29 3 METODOLOGI PENELITIAN 3.1 Waktu dan Tempat Penelitian Penelitian ini dilaksanakan pada bulan Januari - Desember 2009 dengan tempat penelitian di Kota Makassar Sulawesi Selatan. Khususnya pada kawasan pelabuhan perikanan atau kawasan industri perikanan. Adapun kegiatan penelitian meliputi: 1) Survei lokasi penelitian pada bulan April - Mei 2009 untuk merancang variabel dan melakukan wawancara untuk mendapatkan data-data awal dari industri perikanan yang ada di Kota Makassar. 2) Pengambilan data dari industri perikanan yang berkaitan dengan data-data SEM yang dilakukan pada bulan Juni - November 2009 yang berlokasi di Kota Makassar Sulawesi Selatan. 3.2 Tahapan Penelitian Berdasarkan kerangka pemikiran dari rencana penelitian ini, maka tahapan penelitian akan difokuskan pada deskripsi existing condition industri perikanan yang ada saat ini di Kota Makassar. Selanjutnya menganalisis tentang industri perikanan, pengaruh internal dan eksternal industri serta sumberdaya alam dan lingkungan terhadap lingkungan industri perikanan, kebijakan pemerintah, peranan pelabuhan perikanan yang ada di Kota Makassar sebagai basis pengembangan industri perikanan dan daya saing industri perikanan. Pengembangan model teoritis dilakukan dengan menggunakan analisis SEM (Structural equation modelling) yaitu meliputi perancangan awal path diagram, persamaan pengukuran (measurement model) dan persamaan stuktur (structural model). Kemudian dilakukan uji kesesuaian, jika diterima maka akan menghasilkan model industri perikanan yang berbasis pelabuhan perikanan, kemudian akan dilihat prioritas strategi pengembangan industri perikanan yang akan menjadi perhatian untuk dikembangkan di Kota Makassar. Untuk lebih lengkapnya dapat dilihat pada Gambar 3. 30 Mulai Survei Lapang, Studi Pustaka, Diskusi Pakar Tentang Industri Perikanan Pengembangan Konsep Model Berdasarkan Teori dan Existing Condition Kondisi SD Alam & Lingk. Kondisi Internal Industri Kondisi Eksternal Industri Kebijakan Pemerintah Analisis Kinerja Industri Perikanan ANALISIS SEM Analisis Daya Saing Industri Analisis Pelayanan Pelabuhan KONDISI AWAL Pengembangan Konsep Model TEORI Analisis SEM (Path Diagram, Measurement Model, Structural Model) Tidak Uji Kesesuain Ya Model Industri Perikanan Berbasis Pelabuhan Perikanan Prioritas Strategi Pengembangan Industri Perikanan SELESAI Gambar 3 Tahapan penelitian yang diawali penentuan kondisi awal dan diikuti dengan analisis SEM 31 3.3 Jenis dan Jumlah Data yang Dibutuhkan Pengambilan data dilakukan kepada responden yang ada kaitannya dengan industri perikanan yang memiliki karakteristik industri penangkapan ikan, industri pengolahan dan pemasaran serta pengambil kebijakan. Jenis data yang diperlukan dan dikumpulkan untuk dianalisis dalam penelitian ini adalah faktor (konstruk) yang terkait dengan variabel yang diteliti pada industri perikanan yaitu: internal industri, eksternal industri, sumberdaya alam dan lingkungan, lingkungan industri perikanan, kinerja industri perikanan, kebijakan pemerintah, pelayanan pelabuhan perikanan dan daya saing industri. Penetapan faktor (konstruk) tersebut melalui kajian pustaka dinyatakan sebagai bentukan variabel dari masing-masing faktor tersebut. Ukuran sampel memegang peranan penting dalam estimasi dan interpretasi hasil analisis SEM (Structural Equation Modelling). Hair et al. (1998) yang diacu dalam Ferdinan (2002) mengatakan bahwa ukuran sampel yang sesuai adalah antara 100-200. Bila ukuran sampel menjadi terlalu besar, misalnya lebih dari 400, maka metode menjadi sangat sensitif sehingga sulit untuk mendapatkan ukuran-ukuran Goodness