KALKULUS 1 UNTUK MAHASISWA 2009 CALON GURU MATEMATIKA OLEH: DADANG JUANDI, DKK PROGRAM STUDI PENDIDIKAN MATEMATIKA FPMIPA UNIVERSITAS PENDIDIKAN INDONESIA BAB I PENDAHULUAN 1.1 Sistem Bilangan Real Dalam Uraian sitem bilangan real di bawah ini, dibicarakan tentang sifat lapangan bilangan real, sifat kerapatan pada bilangan real, dan sifat urutan. Sifat lapangan memberikan rumus-rumus aljabar elementer yang sering digunakan dalam perhitungan matematika. Sifat urutan bilangan real menghasilkan bilangan positif, nol, dan bilangan negatif. Selain itu, sifat urutan memberikan relasi antara dua bilangan real, yaitu kurang dari, sama dengan, atau lebih dari yang melahirkan konsep pertidaksamaan dan nilai mutlak yang sama penting dalam kalkulus. Sedangkan sifat kerapatan bilangan rasional pada bilangan real menyatakan bahwa diantara dua bilangan real sebarang yang berlainan terdapat suatu bilangan rasional. 1.1.1 Sifat-Sifat Lapangan Bilangan Real Sistem bilangan real dan sifat-sifatnya merupakan dasar dalam kalkulus. Sebelum membicarakan sistem bilangan real tersebut, terlebih dahulu akan dimulai dengan membicarakan sistem bilangan yang paling sederhana yaitu bilangan asli. Bilangan asli adalah bilangan-bilangan 1, 2, 3, 4, 5, . Jika negatif dari bilangan asli digabungkan dengan bilangan nol diperoleh bilangan bulat. Bilangan bulat adalah bilangan-bilangan …, -3, -2, -1, 0, 1, 2, 3, Bilangan-bilangan bulat tersebut dapat ditulis dalam bentuk desimal dengan dikanan koma desimal hanya terdiri nol, sebagai contoh 5 5, 0000 13 13, 0000 2 2, 0000 Tanda “bar” menyatakan angka 0 diulang. Bilangan-bilangan bulat belum memadai, bila dihadapkan kepada bilangan-bilangan hasil pengukuran yang memerlukan ketelitian. Demikian pula bilangan-bilangan bulat tersebut tidak memadai bila dihadapkan kepada bilangan yang merupakan hasil bagi dari bilangan-bilangan bulat, misalnya bilangan 1 2, 1 3, 13 5, 18 2, dan 15 3. Bilangan-bilangan 18 2 dan 15 3 dikelompokkan kedalam bilangan-bilangan yang merupakan hasil bagi dari bilangan –bilangan bulat yang secara normal dengan bilanganbilangan 9 dan 5 . Tetapi 7 0 dan 9 0 tidak dikelompokkan kedalam bilangan- bilangan yang merupakan hasil bagi dari bilangan-bilangan bulat, karena tidak dapat diartikan arti lambang-lambang tersebut. Bilangan-bilangan yang merupakan hasil bagi dari dua bilangan bulat kecuali pembagian oleh nol disebut bilangan rasional. Secara umum, bilangan rasional adalah bilangan yang dapat ditulis dalam bentuk dengan p dan q bilangan bulat, q p q 0 . Bentuk desimal bilangan-bilangan rasional selalu berulang, sebagai contoh 1 4 0,250 ; 23 15 1,53 ; 2 3 28 11 0,6 2,54 Selanjutnya, bilangan-bilangan real yang tak dapat dinyatakan sebagai bilangan bulat dan q p dengan p, q q 0 disebut bilangan tak rasional. Bentuk desimal dari bilangan- bilangan tak rasional adalah tak berulang. Sebaliknya suatu desimal tak berulang menyatakan suatu bilangna tak rasioanal, misalnya CONTOH 1: Tunjukkan bahwa 2 1, 414213562 2 adalah bilangan tak rasional. Bukti: Andaikan 2 adalah bilangan rasional, maka denagn a, b bilangan bulat, b sini diperoleh 2b2 Namakan a 2 dapat ditulis sebagai 2 a b 0 , dan pembagi sekutu terbesar dari a dan b adalah 1. Dari a2 . Karena a 2 kelipatan dua, maka a juga merupakan kelipatan 2. 