APLIKASI SENYAWA KOMPLEKS DALAM KEHIDUPAN SEHARI- HARI Abstraksi Senyawa kompleks merupakan senyawa yang tersusun dari suatu ion logam pusat dengan satu atau lebih ligan yang menyumbangkan pasangan elektron bebasnya kepada ion logam pusat. Senyawa kompleks memiliki peranan penting dalam kehidupan sehari – hari. Aplikasi senyawa ini meliputi bidang kesehatan, farmasi, industri, dan lingkungan, pertanian dan bidang lainnya. Banyak contoh aplikasi senyawa kompleks ini yang telah diterapkan dalam kehidupan sehari- hari yang pemamfaatannya sangat berguna bagi kelangsungan hidup manusia, hewan dan tanaman. Mulai dari pengikatan oksigen oleh Fe menjadi senyawa kompleks untuk bernapas, seperti Sulfadiazin dan sulfamerazin merupakan ligan yang sering digunakan untuk obat antibakteri. Penggunaannya secara luas untuk pengobatan infeksi yang disebabkan oleh bakteri Gram-positif dan Gram negatif tertentu, beberapa jamur, dan protozoa, dapat mengurangi dampak negatif pencemaran lingkungan seperti polusi udara, dapat mengurangi bahkan menghentikan turunnya potensial fuel cell pada katoda, penghilang rasa nyeri tulang yang disebabkan oleh metastasis kanker prostat, payudara, paru-paru dan ginjal ke tulang, telah berhasil dilakukan diagnosa dini dan terapi terhadap penyakit kanker, pelapisan pupuk Nitrogen dengan asam humat menghasilkan pupuk urea yang lebih tidak mudah larut untuk peningkatan efisiensi. Masih banyak lagi aplikasi senyawa kompleks yang belum diuraikan. Selain aplikasi senyawa kompleks yang dapat mensejahterakan kehidupan, banyak juga senyawa kompleks yang aplikasinya dapat membahayakan kelangsungan hidup mahluk dimuka bumi ini. Contoh kecil aplikasi Rhodamin B dan metanil yellow yang seharusnya dipakai sebagai pewarna pada tekstil di salah gunakan menjadi pewarna pada makanan yang sering dikomsumsi anak-anak. Penelitian senyawa kompleks terus berkembang baik sintesis maupun aplikasinya yang dapat mensejahterakan kehidupan. 1. PENDAHULUAN Senyawa kompleks memiliki peranan penting dalam kehidupan sehari - hari. Aplikasi senyawa ini meliputi bidang kesehatan, farmasi, industri, dan lingkungan. Manusia setiap hari senantiasa memerlukan oksigen untuk bernapas. Proses pengikatan oksigen oleh Fe menjadi senyawa kompleks dalam tubuh merupakan salah satu contoh aplikasi senyawa kompleks dalam keseharian. Senyawa kompleks terbentuk akibat terjadinya ikatan kovalen koordinasi antara suatu atom atau ion logam dengan suatu ligan ( ion atau molekul netral ). Logam yang dapat membentuk kompleks biasanya merupakan logam transisi, alkali, atau alkali tanah. Studi pembentukan kompleks menjadi hal yang menarik untuk dipelajari karena kompleks yang terbentuk dimungkinkan memberi banyak manfaat, misalnya untuk ekstraksi dan penanganan keracunan logam berat. Senyawa kompleks merupakan senyawa yang tersusun dari suatu ion logam pusat dengan satu atau lebih ligan yang menyumbangkan pasangan elektron bebasnya kepada ion logam pusat. Donasi pasangan elektron ligan kepada ion logam pusat menghasilkan ikatan kovalen koordinasi sehingga senyawa kompleks