of Fit Index yang baik. Jumlah data yang diambil mengacu pada teknik Maximum Likelihood Estimation (ML), maka jumlah sampel yang dibutuhkan untuk penggunaan analisis SEM berkisar antara 100 sampai 200 sampel. Ukuran sampel ini ditetapkan dengan pertimbangan syarat keterwakilan aspek kajian dan kebutuhan analisis, teknik pengambilan sampel adalah purposive, random sampling. Berdasarkan teknik ini, kemudian ditetapkan 150 orang responden yang diperoleh dari jumlah total responden yang dianggap mewakili setiap responden, sebesar 10% dari setiap kelompok. Rincian pengelompokan responden adalah: 1) Pengambil kebijakan sebanyak 16 orang, yaitu: (pejabat dalam lingkungan Dinas Perikanan dan Kelautan Provinsi Sulawesi Selatan sebanyak 5 orang, pejabat dalam lingkungan Dinas Kelautan dan Ketahanan Pangan Kota Makassar sebanyak 5 orang, pengelola PPI Paotere sebanyak 2 orang (Kepala PPI dan KTU), Polairud, kepala pasar ikan Rajawali, ketua HNSI cabang Sulawesi Selatan dan ketua Ispikani cabang Sulawesi Selatan masing-masing 1 orang). 32 2) Pengusaha Perikanan sebanyak 19 orang, yaitu: (Pengusaha ekspor sebanyak 7 orang yang mewakili setiap jenis produksi, pengusaha lokal sebanyak 6 orang dan pemilik modal (Juragan) sebanyak 6 orang dimana setiap orang mewakili satu kecamatan yang wilayahnya berbatasan dengan pantai). 3) Pengusaha Pengumpul Ikan (Fish Carrier/Jolloro) sebanyak 20 orang, yaitu: - Yang berdomisili di Makassar dengan jumlah sebanyak 97 orang dipilih sebanyak 10 orang responden - Yang berdomisili di luar Kota Makassar dalam Wilayah Provinsi Sulawesi Selatan dipilih sebanyak 3 orang responden - Yang berdomisili di luar Provinsi Sulawesi Selatan sebanyak 2 orang responden yaitu dari Provinsi Kalimantan Timur dan dari Provinsi Sulawesi Tenggara, karena nelayan kedua provinsi tersebut banyak mendaratkan hasil tangkapannya di pelabuhan perikanan yang ada di Kota Makassar - Pengumpul ikan di darat sebanyak 57 orang, dipilih sebanyak 5 orang responden 4) Nelayan berdasarkan kelompok alat tangkap yang digunakan sebanyak 105 orang yang diperoleh dari jumlah total responden yang mewakili setiap kelompok alat tangkap minimal sebesar 10%, yaitu: - Pukat Kantong (payang/lampara, dogol/ cantrang, pukat pantai dengan jumlah 170 unit) dipilih sebanyak 20 orang responden - Pukat cincin (Purse Seine, Gae) dengan jumlah 64 unit dipilih sebanyak 10 orang responden yaitu: a) Berdasarkan waktu operasi penangkapan ikan sebanyak 4 orang responden, masing-masing 2 orang responden waktu operasi pada siang hari dan 2 orang responden waktu operasi pada malam hari b) Berdasarkan daerah penangkapan ikan yaitu sebanyak 6 orang responden, masing-masing 2 orang responden yang melakukan operasi penangkapan ikan di wilayah perairan Kota Makassar, 2 orang responden yang melakukan operasi penangkapan ikan di luar wilayah perairan Kota Makassar dan 2 orang responden yang melakukan operasi penangkapan ikan di luar wilayah perairan provinsi Sulawesi Selatan - Jaring insang (jaring hanyut, jaring lingkar, jaring klitik, jaring tetap/lanra, jaring tiga lapis/trammel net dengan jumlah 383) dipilih sebanyak 30 orang sebagai responden 33 - Jaring angkat (bagan rambo, bagan perahu, bagan tancap, serok dengan jumlah 29 unit) dipilih sebanyak 5 orang responden - Pancing (rawai tuna, rawai hanyut, rawai tetap, rawai dasar dengan jumlah 225 unit) dipilih sebanyak 15 orang responden - Pancing lainnya (pancing tonda, pancing ulur, pancing tegak, pancing cumicumi dengan jumlah 332 unit) dipilih sebanyak 15 orang responden - Perangkap (sero, bubu, lainnya dengan jumlah 198 unit) dipilih sebanyak 