2k untuk suatu bilangan bulat k, sehingga diperoleh 2b2 2k b2 2k 2 2 4k 2 Dengan cara yang sama dapat disimpulkan bahwa b kelipatan 2. Hal ini berarti bahwa a dan b mempunyai pembagi sekutu terbesar berkelipatan 2 yang kontradiksi. Dengan pengambilan a dan b di atas. Jadi, pengandaian haruslah 2 bilangan rasional adalah salah, dan 2 adalah bilangan tak rasional. Sekumpulan bilangan (bilangan rasional dan bilangan tak rasional) bersama-sama dengan bilangan negatifnya dinamakan bilangan real. Bilangan real dapat digambarkan oleh himpunan semua titik yang terletak pada suatu garis. Pertama dipilih sebuah titik O. titik ini ditandai dengan 1 (satu). Situasi tersebut dapat dilihat pada garis bilangan berikut ini. s satuan 4 3 2 r satuan 1 0 1 -s 2 3 4 r Gambar 1.1.1 Cara ini digunakan untuk memberi skala pada garis bilangan dan juga untuk mempertimbangkan letak setiap bilangan real. Sebagai contoh, setiap bilangan real positif r terletak r satuan di sebelah kanan O, dan setiap bilangan real negatif -s dengan s 0 terletak s satuan di kiri O. Misalkan x dan y dua bilangan real yang berlainan, kemudian dibentuk bilangan real z x y 2 yang merupakan bilangan pertengahan di antara x dan y. situasi ini diperlihatkan pada gambar dibawah ini. z x y /2 x y Gambar 1.1.2 Dengan cara yang sama, diperoleh suatu bilangan s diantara x dan z, dan bilangan lain t di antara z dan y. Proses ini dapat diulangi sampai tak berhingga kali, sehingga diantara dua bilangan real sebarang (tdak perduli betapapun dekatnya) terdapat tak berhingga banyaknay bilangan real lain. Akibatnya bahwa di antara dua bilangan rasional terdapat suatu bilangan rasioanl, dan diantara setiap dua bilangan tak rasional terdapat suatu bilangan tak rasioanl. Dengan kata lain, bahwa bilangan rasional dan tak rasional keduanya rapat sepanjang garis bilangan real. Hal ini berarti bahwa setiap bilangan mempunyai tetangga bilangan rasional dan bilangan tak rasioanl yang cukup dekat dengannya. Kedua jenis bilangan tersebut saling berkaitan satu sama lain dan bergerombol bersama-sama. Sebagai ilustrasi bahwa bilangan tak rasioanl 2 dapat dihampiri oleh suatu bilangan rasioanl sedekat mungkin dengan 2, misalnya 1; 1,4; 1,41; 1,41121; 1,414213; … adalah bilangan rasional yang berada dekat dengan 2. Perlu diperhatikan bahwa terdapat lambang-lambang baku untuk mengenali impunan- himpunan bilangan, misalnya: R x x bilangan real N x x bilangan asli Z x x bilangan bulat Q x x bilangan rasional 1, 2,3, 4, , 2, 1,0,1, 2,3, 4, Operasi penjumlahan dan perkalian pada R memenuhi sifat lapangan atau sifat medan bilangan real. Adapaun sifat lapangan bilangan real adalah sebagi berikut: Untuk setiap x, y, z R, berlaku 1. Sifat komutatif x y y x x y y x 2. Sifat asosiatif x y z x yz 3. y z xy z Sifat distributif kali terhadap tambah x y z 4. x xy xz Unsur kesatuan Terdapat unsur 0 (unsur kesatuan tambah atau unsur nol) dan 1 (unsur kesatuan kali atau unsur satuan) yang memenuhi x 0 0 x x x 1 1 x x 5. Unsur balikan (invers) i. Untuk setiap x R, terdapat ii. Untuk setiap x R, x x R sehingga x 0 terdapat x 1 x 0 (-x lawan dari x) R sehingga x x 