MOSFET

advertisement
MOSFET
Author : lilik gunarta
Publish : 29-08-2011 10:30:48
Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
MOSFET
MOSFET daya dalam kemasan D2PAK
Simbol
Pengayaan kanal-P Pemiskinan kanal-P Pengayaan kanal-N Pemiskinan kanal-N
Transistor efek-medan semikonduktor logam-oksida (MOSFET) adalah salah satu jenis transistor efek medan.
Prinsip dasar perangkat ini pertama kali diusulkan oleh Julius Edgar Lilienfeld pada tahun 1925 . MOSFET
mencakup kanal dari bahan semikonduktor tipe-N dan tipe-P, dan disebut NMOSFET atau PMOSFET (juga
biasa nMOS, pMOS). Ini adalah transistor yang paling umum pada sirkuit digital maupun analog, namun
transistor pertemuan dwikutub pada satu waktu lebih umum.
Etimologi
Kata 'logam' pada nama yang sekarang digunakan sebenarnya merupakan nama yang salah karena bahan
gerbang yang dahulunya lapisan logam-oksida sekarang telah sering digantikan dengan lapisan polisilikon
(polikristalin silikon). Sebelumnya aluminium digunakan sebagai bahan gerbang sampai pada tahun 1980 -an
ketika polisilikon mulai dominan dengan kemampuannya untuk membentuk gerbang menyesuai-sendiri.
Walaupun demikian, gerbang logam sekarang digunakan kembali karena sulit untuk meningkatkan kecepatan
operasi transistor tanpa pintu logam.
IGFET adalah peranti terkait, istilah lebih umum yang berarti transistor efek-medan gerbang-terisolasi, dan
hampir identik dengan MOSFET, meskipun dapat merujuk ke semua FET dengan isolator gerbang yang
bukan oksida. Beberapa menggunakan IGFET ketika merujuk pada perangkat dengan gerbang polisilikon,
tetapi kebanyakan masih menyebutnya MOSFET.
Komposisi
Fotomikrograf dua gerbang logam MOSFET dalam ujicoba.
Biasanya bahan semikonduktor pilihan adalah silikon, namun beberapa produsen IC, terutama IBM, mulai
menggunakan campuran silikon dan germanium (SiGe) sebagai kanal MOSFET. Sayangnya, banyak
semikonduktor dengan karakteristik listrik yang lebih baik daripada silikon, seperti galium arsenid (GaAs),
tidak membentuk antarmuka semikonduktor-ke-isolator yang baik sehingga tidak cocok untuk MOSFET.
Hingga kini terus diadakan penelitian untuk membuat isolator yang dapat diterima dengan baik untuk bahan
semikonduktor lainnya.
Page 1
MOSFET
Untuk mengatasi peningkatan konsumsi daya akibat kebocoran arus gerbang, dielektrik κ tinggi
menggantikan silikon dioksida sebagai isolator gerbang, dan gerbang logam kembali digunakan untuk
menggantikan polisilikon.
Gerbang dipisahkan dari kanal oleh lapisan tipis isolator yang secara tradisional adalah silicon dioksida,
tetapi yang lebih maju menggunakan teknologi silicon oxynitride. Beberapa perusahaan telah mulai
memperkenalkan kombinasi dielektrik κ tinggi + gerbang logam di teknologi 45 nanometer.
Simbol sirkuit
Berbagai simbol digunakan untuk MOSFET. Desain dasar umumnya garis untuk saluran dengan kaki sumber
dan cerat meninggalkannya di setiap ujung dan membelok kembali sejajar dengan kanal. Garis lain diambil
sejajar dari kanal untuk gerbang. Kadang-kadang tiga segmen garis digunakan untuk kanal peranti moda
pengayaan dan garis lurus untuk moda pemiskinan.
Sambungan badan jika ditampilkan digambar tersambung ke bagian tengan kanal dengan panah yang
menunjukkan PMOS atau NMOS. Panah selalu menunjuk dari P ke N, sehingga NMOS (kanal-N dalam
sumur-P atau substrat-P) memiliki panah yang menunjuk kedalam (dari badan ke kanal). Jika badan
terhubung ke sumber (seperti yang umumnya dilakukan) kadang-kadang saluran badan dibelokkan untuk
bertemu dengan sumber dan meninggalkan transistor. Jika badan tidak ditampilkan (seperti yang sering
terjadi pada desain IC desain karena umumnya badan bersama) simbol inversi kadang-kadang digunakan
untuk menunjukkan PMOS, sebuah panah pada sumber dapat digunakan dengan cara yang sama seperti
transistor dwikutub (keluar untuk NMOS, masuk untuk PMOS).