juga disebut senyawa koordinasi. Senyawa-senyawa kompleks memiliki bilangan koordinasi dan struktur bermacam-macam. Mulai dari bilangan koordinasi dua sampai delapan dengan struktur linear, tetrahedral, segi empat planar, trigonal bipiramidal dan oktahedral. Namun kenyataan menunjukkan bilangan koordinasi yang banyak dijumpai adalah enam dengan struktur pada umumnya oktahedral. (Iis Siti Jahro) Penelitian kompleks terus berkembang dari kompleks inti tunggal mengarah pada kompleks yang memiliki dua ion logam pusat yang dikenal sebagai kompleks berinti ganda (binuklir). Pembentukan kompleks berinti ganda memerlukan ligan jembatan yang dapat menghubungkan ion logam pusat yang satu dengan yang lainnya. Ion oksalat (C2O42-) merupakan salah satu ligan jembatan yang banyak digunakan akhir-akhir ini karena keunikannya yang dapat menghasilkan struktur kompleks multidimensi (1, 2 atau 3 dimensi). Selain itu ion oksalat dapat berperan sebagai mediator pertukaran sifat magnet diantara ion-ion logam pusat. Beberapa senyawa kompleks oksalat yang telah berhasil disintesis diantaranya; {[A] [MIMIII(C2O4)3]} dengan MI = Li, Na, MIII = Cr, Fe, {[A][M2II(C2O4)3]}4 dengan MII = Mn, Fe dan {[A][MIIMIII(C2O4)3]}5 dengan MII = Mn, MIII = CrIII. Pembentukan kompleks inti ganda [MnIICrIII(C2O4)3]- dari kompleks [CrIII(C2O4)3]3- dengan MnII dalam larutan air berlangsung melalui mekanisme reaksi adisi. (Iis Siti Jahro) Senyawa kompleks telah banyak dipelajari dan diteliti melalui suatu tahapantahapan reaksi (mekanisme reaksi) dengan menggunakan ion-ion logam serta ligan yang berbeda-beda. Ligan memiliki kemampuan sebagai donor pasangan elektron sehingga dapat dibedakan atas ligan monodentat, bidentat, tridentat dan polidentat. Dalam kimia koordinasi, NO atau NO2 dapat berperan sebagai ligan sehingga membentuk senyawa kompleks dengan beberapa logam transisi (Rilyanti, M dan Sembiring, Z., 2005). Beberapa ligan dapat dideretkan dalam suatu deret spektrokimia berdasarkan kekuatan medannya, yang tersusun sebagai berikut : I - <><>2- <>- <>- <>- <>- <>- <>2-<>- <>- < ox =" oksalat," en =" etilendiamin," bipi =" 2,2’-bipiridin" fen =" fenantrolin">2 dalam deret spektrokimia lebih kuat dibandingkan ligan-ligan feroin (fenantrolin, bipiridin dan etilendiamin) dan lebih lemah dari ligan CN. NOx merupakan kelompok gas yang terdapat di atmosfer, terdiri dari NO dan NO2, dimana gas NO tidak berwarna sedangkan gas NO2 berwarna coklat kemerahmerahan dan berbau tajam ( Sastrawijaya, 1991). NO atau NO2 adalah bahan pencemar yang berbahaya dan memerlukan penanggulangan. Sumber utama NOx selain dari aktivitas bakteri, aktivitas manusia juga merupakan konstribusi yang cukup besar (bplhd. jakarta.go.id/ info/ NKLD / 2001 /DOCS/ Buku-II/ docs/ 411.htm). 