading, because all of the conversations of participants have been preserved and recorded in the proceedings. Note that the ages listed in the table are based on well outdated stellar evolution models, and are too small by about a factor of two. F. A “conventional, modern view of the primary Galactic stellar populations and their spatial (density law), chemical, and kinematical properties. Though it should be kept in mind that this conventional picture is still debated. Note the difference between the luminous stellar halo, and the dark matter halo postulated to exist and in which the luminous matter is embedded. Another view of the Milky Way and its populations. From Buser (2000, Science, 287, 5450, 69). His caption: Schematic view of the major components that make up the Galaxy's overall structure, shown in a cross section perpendicular to the plane of rotation and going through the sun and the Galactic center. From the observer's vantage point at the sun's position, the directions to the North (NGP) and South (SGP) Galactic Poles are particularly suitable for studying the layered structure and other properties of the stellar disks and halo, whereas the concentration of gas and dust in the extreme disk severely obstructs observations of the distant bulge at visual-optical wavelengths. The central parts of the Galaxy are better accessible through longer wavelength infrared and radio observations. Cartoon (left) and modeled (right) illustration of the Galactic dark matter halo. In right figure the plot is only of the density of dark matter in a simulated Milky Way halo, with light on a logarithmic scale and 600,000 light years on a side. From http://archive.ncsa.uiuc.edu/Cyberia/Cosmos/RotationsReckon.html and http://www.mpa-garching.mpg.de/mpa/research/current_research/hl2003-12/hl200312-en.html. Galactic Structure Flat disk: •1011 stars (Pop.I) • ISM (gas, dust) • 5% of the Galaxy mass, 90% of the visible light • Active star formation since 10 Gyr. Central bulge: • moderately old stars with low specific angular momentum. • Wide range of metallicity • Triaxial shape (central bar) • Central supermassive BH Stellar Halo • 109 old and metal poor stars (Pop.II) • 150 globular clusters (13 Gyr) • <0.2% Galaxy mass, 2% of the light •Dark Halo Thin disk The galactic disk is a complex system including stars, dust and gas clouds, active star forming regions, spiral arm structures, spurs, ring, ... However, most of disk stars belong to an “axisymmetric” structure, the Thin disk, which is usually represented by an exponential density law: ( R, z ) 0 e z z0 / hz e ( R R0 ) / hR • hz 250 pc vertical scale height W = 20 km/s • hR 3.5 kpc radial scale-lenght • z0 20 pc Sun position above the plane • R0 8.5 kpc Solar galactocentric distance Thin disk: kinematics (a) Local Standard of Rest (LSR) Definition: Ideal point rotating along a circular orbit with radius R VLSR 220 km/s (Vz=0,Vr=0) T 250 Myr VRot (r) = - [Kr (r,z=0) r]1/2 GC R LSR NGP (b) Galactic velocities: G.C. U Rot. V W (U,V,W) components with respect to the LSR In particular, (U,V,W) = (+10.0, +5.2, +7.2) km/s (Dehnen & Binney 1998) Thin disk: kinematics lv G.C. (c) Velocity Ellipsoid Definition: Ellipsoid of velocity dispersions for a Schwarzchild stellar population (1907) with multivariate gaussian velocities, defined by: • the dispersions (1 , 2 , 3 ) along the (v1 ,v2 ,v3 ) principal axis • lv = vertex deviation, with respect to (U,V,W) v1 U v2 V v12 v 22 v 32 Pr( v1 , v 2 , v 3 ) exp 2/3 2 2 2 (2 ) 1 2 3 2 1 2 2 2 3 1 Thin disk: kinematics (d) Asymmetric drift N.ro of stars Definition: systematic lag of the rotation velocity with respect to the LSR of a given stellar population va = vLSR - v -va Generally, old stars show larger velocity dispersion and asymmetric drift, but smaller vertex deviation, than young stars V Local kinematics from Hipparcos data (Dehnen & Binney 1998) Thin disk: kinematics Velocity ellipsoid of the “old” thin disk (U , V , W ;va ) = (34, 21, 18; +6 ) km/s from Binney & Merrifield (1998) “Galactic Astronomy” For an isotherm population: ( z) e hz |z|/ hz W 2G ( z 0) 1/ 2 where, (M/pc²) = galactic surface density Thin disk: metallicity Range of Metallicity: 0.008 < Z < 0.03 (Z = 0.02) No apparent age-metallicity relation is present in the Thin disk (Edvardsson et al 1993, Feltzing et al. 2001) Age-metallicity distribution of 5828 stars with /<0.5 and Mv<4.4 Galactic Halo • Spatial density. Axisymmetric, flattened (~0.7-0.9), power law (n~2.5 - 4) function. For instance: 2 z ( R, z ) 0 R 2 2 •halo(z=0)/0 ~ 1/600 • Age: 12-13 Gyr • Metallicity: [Fe/H] ~ (-1, -3) - [Fe/H] ~ -1.5 n/2 Galactic Halo: kinematics Velocity ellipsoid of the “halo” (U , V , W ;va ) = (160, 89, 94; +217 ) km/s from Casertano, Ratnatunga & Bahcall (1990, AJ, 357, 435) Rotation velocity. Halo - Thick Disk distributions from Chiba & Beers (2001) T h i c k disk Basic parameters: • hz 1000 pc • W 40-60 km/s • Pop. II Intermediate • [Fe/H] -0.6 dex with low metallicity tail down to -1.5 • Age: 