1 1 (x 1 kebalikan dari x) Berdasarkan sifat lapangan pada bilangan real dapat didefinisikan operasi biner lainnya, yaitu operasi pengurangan (-) dan pembagian ( ). Definisi 1.1.1 (Pengurangan dan Pembagian Bilangan Real): Misalkan x, y R. (a). Pengurangan dari bilangan real x dengan y ditulis x- y didefinisikan dengan x y (b). x y Pembagian dari bilangan real x oleh y dengan x : y x y x y y 0 ditulis x : y didefinisikan 1 Perlu diingat bahwa operasi pengurangan saling invers dengan operasi penjumlahan, dan operasi pembagian saling invers dengan operasi perkalian. Selain itu, dari sifat lapangan pada R dapat diturunkan rumus-rumus aljabar elementer yang disajikan pada teorema berikut. Teorema 1.1.2 (Sifat-sifat Aljabar Elementer Bilangan Real): Misalkan a, b, c adalah bilangan real (a). Jika a b , maka a c b c dan ac (b). Jika a c b c , maka a b (c). Jika ac bc dan c 0 , maka a a (d). (e). a a b c (g). a 0 0 a (h). a b (i). a (l). 0 ab ac 0 a b b ab , khususnya a b 1a a ab Jika ab 0 , maka a (k). Jika 1.1.2 a, a (f). (j). b a 1 1 bc a b c , maka ad d c d ad bc , b bd 0 atau b 0 bc, b 0, d 0, d 0 0 Sifat Urutan pada Bilangan Real Sifat urutan pada bilangan real menurunkan suatu konsep yang membandingkan di antara bilangan real, sehingga diperoleh suatu bilangan real lebih dari atau kurang dari bilangan real lainnya. Pada bilangan real R, jika b terletak di sebelah kanan dari a pada garis bilangan, dikatakan b “lebih dari” a dan ditulis b > a. Sedangkan sebaliknya dikatakan a “kurang dari” b dan ditulis a < b. Bilangan real bukan nol dibedakan menjadi bilangan real positif dan bilangan real negatif. Dari fakta tersebut dapat diperkenalkan relasi urutan “<” yang disajikan pada definisi-definisi berikut. Definisi 1.1.3: Diberikan a, b R . (1) a b berarti b a positif atau b a (2) a b berarti a b atau a (3) b a berarti a b atau b a positif 0 b Berikut ini diperkenalkan aksioma urutan yang sering disebut dengan sifat trikotomi. Adapun aksioma urutan tersebut disajikan seperti dibawah ini. Aksioma 1.1.4 (Aksioma urutan): (1) Jika a R , maka salah satu dari pernyataanpernyataan berikut berlaku: a 0 , a positif, atau -a negatif. (2) Jumlah dua bilangan real positif adalah bilangan positif (3) Perkalian dua bilanagn real positif adalah bilangan positif Selanjutnya, akan dibicarakan sifat-sifat urutan yang disajikan pada teorema berikut. Teorema 1.1.5 (Sifat-sifat Urutan): Diberikan x, y, z, c R . (1) Jika x y dan y z , maka x (2) Jika x y , maka x c (3) Jika x y dan c 0 , maka cx cy (Sifat Perkalian) (4) Jika x y dan c 0 , maka cx cy (Sifat Perkalian) z (Sifat Transitif) y c (Sifat Penambahan) Teorema ini akan dibuktikan hanya bagian (1) dan (2), sedangkan bagian yang lainnya dikerjakan para pembaca sebagai latihan. Bukti: (1) x y y berarti y x 0 (definisi), z berarti z y 0 (definisi). Dari sini diperoleh y x z y 0 (jumlah dua bilangan positif) y x x z z z x x z (2) Karena x y 0 0 0 komutatif definisi y , maka berarti y x 0 (definisi), Dari sini diperoleh y x c c 0 y c x c 0 y c x c x c 0 y c definisi Latihan 1.1 Untuk soal nomor 1 sampai dengan nomor 9, buktikan kebenaran dari setiap pernyataan yang diberikan. 1. 3 adalah bilangan tak rasional. 