10 orang responden 3.4 Metode Pengumpulan Data 3.4.1 Pengumpulan data primer Penelitian ini menggunakan data primer dan data sekunder. Data primer adalah data yang diperoleh langsung dari sumber data yang terkait langsung dengan penelitian. Pengumpulan data primer akan dilakukan dalam 2 jenis: yaitu pengamatan langsung dan pengambilan data, konfirmasi dan pengecekan ulang atas jawaban dari responden. a) Pengamatan langsung Metode ini digunakan untuk mengamati kegiatan yang akan diteliti secara langsung dengan menggunakan daftar pertanyaan (kuesioner). Setelah mendapat persetujuan dari pemilik atau pengelola perusahaan yang menjadi obyek penelitian, kemudian dilakukan pengamatan secara langsung. b) Pengambilan data responden Pengambilan data responden dilakukan dengan dua tahap yaitu penentuan kelompok sampel dan wawancara kepada responden. Penentuan kelompok sampel Penetapan kelompok industri dilakukan berdasarkan kriteria berikut: industri perikanan tangkap, industri perikanan pengolahan, industri perikanan pemasaran meliputi: (nelayan, pengelola perusahaan, pedagang pengumpul dan pengambil kebijakan). Untuk mendapatkan hasil yang proporsional dan mendekati kebenaran dilakukan pengambilan sampel dengan cara purposive, random sampling. Metode ini adalah cara pengambilan sampel dari masingmasing kelompok industri perikanan yang dilakukan secara acak untuk mewakili 34 kelompoknya. Responden yang dipilih adalah yang mengetahui secara internal dan eksternal kondisi industri perikanan dan mampu memberikan jawaban dan konfirmasi tentang pertanyaan yang diajukan. Wawancara responden Metode ini dilakukan dengan menggunakan daftar pertanyaan dan langsung melakukan wawancara kepada responden yang terpilih sebagai sampel penelitian. Data dan informasi yang diperoleh adalah hasil tatap muka dan wawancara langsung dengan responden. Keberhasilan mendapatkan data dan informasi tergantung pada situasi dimana wawancara dilaksanakan dan faktor kemampuan dari si pewawancara. Jawaban pertanyaan dengan memilih angka yang berskala 1-5 (Skala Likert), nilai tergantung dari banyaknya item yang dipenuhi pada setiap pertanyaan yang diajukan kepada responden, dimana semakin banyak item yang dipenuhi maka semakin baik nilainya. Nilai jawaban menggunakan pernyataan yang kurang sampai sangat baik. kurang sangat baik 1 2 3 4 5 3.4.2 Pengumpulan data sekunder Metode pengumpulan data sekunder yaitu data yang diperoleh dari beberapa catatan yang dipublikasikan atau yang tidak dipublikasikan. Data ini diperoleh dari lingkungan obyek penelitian maupun di luar obyek penelitian atau instansi pemerintah setempat yang terkait, seperti Dinas Perikanan dan Kelautan Provinsi Sulawesi Selatan, Dinas Kelautan dan Ketahanan Pangan Kota Makassar, Badan Pusat Statistik Provinsi Sulawesi Selatan dan Badan Pusat Statistik Kota Makassar dan instansi lainnya yang terkait. 3.5 Analisis Data 3.5.1 Pengolahan data awal Pengolahan data awal merupakan pengolahan terhadap data-data dari kondisi lokasi penelitian saat ini (existing condition) tentang keadaan industri 35 perikanan yang ada di Kota Makassar. Pengolahan data melalui kegiatan pengelompokan data yang sejenis, tabulasi dan lain-lain. 3.5.2 Analisis persamaan struktural Menurut (Hair et al. 1998) ada beberapa langkah dalam penggunaan SEM dengan rincian sebagai berikut: 1) Pengembangan model berdasarkan teori dan existing condition Prinsip di dalam SEM adalah menganalisis hubungan kausal antar variabel eksogen dan endogen, hubungan kausal apabila terjadi perubahan nilai di dalam suatu variabel akan menghasilkan perubahan dalam variabel lain. Solimun (2002) yang diacu dalam Mustaruddin (2010) mengatakan bahwa langkah awal SEM adalah pengembangan model teoritis yang dimaksudkan untuk mendapatkan justifikasi terhadap konsep-konsep yang dikembangkan, sehingga model akhir yang diperoleh dapat dipertanggungjawabkan dan mendapat kebenaran secara ilmiah. Dalam kaitan ini, peneliti dalam mengembangkan teori harus melakukan serangkaian eksplorasi ilmiah melalui telaah pustaka yang berkaitan, dan diskusi pakar menjadi hal penting untuk dilakukan guna mendapatkan justifikasi atas model teoritis yang dikembangkan. Dengan demikian tanpa dilandasi teoritis yang kuat maka SEM tidak dapat digunakan, hal ini disebabkan karena SEM tidak digunakan untuk menghasilkan sebuah model melainkan digunakan untuk mengkonfirmasi model melalui data empirik. Berdasarkan telaah pendahuluan, beberapa komponen yang berinteraksi dalam pengembangan industri perikanan berbasis pelabuhan perikanan di Kota Makassar, adalah internal industri, eksternal industri, sumberdaya alam dan lingkungan, lingkungan industri perikanan, kinerja industri perikanan, kebijakan pemerintah, pelayanan pelabuhan dan daya saing industri perikanan. Analisis SEM dalam penelitian ini akan dikembangkan untuk melihat terjadinya interaksi diantara komponen-komponen tersebut dan mengetahui interaksi mana yang paling berperan dalam pengembangan industri perikanan berbasis pelabuhan perikanan di Kota Makassar. Gambaran interaksi diantara komponen tersebut kemudian diilustrasikan dalam rancangan awal path diagram. 36 2) Penyusunan rancangan path diagram Penyusunan rancangan path diagram merupakan kegiatan penggambaran interaksi antar komponen yang dikembangkan secara teoritis dan kemudian menjadi konstruk penelitian. Dalam penggambaran ini, konstruk/faktor/variabel laten penelitian tersebut harus dilengkapi dengan dimensi/variabel manifes. Setelah model teoritis diuraikan pada langkah pertama maka dikembangkan path diagram. Model path diagram dalam kajian model pengembangan industri perikanan berbasis pelabuhan perikanan di Kota Makassar Sulawesi Selatan disajikan pada Gambar 4. KINERJA INDUSTRI PRK INTERNAL INDUSTRI DAYA SAING INDUSTRI PRK LINGKUNGAN INDUSTRI PRK EKSTERNAL INDUSTRI PELAYANAN PELABUHAN PRK SDA & LINGKUNGAN KEBIJAKAN PEMERINTAH Gambar 4 Hubungan antar faktor pada rancangan path diagram Komponen yang berupa konstruk/variabel laten pada diagram di atas dapat dibedakan menjadi 2 kelompok konstruk yaitu konstruk eksogen dan konstruk endogen. Konstruk eksogen (independent variable) adalah variabel independen yang mempengaruhi variabel dependen. Pada model SEM, variabel eksogen ditunjukkan dengan adanya anak panah yang berasal dari variabel tersebut menuju ke variabel endogen. Variabel endogen adalah variabel dependen yang dipengaruhi oleh variabel independen (eksogen). Pada model SEM, variabel eksogen ditunjukkan dengan adanya anak panah yang menuju pada variabel tersebut. 37 Penelitian ini akan menguji ada tidaknya pengaruh-pengaruh diantara kedelapan faktor yang telah ditentukan di atas. Adapun rincian definisi setiap faktor disajikan pada Tabel 2. Tabel 2 Definisi dari masing-masing faktor Faktor Definisi Internal industri Kegiatan atau usaha yang dilakukan untuk mencapai tujuan dengan menggunakan atau mengkoordinasikan kegiatan orang lain. Eksternal industri Faktor di luar industri yang menjadi obyek utama penelitian, yang mempengaruhi kinerja industri baik langsung maupun tidak langsung. Sumberdaya alam dan Keadaan sumberdaya alam biasanya dilihat dari lingkungan ketersediaan sumberdaya ikan, keadaan daerah penangkapan ikan serta energi