2. APLIKASI SENYAWA KOMPLEKS Aplikasi senyawa kompleks sangat beragam dan banyak sekali karena penelitian tentang senyawa kompleks terus berkembang dan perkembangannya sangat pesat sekali sejalan dengan perkembangan IPTEK. Dalam makalah ini diuraikan hanya sebagian kecil saja aplikasi senyawa kompleks tersebut. Kobalt merupakan salah satu logam unsur transisi dengan konfigurasi elektron 3d7 yang dapat membentuk kompleks. Kobalt yang relatif stabil berada sebagai Co(II) ataupun Co(III). Namun dalam senyawa sederhana Co, Co(II) lebih stabil dari Co(III). Ion – ion Co2+ dan ion terhidrasi [Co(H2O)6]2+ stabil di air. Kompleks kobalt dimungkinkan dapat terbentuk dengan berbagai macam ligan, diantaranya sulfadiazin dan sulfamerazin. Sulfadiazin dan sulfamerazin merupakan ligan yang sering digunakan untuk obat antibakteri. Keduanya merupakan turunan dari sulfonamid yang penggunaannya secara luas untuk pengobatan infeksi yang disebabkan oleh bakteri Gram-positif dan Gram negatif tertentu, beberapa jamur, dan protozoa (Siswandono dan Soekardjo : 1995 ). Salah satu keistimewaan dari reaksi kompleks adalah reaksi pergantian ligan melalui efek trans. Reaksi pergantian ligan ini terjadi dalam kompleks oktahedral dan segi empat. Ligan –ligan yang menyebabkan gugus yang letaknya trans terhadapnya bersifat labil, dikatakan mempunyai efek trans yang kuat. Untuk mengetahui kemampuan senyawa kompleks dengan ligan- ligan feroin berinteraksi dengan gas NO2, maka perlu dilakukan penelitian meliputi sintesis dan karakterisasi senyawa kompleks Co(II) menggunakan ligan bipiridin dan sianida serta mempelajari interaksinya dengan gas NO2. Hasil penelitian ini diharapkan dapat meningkatkan pemahaman reaksi subtitusi kompleks melalui efek trans dan hasilnya digunakan sebagai acuan dalam pemanfaatan senyawa kompleks sebagai absorben gas NOx, sehingga dapat mengurangi dampak negatif pencemaran lingkungan seperti polusi udara. Berbagai senyawa kompleks yang mempunyai struktur planar N4, telah terbukti mempunyai kemampuan untuk mereduksi oksigen dengan 4-elektron transfer proses. Proses logam yang berkarat karena oksidasi pada permukaan logam adalah proses yang sangat familier. Proses respirasi biologis pada makhluk hidup dimana terjadi perubahan oksigen menjadi air pada hemoglobin adalah proses yang penting. Proses reduksi oksigen yang langsung menjadi air tanpa hasil samping adalah proses sempurna 4-elektron transfer (O2 + H+ + 4e- → H2O) pada hemoglobin. (Eniya Listiani Dewi) Proses reduksi oksigen melalui senyawa kompleks Cytochrome-c Oxidase (Cyt-c) merupakan contoh proses seperti pada elektroda positif fuel cell (katoda). Pada proses biologis, transfer 4-elektron berjalan tanpa hasil sampingan peroksida (H2O2). Sedangkan pada katoda fuel cell, dimana saat ini state-of-the-art katalis adalah platina (Pt) yang mereduksi oksigen dengan 2-elektron transfer (O2 + 2H+ + 2e- → H2O2) menghasilkan peroksida dan selanjutnya tereduksi lagi menjadi air (H2O2 + 2H+ + 2e- → 2H2O). Sehingga terdapat 2 tahapan reaksi yang berlangsung pada katoda. Untuk itu dengan senyawa kompleks yang menyerupai struktur Cyt-c, dimana model planar katalis lebih memungkinkan untuk mereduksi oksigen dengan mudah, maka pada makalah akan dikenalkan katalis yang mampu mereduksi oksigen dengan bentuk planar berlogam center Fe, Co, dan Cu dengan ligan yang berbeda. (Eniya Listiani Dewi) Dengan adanya