2. Jumlah dua bilangan rasional adalah rasional 3. 0 a b jika dan hanya jika a 2 4. 0 a b jika dan hanya jika 5. Jika a b , maka a 6. Hasilkali sebuah bilangan rasional yang tak nol dengan sebuah bilangan tak rasional adalah a b 2 1 a b2 1 b b takrasioanal 7. 8. 9. Jika bilangan asli m bukan merupakan bentuk kuadrat sempurna, maka 6 m tak rasional 3 adalah bilangan tak rasional. Hasil kali sebuah bilangan rasional (selain nol) dengan sebuah bilangan tak rasional adalah tak rasional. Petunjuk: coba buktikkan melalui kontradiksi. Untuk soal nomor 10 sampai dengan 14, selidiki apakah setiap pernyataan yang diberikan benar? Jika benar, buktikan kebenaran pernyataan tersebut. Tetapi jika pernyataan tersebut salah, berikan contoh penyangkal yang menyatakan bahwa pernyataan tersebut salah. 10. a b , maka a 4 b 4 11. a b , maka a b 12. a b , maka a 2 ab 13. a b , maka a3 a2b 14. Jumlah dua bilangan tak rasional adalah tak rasional Untuk soal nomor 15 sampai nomor 18, ubahlah masing-masing desimal berulang menjadi suatu hasil bagi dua bilangan bulat. 15. 2,56565656 16. 0,217171717 17. 0,399999 18. 3,92929292 19. Cari bilangan tak rasional antara 3,14159 dan 20. Apakah bilangan 3,141592 22 positif, negatif atau nol? 7 21. Apakah bilangan 0,1234567891011121314 rasoanl atau tak rasional? Jelaskan yang mendasri jawaban Anda 22. Cari dua bilangan tak rasional yang jumlahnya rasional 23. Suatu bilangan b disebut batas atas dari suatu himpunan bilangan S, bila x b untuk setiap x S . Sebagai contoh 5; 6,5; dan 13 adalah batas atas dari himpunan 1,2,3,4,5 . Angka 5 merupakan batas atas terkecil dari S. berdasarkan pengertian di atas, tentukan batas atas terkecil dari setiap himpunan berikut: a. S 10, 8, 6, 4, 2 b. S 2, 2,1, 2,11, 2,111, c. S 2,4,2,44,2,444,2,4444 d. S 1 1 2,1 1 3,1 1 4,1 1 5,1 1 6 e. S x:x f. S x : x2 1 n 1 , n bilangan bulat positif n 2, x adalah bilangan rasional 24. Aksioma kelengkapan pada bilangan real: setiap himpunan bilangan real yang memiliki batas atas, mempunyai sebuah batas atas terkecil berupa bilangan real. a. Tunjukkan bahwa pernyataan di atas adalah salah bila kata real diganti dengan rasionnal b. Apakah pernyataan tersebut benar atau salah, bila kata real 1.2 Pertidaksamaan Pertidaksamaan adalah hubungan matematika yang mengandung tanda salah satu dari , , , dan suatu variabel. Semua himpunan bilangan real yang memenuhi pertidaksamaan dinamakan himpunan penyelesaian. Penyelesaian pertidaksamaan dapat diperoleh dengan menggunakan sifat-sifat urutan yang telah dibicarakan pada pasal sebelumnya. Hmpunan penyelesaian suatu pertidaksamaan dapat dituliskan dalam bentuk notasi himpunan atau dala notasi interval. Pertidaksamaan-pertidaksamaan yang akan dibahas adala pertidaksamaan linear, pertidaksamaan kuadrat, dan pertidaksamaan rasional. Sebelum membicarakan pertidaksamaan , terlebih dahulu akan dibahas mengenai pengertian interval yang sangat erat kaitannya dengan penulisan himpunan penyelesaian suatu pertidaksamaan. Suatu interval adalah himpunana bagian tak kosong dari R yang memenuhi ketaksamaan yang didefinisikan sebagai berikut. Definisi 1.2.1 (Interval Terbatas): a, b x R a x b ( ) a, b x R a x b [ ] a, b x R a x b ( ] a, b x R a x b [ ) Definisi 1.2.2 (Interval Tak Terbatas): a, x R x a a, x R x a x R x b ,b a a b ,b x , R x b x R b x berarti “membesar tanpa batas” dan lambang Perlu diingat bahwa lambang berarti ”mengecil tanpa batas” CONTOH 1: Tentukan himpunan penyelesaian dari pertidaksamaan a. x 2 5 b. 3 x 9 2 Penyelesaian: a. Perhatikan bahwa x 2 5 x 2 x 2 5 2 3 Himpunan penyelesaiannya adalah x b. R x 3 ,3 Perhatikan bahwa 3 x 2 2 3 9 x 3 x 2 2 3 9 6 Himpunan penyelesaiannya adalah x R x 6 , 6 CONTOH 2: Tentukan himpunan penyelesaian pertidaksamaan x 2 x 2 4 Penyelesaian: Perhatikan bahwa x2 x 2 4 x2 x 6 0 x 2 x 3 0 1 Nilai batas pertidaksamaan ini adalah x 2 dan x 3 , yang membuat ruas kiri (1) bernilai nol. Nilai batas pertidaksamaan tersebut membagi garis atas tiga interval. Diagram berikut cara untuk menentukan tanda pertidaksamaan pada selang , 2 , 2,3 , dan 3,+ . Karena penentuan tanda pertidaksamaan pada diagram berlaku untuk sebarang nilai x pada setiap interval bagiannya, maka menentukan tandanya cukup dengan mengambil salah satu anggota dari interval bagiannya, yaitu Ambil x 4 , kemudian subtitusikan ke ruas kiri (1) dan diperoleh 4 2 4 3 Hal ini dapat disimpulkan bahwa pertidaksamaan pada interval 3, 6 0. positif (mengapa?). gambarkan tanda positif pada interval tersebut. Kerjakan hal serupa untuk selang 2,3 dan , 2 dengan memeriksa tanda ruas kiri (1) untuk salah satu anggotanya. Selanjutnya cara menetukan penyelesaian pertidaksamaan x 2 x 2 4 dilakukan dengan memperhatikan ambar garis bilangannya, carilah interval bagian yang bertanda sama dengan pertidaksamaan (1) yaitu positif atau nol. Dari sini diperoleh hasil , 2 3, yang merupakan penyelesaian pertidaksamaan tersebut. Proses penyelesaian pertidaksamaan pada ilustrasi si atas ditulis secara singkat sebagai berikut: x2 x 2 4 2 x 6 0 x 2 x 3 0 x Himpunan penyelesaian adalah , 2 3, CONTOH 3 Tentukan himpunan penyelesaian dari pertidaksamaan x3 x 1 2 x 2 0 Penyelesaian: Nilai batas pertidaksamaan adalah x 0, x 2 . Gambarkan semua nilai pada 1 dan x garis bilangan dan tentukan tandanya, diperoleh Himpunan penyelesaiannya adalah , 1 1,0 2, . ,0 Catatan: Himpunan penyelesaian ini seringkali ditulis 2, 1 . Aturan Umum Menentukan Tanda Pertidaksamaan Untuk pertidaksamaan yang terdiri dari berhingga faktor linear di ruas kiri dengan ruas kanannya nol, tandanya dapat ditentukan dengan cara berikut: Tetapkan tanda dari suatu interval bagiannya . Bila melintasi nilai batas yang berasal dari faktor linear berpangkat bilangan ganjil, maka tanda interval bagian berikutnya berubah. Bila melintasi nilai batas yang berasal dari faktor linear berpangkat bilangan genap, maka tanda interval bagian berikutnya tetap. CONTOH 4 Tentukan himpunan penyelesaian dari pertidaksamaan 2 x x 1. Penyelesaian: Pada kasus ini, x 0 (mengapa ?). disini tidak boleh mengalikan kedua ruas pertidaksamaan dengan faktor x (mengapa ?). Perhatikan bahwa 2 x x 1 x 1 2 x 0 x2 x 2 0 x x 2 x 1 x , 2 Himpunan penyelesaian adalah 0 0,1 Catatan: Lambang “ ” menyatakan tak terefinisi. CONTOH 5 Tentukan himpunan penyelesaian pertidaksamaan x 1 2 x x x 3 . Penyelesaian: Perhatikan bahwa x 1 2 x x x 3 x 1 x 0 2 x x 3 x 1 x 3 x 2 x 2 x x 3 x2 4x 3 2x x2 2 x x 3 2x2 2x 3 2 x x 3 Karena 2 x 2 0 0 0 2 x 3 definit positif (bernilai positif untuk setiap x), maka pertidaksamaan terakhir setara (ekuivalen) dengan 1 2 x x 3 0 Dengan penyelesaian pertidaksamaan ini diperoleh tanda-tanda pada garis bilangan real Dengan demikian, himpunan penyelesaiannya adalah interval 3,2 Latihan 1.2: Untuk soal nomor 1 sampai dengan 6, carilah semua nilai x yang memenuhi sistem pertidaksamaan yang diberikan. 