Kanal-P
Kanal-N
JFET
MOSFET pengayaan
MOSFET pemiskinan
Page 2
MOSFET
Untuk simbol yang memperlihatkan saluran badan, di sini dihubungkan internal ke sumber. Ini adalah
konfigurasi umum, namun tidak berarti hanya satu-satunya konfigurasi. Pada dasarnya, MOSFET adalah
peranti empat saluran, dan di sirkuit terpadu banyak MOSFET yang berbagi sambungan badan, tidak harus
terhubung dengan saluran sumber semua transistor.
Operasi MOSFET
Untuk informasi lebih lanjut, lihat referensi berikut.
Struktur Semikonduktor–Logam–Oksida
Struktur Semikonduktor–Logam–Oksida pada silikon tipe-P
Struktur semikonduktor–logam–oksida sederhana diperoleh dengan menumbuhkan selapis
oksida silikon diatas substrat silikon dan mengendapkan selapis logam atau silikon polikristalin. Karena
oksida silikon merupakan bahan dielektrik, struktur MOS serupa dengan kondensator planar dengan salah
satu elektrodanya digantikan dengan semikonduktor.
Ketika tegangan diterapkan membentangi struktur MOS, tegangan ini mengubah penyebaran muatan dalam
semikonduktor. Umpamakan sebuah semikonduktor tipe-p (dengan NA merupakan kepadatan akseptor, p
kepadatan lubang; p = NA pada badan netral), sebuah tegangan positif VGB dari gerbang ke badan membuat
lapisan pemiskinan dengan memaksa lubang
bermuatan positif untuk menjauhi antarmuka
gerbang-isolator/semikonduktor, meninggalkan daerah bebas pembawa. Jika VGB cukup tinggi, kepadatan
tinggi pembawa muatan negatif membentuk lapisan inversi dibawah antarmuka antara semikonduktor dan
isolator. Umumnya, tegangan gerbang dimana kepadatan elektron pada lapisan inversi sama dengan
kepadatan lubang pada badan disebut tegangan ambang.
Struktur badan tipe-p ini adalah konsep dasar dari MOSFET tipe-n, yang mana membutuhkan penambahan
daerah sumber dan cerat tipe-n.
Struktur MOSFET dan formasi kanal
Irisan NMOS tanpa kanal yang terbentuk (keadaan mati)
Irisan NMOS dengan kanal yang terbentuk (keadaan hidup)
Sebuah transistor efek-medan semikonduktor–logam–oksida (MOSFET) adalah berdasarkan
pada modulasi konsentrasi muatan oleh kapasitansi MOS di antara elektroda badan dan elektroda gerbang
yang terletak diatas badan dan diisolasikan dari semua daerah peranti dengan sebuah lapisan dielektrik
Page 3
MOSFET
gerbang yang dalam MOSFET adalah sebuah oksida, seperti silikon dioksida. Jika dielektriknya bukan
merupakan oksida, peranti mungkin disebut sebagai FET semikonduktor–logam–terisolasi
(MISFET) atau FET gerbang–terisolasi (IGFET). MOSFET menyertakan dua saluran tambahan yaitu
sumber dan cerat yang disambungkan ke daerah dikotori berat tersendiri yang dipisahkan dari daerah badan.
Daerah tersebut dapat berupa tipe-p ataupun tipe-n, tetapi keduanya harus dari tipe yang sama, dan
berlawanan tipe dengan daerah badan. Daerah sumber dan cerat yang dikotori berat biasanya ditandai dengan
'+' setelah tipe pengotor. Sedangkan daerah yang dikotori ringan tidak diberikan tanda.