aplikasi senyawa kompleks ini, diharapkan problem drop potensial yang disebabkan oleh peroksida pada katoda dimana menjadi penyebab utama turunnya potensial fuel cell, menjadi berkurang atau tidak ada, karena reaksi yang terjadi adalah 4-elektron transfer proses. (Eniya Listiani Dewi) Senyawa (HEDP=hydroxyethyli kompleks renium-186 dienediphosphonate) dan fosfonat, 186Re-HEDP 186Re-EDTMP (EDTMP =ethylenediaminetetra methylphosphonate), dewasa ini telah luas digunakan sebagai penghilang rasa nyeri tulang yang disebabkan oleh metastasis kanker prostat, payudara, paru-paru dan ginjal ke tulang. Penggunaan radiofarmaka tersebut merupakan pengganti penggunaan analgesik, hormon, kemoterapi, dan narkotik yang diketahui memberikanefek samping yang tidak diinginkan. Metode preparasi dan uji kualitas senyawa kompleks 186Re-HEDP dan 186Re-EDTMP telah dikembangkan untuk tujuan produksi komersial.Penentuan kemurnian radiokimia dengan kromatografi kertas dalam berbagai kepolaran pelarut menunjukkan kemurnian radiokimia diatas 90% sampai hari ketiga setelah proses penandaan dilakukan. ( Adang H.G , dkk) Disamping itu hasil pengujian menunjukkan pula bahwa larutan senyawa kompleks bebas pirogen dan steril. Hasil uji pada binatang percobaan tikus putih menunjukkan kandungan senyawa kompleks di dalam darah mencapai puncaknya pada 5 menit setelah penyuntikan. Sedangkan ekskresi radiofarmaka kedua kompleks di dalam urin menunjukkan adanya keradioaktifan sekitar 41% dan 38,5 % dalam bentuk perenat, 186ReO4 -, setelah 20 jam penyuntikan. Hasil biodistribusi dan pencitraan (imaging) menggunakan kamera gamma terhadap mencit dan tukus putih normal menunjukkan bahwa senyawa kompleks 186Re-HEDP dan 186Re-EDTMP terakumulasi cukup nyata di tulang.( Adang H.G , dkk) Perkembangan ilmu pengetahuan dan teknologi IPTEK dalam bidang kedokteran nuklir sangat didukung oleh perkembangan iptek di bidang radiofarmaka. Dengan perkembangan iptek radio farmaka telah berhasil dilakukan diagnosa dini dan terapi terhadap penyakit kangker menggunakan radio nuklida yang sesuai. Penyakit kangker telah menghantui masyarakat dunia karena banyak menyebabkan kematian. Kedokteran nukilr telah menerapkan deteksi ini, berbagai macam kanker dan cara terapi yang efektif dengan memanfaatkan radiasi dari radio isotop yang diberikan kadalam tubuh atau sel kanker tang bersangkutan. .(Sulaiman, dkk ; 2007) Radio isatop yang dapat digunakan untuk terapi kanker diantaranya adalah Ytrium-90 (90Y) yang merupakan radio isotop pemancar sinar b dengan energi 2,28 Mev dan waktu paro (T1/2) 64,1 jam. Itrium-90 yang digunakan untuk terapi dapat diperoleh dari hasil peluruhan stronsium-90 (90Sr) dapat dipisahkan dari induknya 90 Sr (campuran 90Sr - 90Y ) yang merupakan radio nuklir dan hasil belah 235U. Metode pemisahan yang telah dikembangkan saat ini adalah metode ekstraksi pelarut dan kromatografi kolm dengan menggunakan penukar ion.