pendukung. Lingkungan perikanan industri Industri dan pemasok akan berada dalam suatu lingkungan makro yang dapat menciptakan peluang dan ancaman (Kotler 1997). Kinerja perikanan industri Ukuran keberhasilan industri, biasanya dilihat dari nilai keuangan, pemasaran, daya serap tenaga kerja Kebijakan pemerintah Pelayanan perikanan Daya saing Keputusan yang dikeluarkan pemerintah dalam upaya memberikan pelayanan umum kepada pengguna jasa di bidang perikanan. pelabuhan Pengguna jasa pelabuhan yang berorientasi pada efisiensi, transparansi dan memberikan dampak positif bagi perkembangan usaha perikanan. Kemampuan suatu produk dalam memasuki pasar untuk memenuhi kebutuhan dan memberikan kepuasan pelanggan. Penjelasan dari 8 faktor tersebut yaitu: Internal Industri (II), Eksternal Industri (EI), Sumberdaya Alam dan Lingkungan (SAL), Lingkungan Industri Perikanan (LIP), Kinerja Industri Perikanan, Kebijakan Pemerintah (KP), Pelayanan Pelabuhan (PLP) dan Daya Saing Industri Perikanan (DIP) yang digunakan sebanyak 33 variabel, dari masing-masing variabel diberi nilai. Pemberian nilai variabel menggunakan skala Likert (skala 1 sampai 5). 38 3) Konversi diagram alir ke dalam persamaan Setelah digambarkan dalam sebuah diagram pada langkah kedua, maka langkah berikutnya dilakukan konversi kedalam rangkaian persamaan. Persamaan yang dibangun ada dua macam: a) Persamaan struktural Persamaan ini menyatakan hubungan kausalitas antara berbagai konstruk sebagai berikut: Faktor endogen = Faktor eksogen + Error Persamaan strukturnya adalah sebagai berikut: Y1 = β1 Y2 + β2 Y3 + β3 Y4 + β4 Y5 + δ1 .......................................... (1) Dimana: Y1 = Faktor endogen Y 2 ,Y 3 ,Y 4 ,Y 5 = Faktor eksogen β = Bobot regresi (regression weigth) δ = Disturbance term (error) b) Persamaan spesifikasi model pengukuran Pada spesifikasi ini peneliti akan menentukan variabel mana mengukur faktor (konstruk) serta menentukan serangkaian matrik yang menunjukkan korelasi yang dihipotesakan antar konstruk atau faktor. Persamaan untuk model pengukuran dapat digambarkan sebagai berikut: Variabel 1 (X 1 ) = λ 1 Y 1 + ε 1 ................................................................. (2) Variabel 1 (X 2 ) = λ 2 Y 2 + ε 2 ................................................................ (3) Variabel 1 (X 3 ) = λ 3 Y 3 + ε 3 ................................................................. (4) Dimana: X 1 , X 2 , X 3 = Variabel yang disurvei λ = Loading Factor ε = Error 4) Pemilihan matrik input dan estimasi model 39 SEM hanya menggunakan matrik kovarians atau matrik korelasi sebagai data input untuk keseluruhan estimasi yang dilakukan. SEM pada awalnya sebagai alat analisis yang berbasis pada matrik kovarians. Matrik kovarians digunakan karena memiliki keunggulan dalam menyajikan perbandingan yang valid antara populasi yang berbeda atau sampel yang berbeda, hal ini tidak dapat digunakan analisis korelasi. Menurut Kline et al. (2001) yang diacu dalam Kusyanto (2006) menyarankan agar menggunakan matrik kovarians pada saat pengujian teori, sebab kovarians lebih memenuhi asumsi metodologi dan merupakan bentuk data yang lebih sesuai untuk memvalidasi hubungan kausalitas. 