Jika MOSFET adalah berupa kanal-n atau NMOS FET, lalu sumber dan cerat adalah daerah 'n+' dan badan
adalah daerah 'p'. Maka seperti yang dijelaskan diatas, dengan tegangan gerbang yang cukup, diatas harga
tegangan ambang, elektron dari sumber memasuki lapisan inversi atau kanal-n pada antarmuka antara
daerah-p dengan oksida. Kanal yang menghantar ini merentang di antara sumber dan cerat, dan arus dialirkan
melalui kanal ini jika ada tegangan yang dikenakan di antara sumber dan cerat.
Jika tegangan gerbang dibawah harga ambang, kanal kurang terpopulasi dan hanya sedikit arus bocoran
praambang yang dapat mengalir dari sumber ke cerat.
Moda operasi
Operasi dari MOSFET dapat dibedakan menjadi tiga moda yang berbeda, bergantung pada tegangan yang
dikenakan pada saluran. Untuk mempermudah, perhitungan dibawah merupakan perhitungan yang telah
disederhanakan
Untuk sebuah MOSFET kanal-n moda pengayaan, ketiga moda operasi adalah:
Moda Inversi Lemah
Disebut juga moda Titik-Potong atau Pra-Ambang, yaitu ketika VGS < Vth
dimata V_th adalah tegangan ambang peranti. Berdasarkan model ambang dasar, transistor dimatikan dan
tidak ada penghantar antara sumber dan cerat. Namun pada kenyataannya, distribusi Boltzmann dari energi
elektron memungkinkan beberapa elektron berenergi tinggi pada sumber untuk memasuki kanal dan mengalir
ke cerat,
menghasilan arus praambang yang merupakan fungsi eksponensial terhadan
tegangan
gerbang–sumber. Walaupun arus antara cerat dan sumber harusnya nol ketika transistor minatikan,
sebenarnya ada arus inversi-lemah yang sering disebut sebagai bocoran praambang.Pada inversi-lemah, arus
berubah eksponensial terhadap panjar gerbang-ke-sumber VGS[5][6] , dimana ID0 = arus pada VGS = Vth
dan faktor landaian n didapat dari n = 1 + CD / COX, dengan CD = kapasitansi dari lapisan pemiskinan dan
COX = kapasitansi dari lapisan oksida.Beberapa sirkuit daya-mikro didesain untuk mengambil keuntungan
dari bocoran praambang. Dengan menggunakan daerah inversi-lemah, MOSFET pada sirkuit tersebut
memberikan perbandingan transkonduktansi terhadap arus yang tertinggi (gm / ID = 1 / (nVT)), hampir seperti
transistor dwikutub. Sayangnya lebar-jalur rendah dikarenakan arus penggerak yang rendah.
arus cerat MOSFET vs. Tegangan cerat-ke-sumber untuk beberapa harga VGS − Vth, perbatasan
antara moda linier (Ohmik) dan penjenuhan (aktif) diperlihatkan sebagai lengkung parabola diatas
Irisan MOSFET dalam noda linier (ohmik), daerah inversi kuat terlihat bahkan didekat cerat
Page 4
MOSFET
Irisan MOSFET dalam moda penjenuhan (aktif), terdapat takik didekat cerat
Moda trioda
Disebut juga sebagai daerah linear (atau daerah Ohmik) yaitu ketika VGS > Vth dan VDS < ( VGS - Vth
).
Transistor dihidupkan dan sebuah kanal dibentuk yang memungkinkan arus untuk mengalir di antara sumber
dan cerat. MOSFET beroperasi seperti sebuah resistor, dikendalikan oleh tegangan gerbang relatif terhadap
baik tegangan sumber dan cerat. Arus dari cerat ke sumber ditentukan oleh: dimana μn adalah
pergerakan efektif pembawa muatan, W adalah lebar gerbana, L adalah panjang gerbang dan Cox adalah
kapasitansi oksida gerbang tiap unit luas. Transisi dari daerah eksponensial praambang ke daerah trioda tidak
setajam seperti yang diperlihatkan perhitungan.
Moda penjenuhan
Juga disebut dengan Moda Aktif
Ketika VGS > Vth dan VDS > ( VGS - Vth )Transistor dihidupkan dan kanal dibentuk, memungkinkan
arus untuk mengalir di antara sumber dan cerat. Karena tegangan cerat lebih tinggi dari tegangan gerbang,
elektron menyebar dan penghantaran tidak melalui kanal sempit tetapi melalui kanal yang jauh lebih lebar.