(Sulaiman, dkk ; 2007) Pemupukan dalam kegiatan budidaya tebu memegang peranan yang teramat penting, selain dapat meningkatkan produksi biomassanya, pupuk juga dapat meningkatkan keragaman dan kualitas hasil yang diperoleh. Masalah utama penggunaan pupuk N pada lahan pertanian adalah efisiensinya yang rendah karena kelarutannya yang tinggi dan kemungkinan kehilangannya melalui penguapan, pelindian dan immobilisasi. Untuk itu telah dilakukan penelitian peningkatan efisiensi pemupukan N dengan rekayasa kelat urea-humat pada jenis tanah yang mempunyai tekstur kasar (Entisol) dengan menggunakan tanaman tebu varietas PS 851 sebagai tanaman indikator. (Sri Nuryani H.U, dkk ; 2007 ) Hasil penelitian menunjukkan bahwa pelapisan urea dengan asam humat yang berasal dari Gambut Kalimantan sebesar 1% menghasilkan pupuk urea yang lebih tidak mudah larut daripada yang dilapisi asam humat dari Rawa Pening. Dengan pelepasan N yang lebih lambat diharapkan keberadaan N di dalam tanah lebih awet dan pemupukan menjadi lebih efisien. Pupuk urea-humat telah diaplikasikan ke tanah Psamment (Entisol) yang kandungan pasirnya tinggi (tekstur kasar) untuk mewakili jenis-jenis tanah yang biasa ditanami tebu dengan tekstur yang paling kasar. Respons tanaman tebu varietas PS 851 menunjukkan kinerja pertumbuhan yang lebih baik di tanah Vertisol. (Sri Nuryani H.U, dkk ; 2007 ) Rekayasa kelat urea-humat secara fisik dan kimia terbukti meningkatkan efisiensi pemupukan N pada tanaman tebu. Penelitian ini memperlihatkan bahwa memang efisiensi pemupukan N pada tanah Entisol dan Vertisol rendah, bahkan di Entisol lebih rendah (hanya sekitar 25 %). Aplikasi pupuk urea-humat pada tanah Vertisol dan Entisol terbukti meningkatkan efisiensi pemupukan N hingga 50 %. Di tanah Entisol bahkan efisiensi pemupukan yang lebih tinggi dicapai pada dosis pupuk yang lebih rendah. (Sri Nuryani H.U, dkk ; 2007 ) Rhodamin B Nama Kimia : N-[9-(2-Carboxyphenyl)-6-(diethylamino)-3Hxanthen-3-ethyethanaminium chlorida. Sinonim: tetra ethylrhodamine; D & C Red No. 19; Rhodamine B Chloride; C. l. Basic Violet 10; C. l. 45170. dan metanil yellow Nama kimia : 3-[[4-(phenylamino) phenyl] azo]; C.I. Acid yellow 36; merupakan zat warna sintetik yang umum digunakan sebagai pewarna tekstil (Djalil, dkk, 2005). Walaupun memiliki toksisitas yang rendah, namun pengkonsumsian rhodamin B dalam jumlah yang besar maupun berulang-ulang menyebabkan sifat kumulatif yaitu iritasi saluran pernafasan, iritasi kulit, iritasi pada mata, iritasi pada saluran pencernaan, keracunan, dan gangguan hati/liver (Trestiati, 2003). Rhodamin B memiliki LD50 sebesar 89,5 mg/kg jika diinjeksikan pada tikus secara intravena (Merck Index, 2006). Sedangkan untuk metanil yellow dapat menyebabkan iritasi pada mata jika dikonsumsi dalam jangka panjang (Anonima, 2007). Kuning metanil juga dapat bertindak sebagai tumor promoting agent dan menyebabkan kerusakan hati (Djalil, dkk, 2005). Metanil yellow memiliki acute oral toxicity (LD50) sebesar 5000mg/kg pada tikus percobaan (Anonima, 2007). Hasil penelitian yang dilakukan oleh Eddy Setyo Mudjajanto dari Institut Pertanian Bogor (IPB), menemukan banyak penggunaan zat pewarna rhodamin B dan metanil yellow pada produk makanan industri