10-12 Gyr • thick(z=0)/0 4-6 % Thick disk A matter of debate Thick disk A matter of debate Velocity ellipsoid of the “thick” disk (U , V , W ;va ) = (61, 58, 39; +36 ) km/s from Binney & Merrifield (1998) “Galactic Astronomy” The various measurements of the velocity ellipsoid are quite consistent, but a controversy concerning the presence of a vertical gradient is still unresolved: • va/ z = i / z = 0 according to several authors • va/ z = -14 ± 5 km/s per kpc Majewski et al. (1992, AJ) Thick disk: Formation Process • Bottom-up. Dynamical heating of the old disk because of an ancient major merger V m M m 2 VSat M 2 W V 200 km/s , m/M 0.10 W 60 km/s • Top-down. Halo-disk intermediate component. Hypothesis: dissipative phase of the protogalactic clouds at the end of the halo collapse (Jones & Wise 1983) Heating of a galactic disk by a merger of a high density small satellite. N-body simulations by Quinn et al. (1993, ApJ) Actually, more recently, Huang & Calberg (1997) found that low density satellites with mass < 20% seem to generate tilted disks instead of thick disks. Thick disk: Signature of the Formation Process FORMATION PROCESS PHYSICAL PROPERTIES Dynamical heating of an ancient thin disk Discrete component: No vertical chemical and kinematic gradients expected in the Thick Disk Intermediate phase Halo-Disk Continuity of the velocity ellipsoids and asymmetric drift Thick disk: Signature of the Formation Process Proper motion survey towards the NGP (GSC2 material) Types of surveys suitable for Galactic studies: •Selective surveys. For examples, stellar samples selected on the basis of the chemical or kinematic properties (e.g. low metallicity and high proper motion stars Pop. II halo stars. Warning: “biased” results) • Surveys with tracers. High luminosity objects which can be observed up to great distances, easy to identify and to measure their distance (e.g. globular clusters, giants, variable RR Lyrae, … ) . It is assumed that tracers are representative of the whole population. • In situ surveys. These measure directly the bulk of the objects which constitute the target populations (e.g. dwarfs of the galactic Pop.I and Pop.II). These should guarantee “unbiased” results if systematic effects due to the magnitude threshold, photometric accuracy, angular resolution, etc. are properly taken into account. Fundamental Equation of the Stellar Statistics (von Seeliger 1989) A(m) ( Mr, r ) D( r ) r dr 2 0 (M)=Luminosity function D(x,y,z)=density distribution M m 5 5 log r a ( r ) (Integral Fredholm’s equation of the first kind). Problem: inversion of the integral equation! Galaxy models An alternative approach: integrate the Eqn of stellar statistics assuming some prior information concerning the stellar population. In practice, •(1) They assume discrete galactic components, each parametrized by specific spatial density, (R,z; p), velocity ellipsoid and by a well defined LF/CMD consistent with the age/metallicity of each component. •(2) Predicted starcounts (i.e. N.ro of stars vs. magnitude, color, proper motion, radial velocity, etc.) are derived by means of the fundamental Eqn. of the stellar Statistics. •(3) Comparisons against observations are used to confute or validate and improve the model parameters. Galaxy models Models: Bahcall&Soneira IASG - Besancon Gilmore-Reid Majewski - GM Barcelona - Mendez Sky - HDR-GST - … … Galaxy models: LF & CMD Synthetic HR diagram for thin, thick disk and halo from IASG model (Ratnatunga, Casertano & Bahcall) Galaxy models: simulated catalogs All components Old thin disk Young thin disk thick disk Intermediate thin disk halo GSC 2.2 starcounts vs. Mendez’s Galaxy model Halo Luminosity Function(s) Gizis & Reid (1999) Gould et al (1998) Gizis & Reid (1999, ApJ, 117, 508) Galaxy models: No unique solutions! The controversy regarding the scale height of the thick disk can be partially explained by means of the (anti)correlations between hz and 0 of the thin and thick disks. Similarly, the estimation of the halo flatness is correlated to the power-index, and it is also sensitive to the separation between halo and thick disk stars. Galaxy models What are the “optimal” line of sights to avoid model degeneracy? Answer: use all-sky directions + multiparameters (photometry+astrometry) + multidimensional best-fitting methods Kinematic deconvolution of the local luminosity function Recently, Pichon, Siebert & Bienaymè (2001) presented a new method for inverting a generalized Eqn of Stellar Statistics including proper motions. Multidimensional starcounts N(l,b,lcosb, b) are used with supplementary constraints required by dynamical consistency* in order to derive both (1) the luminosity function and (2) kinematics _________________________________ * Based on general dynamical models (stationary, axisymmetric and fixed kinematic radial gradients), such as in (a) the Schwatzchild model (velocity ellipsoid anisotropy ,and (b) Epicyclic model (density gradients) Kinematic deconvolution of the local luminosity function