1. 3x 7 1 dan 2x 1 3 2. 3x 7 1 dan 2x 1 4 3. 3x 7 1 dan 2x 1 4 4. 3x 7 1 dan 2x 1 5 5. 3x 7 1 dan 2x 1 8 6. 3x 7 1 dan 2x 1 8 Untuk soal nomor 7 sampai dengan 14, tentukan himpunan penyelesaian dari setiap pertidaksamaan yang diberikan. 7. x4 x2 8. 2 9. x 2 x2 10. x 1 x2 11. x2 1 0 x2 x 6 x 1 x 3 2 2x 7 x2 1 7 x2 1 10 0 12. 1 x x2 x3 x99 13. 1 x 3 x2 2 14. x 2 x 4 x 2 1.3 Nilai Mutlak 0 (1) Y f x cot x y f x x cot 1 x 2 1 1 (2) Grafik fungsi f x X 1 2 sec x dan inversnya Y f x f x sec x sec 1 x 2 f x 1 1 1 X 2 1 2 y x f x sec x sec 1 x CONTOH 4: Hitunglah nilai fungsi invers berikut: a. cos 1 b. sin 1 c. tan 1 d. sec 1 a. Misalkan cos 1 1 3 2 3 2 3 2 Penyelesaian: Jadi cos 1 1 3 2 1 sin 1 3 3 3 6 . . 2 1 1 3 . Diperoleh x 2 x , maka cos x x , maka sin x 3 2 c. Misalkan tan tan 6 3 2 1 b. Misalkan sin Jadi sin 1 3 2 3 . Akibatnya sin x 2 1 atau x 2 . . x , maka tan x 3 . Dalam hal ini diperoleh x 3 . Jadi . d. Untuk menyelesaikan soal ini, akan lebih mudah dengan menggunakan hubungan sec 1 x cos 1 1 x (mengapa?). jadi, diperoleh sec CONTOH 5: Tunjukkan bahwa cos 2 tan 1 x 1 x2 1 x2 Penyelesaian: Misalkan cos 2 tan 1 x tan 1 x , maka . dengan demikian diperoleh cos 2 1 2 cos 1 1 2 3 . 2 cos 2 1 2 1 sec 2 2 1 1 tan 2 2 1 1 x2 1 x2 1 x2 CONTOH 6 : Diketahui f x cos 1 2x 3 5 (a). Diketahui D f dan R f (b). Tentukan invers dari fungsi f (c). Gambar grafik fungsi f dan f 1 Penyelesaian: (a). Daerah asal fungsi f adalah D f Agar f x x R , syaratnya adalah 1 R f x R . 2x 3 1 , sehingga diperoleh 5 2x 3 1 5 5 2x 3 5 2 2x 8 1 x 4 1 Jadi, daerah asal fungsi f adalah Df Daerah nilai fungsi f adalah R f Jika 1 x 4 maka 1 cos 1 0 cos 0 1 1 f x cos 2x 3 5 1 2x 3 5 1, 4 . f x x Df . 2x 3 1 (mengapa?). Akibatnya, diperoleh 5 cos 1 1 Jadi daeah nilai fungsi f adalah R f 0, . (b). Untuk mencari invers fungsi f , nyatakan x dan y seperti berikut. Tulis y cos 2x 3 , maka diperoleh 5 1 2x 3 5 cos y 2x 3 5cos y x 5 cos y 2 f 1 x 3 2 5 3 cos y 2 2 Jadi, invers fungsi f adalah f 1 x 5 1 cos x 1 , 0 2 2 1 (c). Grafik fungsi f Grafik f dan f x dengan Rf 1 Df 1,4 diperoleh dengan mencerminkan fungsi f terhadap garis y 1 disajikan dalam gambar berikut ini. Y 4 y x 32 0 1 1 32 4 X x. Latihan 1.5: 1. 2. Hitunglah nilai fungsi invers trigonometri tanpa menggunakan kalkulator 3 2 a. sin 1 b. tan 1 c. arc cos 2 2 d. arc tan 3 3 3 Tentukan rumus untuk fungsi invers f 1 , kemudian batasilah daerah asal f agar f 1 ada. 3. a. f x 3cos 2x b. f x 1 tan x 2 c. f x 2sin 3x d. f x sin Buktikan bahwa a. b. 4. 1 x 4 4 3 tan 1 4 tan 1 1 4 tan 1 1 5 tan 1 5 99 1 239 Tentukan daerah asal fungsi f , daerah nilai fungsi f , dan fungsi invers f 1 . Kemudian gambar grafik fungsi f dan f a. f x 2sin b. f x cos c. f x 2 tan 1 x 1 2x 3 5 1 1 x 3 1 dalam satu sistem koordinat.