rumah tangga. Rhodamin B dan metanil yellow sering dipakai untuk mewarnai kerupuk, makanan ringan, terasi, kembang gula, sirup, biskuit, sosis, makaroni goreng, minuman ringan, cendol,manisan, gipang, dan ikan asap. Makanan yang diberi zat pewarna ini biasanya berwarna lebih terang (Mudjajanto, 2007) 3. KESIMPULAN Setelah mengumpulkan dan memahami aplikasi senyawa kompleks yang bersumber dari jurnal ilmiah atau makalah ilmiah yang didownload dari internet maka penulis mengammbil kesimpulan sebagai berikut: 1. Aplikasi senyawa kompleks sangat beragam dan banyak sekali. 2. Tujuan utama penelitian tentang senyawa kompleks adalah untuk pengembangan IPTEK yang berguna untuk kesejahteraan umat manusia dan makhluk lain yang ada dimuka bumi ini 3. Aplikasi senyawa kompleks banyak juga disalah gunakan oleh oknum atau manusia sehingga membahayakan kelangsungan hidup bahkan dapat menyebabkan kematian. 4. Penelitian tentang senyawa kompleks ini akan terus berkembang sangat pesat baik sintesis maupun aplikasinya. DAFTAR PUSTAKA Adang H.G., Sri Aguswarini, Abidin, Karyadi, Sri Bagiawati . 2007. Evaluasi Biologis Senyawa Kompleks Renium-186 Fosfonat Sebagai Radiofarmaka Terapi Paliatif Kanker Tulang. Pusat Radioisotop dan Radiofarmaka – BATAN Kawasan PUSPIPTEK – Serpong Iis Siti Jahro, Djulia Onggo, Ismunandar dan Susanto Imam Rahayu. Kajian Mekanisme Reaksi Kompleks Multi Inti FeII-MnII-CrIII Dengan Ligan Ion Oksalat Dan 2,(2’-pyridyl)quinoline Dalam Pelarut Metanol dan Air. Departemen Kimia, FMIPA Institut Teknologi Bandung Jln. Ganesha No. 10 Bandung, 40132e-mail : [email protected] Mita Rilyanti , Zipora Sembiring, R.A. Tri Handayani dan EM Subki. 2008. Sintesis Senyawa Kompleks Cis-[Co(Bipi)2(Cn)2] Dan Uji Interaksinya Dengan Gas No2 Menggunakan Metoda Spektrofotometri Uv-Vis Dan IR . Prosiding Seminar Nasional Sains dan Teknologi-II Universitas Lampung, Sri Nuryani H.U*, Benito Heru Purwanto*, Azwar Maas*, Wiwik EW**, Oka A Bannati and K.D. Sasmita. 2007. Peningkatan Efisiensi Pemupukan N Pada Tanaman Tebu Melalui Rekayasa Khelat Urea-Humat. Jurnal Ilmu Tanah dan Lingkungan Vol. 7 No.2. p: 93-102. Eniya Listiani Dewi. BSS_96-1. Studi Respirasi Biologis 4-Elektron Transfer Sebagai Reaksi Katalis Inorganik Logam Pada Katoda Fuel Cell. Badan Pengkajian dan Penerapan Teknologi, Pusat Teknologi Material. MH. Thamrin 8, BPPT II, Lt.22, Jakarta. Email: [email protected] Sulaiman, Adang Hardi G dan Noor Anis Kundari. 2007. Pemisahan Dan Karakterisasi Spesi Senyawa Kompleks Ytrium-90 Dan Stronsium-90 Dengan Elektroforesis Kertas. JFN, Vol.1 No.2 . ISSN 1978-8738. Pusat Radioisotop dan Radiofarmaka – BATAN. bplhd. jakarta.go.id/ info/ NKLD / 2001 /DOCS/ Buku-II/ docs/ 411.htm. Diakses tanggal 13 mei 2010 Pukul 11.00 WIB www.google.com/polutan NO) Rilyanti, M.dan Hadi, S. 2005, Sintesis,Karakterisasi Sifat Magnet dan Analisis Thermal Kompleks ML’L” (M= Co, L’ = fen dan L” = CN), Jurnal Ilmiah MIPA BKS – PTS Wilayah Indonesia Barat, Vol. VIII, No. 2, Oktober 2005 Sastrawijaya, T. 1991. Pencamaran Lingkungan. Rineka Cipta. Jakarta. Hlm 165 201.