Awal dari daerah kanal disebut penyempitan untuk menunjukkan kurangnya daerah kanal didekat cerat. Arus
cerat sekarang hanya sedikit bergantung pada tegangan cerat dan dikendalikan terutama oleh tegangan
gerbang–sumber. Faktor tambahan menyertakan λ, yaitu parameter modulasi panjang kanal,
membuat tegangan cerat mandiri terhadap arus, dikarenakan oleh adanya efek Early. , dimana kombinasi
Vov = VGS - Vth dinamakan tegangan overdrive. Parameter penting desain MOSFET adalah resistansi
keluaran rO: .
Tipe MOSFET lainnya
MOSFET gerbang ganda
MOSFET gerbang ganda mempunyai konfigurasi tetroda, dimana semua gerbang mengendalikan arus dalam
peranti. Ini biasanya digunakan untuk peranti isyarat kecil pada penggunaan frekuensi radio dimana gerbang
kedua gerang keduanya digunakan sebagai pengendali penguatan atau pencampuran dan pengubahan
frekuensi.
FinFET
Peranti FinFET gerbang ganda.
FinFET adalah sebuah peranti gerbang ganda yang diperkenalkan untuk memprakirakan flek kanal pendek
dan mengurangi perendahan sawar diinduksikan-cerat.
MOSFET moda pemiskinan
Peranti MOSFET moda pemiskinan adalah MOSFET yang dikotori sedemikian pura sehingga sebuah kanal
terbentuk walaupun tidak ada tegangan dari gerbang ke sumber. Untuk mengendalikan kanal, tegangan
negatif dikenakan pada gerbang untuk peranti kanal-n sehingga "memiskinkan" kanal, yang mana
mengurangi arus yang mengalir melalui kanal. Pada dasarnya, peranti ini ekivalen dengan sakelar
normal-hidup, sedangkan MOSFET moda pengayaan ekivalen dengan sakelar normal-mati.[17]
Karena peranti ini kurang berdesah pada daerah RF dan penguatan yang lebih baik, peranti ini sering
Page 5
MOSFET
digunakan pada peralatan elektronik RF.
Logika NMOS
MOSFET kanal-n lebih kecil daripada MOSFET kanal-p untuk performa yang sama, dan membuat hanya satu
tipe MOSFET pada kepingan silikon lebih murah dan lebih sederhana secara teknis. Ini adalah prinsip dasar
dalam desain logika NMOS yang hanya menggunakan MOSFET kanal-n. Walaupun begitu, tidak seperti
logika CMOS, logika NMOS menggunakan daya bahkan ketika tidak ada pensakelaran. Dengan peningkatan
teknologi, logika CMOS menggantikan logika NMOS pada tahun 1980-an.
MOSFET daya
Irisan sebuah MOSFET daya dengan sel persegi. Sebuah transistor biasanya terdiri dari beberapa ribu sel.
MOSFET daya memiliki struktur yang berbeda dengan MOSFET biasa. Seperti peranti semikonduktor daya
lainnya, strukturnya adalah vertikal, bukannya planar. Menggunakan struktur vertikal memungkinkan
transistor untuk bertahan dari tegangan tahan dan arus yang tinggi. Rating tegangan dari transistor adalah
fungsi dari pengotoran dan ketebalan dari lapisan epitaksial-n, sedangkan rating arus adalah fungsi dari lebar
kanal. Pada struktur planar, rating arus dan tegangan tembus ditentukan oleh fungsi dari dimensi kanal,
menghasilkan penggunaan yang tidak efisien untuk daya tinggi. Dengan struktur vertikal, besarnya
komponen hampir sebanding dengan rating arus dan ketebalan komponen sebanding dengan rating tegangan.
MOSFET daya dengan struktur lateral banyak digunakan pada penguat audio hi-fi. Kelebihannya adalah
karakteristik yang lebih baik pada daerah penjenuhan daripada MOSFET vertikal. MOSFET vertikal didesain
untuk penggunaan pensakelaran.
DMOS
DMOS atau semikonduktor–logam–oksida terdifusi–ganda adalah teknologi
penyempurnaan dari MOSFET vertikal. Hampir semua MOSFET daya dikonstruksi dengan teknologi ini.
Page 6
Download