5) Antisipasi munculnya masalah identifikasi Salah satu masalah yang dihadapi dalam penggunaan estimasi model kausal ini adalah terletak pada masalah ketidakmampuan dari model yang dikembangkan untuk menghasilkan estimasi model yang baik. Gejala yang muncul pada problem identifikasi adalah sebagai berikut: 1) Standar error untuk satu atau beberapa koefisien adalah sangat besar 2) Program tidak menghasilkan matrik informasi yang seharusnya disajikan 3) Muncul angka-angka yang aneh seperti adanya varian error yang negatif 4) Munculnya korelasi yang sangat tinggi antara koefisien estimasi yang didapat (nilai lebih dari 0,9). Langkah-langkah untuk menguji ada tidaknya problem identifikasi adalah sebagai berikut: 1) Model diestimasi berulang-ulang, dan setiap estimasi dilakukan dengan menggunakan starting value yang berbeda-beda. Bila ternyata hasilnya adalah model tidak konvergen pada titik yang sama setiap kali re-estimasi dilakukan. 2) Model dicoba diestimasi, kemudian angka koefisien dari salah satu variabel dicatat, berikutnya koefisien itu ditentukan sebagai sesuatu yang fix pada faktor atau variabel kemudian dilakukan estimasi ulang. Apabila estimasi ulang ini overall fit indeknya berubah total dan berbeda sangat besar dari sebelumnya diduga ada masalah pada identifikasi. muncul masalah pada identifikasi Disarankan apabila setiap estimasi ini, maka model ini sebaiknya dipertimbangkan ulang dengan mengembangkan lebih banyak konstruk. 40 6) Evaluasi kriteria goodness of fit Tahapan ini merupakan kegiatan mengevaluasi kesesuaian model yang dibuat menggunakan berbagai kriteria Goodness of Fit Index. Secara garis besar tahapan ini terdiri dari 3 kegiatan besar, yaitu; 1) evaluasi data (digunakan untuk mengetahui apakah data telah memenuhi asumsi-asumsi SEM atau tidak yang meliputi evaluasi ukuran sampel, normalitas, outliers, dan lain-lain), 2) uji kesesuaian dan uji statistik dan 3) effect analysis. Peneliti harus menggunakan indikator-indikator goodness of fit dalam menilai fit suatu model, namun peneliti tidak boleh hanya menggunakan satu indeks atau beberapa indeks saja untuk menilai suatu model fit, akan tetapi harus mempertimbangkan seluruh indeks (Bentler 1990). Wijaya (2010) mengatakan ada sebanyak 38 program makro untuk menampilkan statistik Goodness of Fit dalam Amos, namun penggunaan indeks dalam suatu penelitian hanya bisa digunakan beberapa saja, karena semakin banyak indeks yang digunakan akan mempengaruhi nilai-nilai goodness of fit lainnya. Berikut disajikan beberapa indeks sebagai kriteria goodness of fit (Ghozali dan Fuad 2005). 1) Chi-square (X2) Tujuan pengujian Chi-square adalah untuk mengetahui apakah matriks kovarians sampel berbeda secara signifikan dengan matriks kovarians estimasi (Santoso 2007). Menurut Ghozali (2005), chi-square merupakan ukuran mengenai buruknya fit suatu model. Nilai Chi-square diharapkan kecil, apabila nilainya sebesar 0 (nol) menunjukkan bahwa model memiliki fit yang sempurna (perfect fit), uji ini digunakan untuk mengukur overall fit atau kesesuaian model yang dibangun dengan data yang tersedia. Semakin kecil nilai chi-square, semakin baik model itu (karena dalam uji beda chi-square, X 2 = 0, berarti benar-benar tidak ada perbedaan, H 0 , diterima). 2) Probabilitas signifikansi (significant probability) Probabilitas digunakan untuk memperoleh penyimpangan (deviasi) besar sebagaimana ditunjukkan oleh nilai chi-square, sehingga nilai chi-square yang signifikan (kurang dari 0.05) menunjukkan bahwa data empiris yang diperoleh memiliki perbedaan dengan teori yang telah dibangun berdasarkan structural equation modelling. Nilai probabilitas adalah signifikan (p = 41 0.05). Apabila hasil analisis didapat lebih besar dari p = 0.05 maka model dikatakan tidak fit. 3) RMSEA (root mean square error of approximation) RMSEA merupakan indikator model fit yang paling informatif. Hipotesis dapat diterima apabila hasil evaluasi menunjukkan angka RMSEA lebih kecil atau sama dengan 0.08 adalah good fit, sedang RMSEA < 0.05 adalah close fit (Joreskog dan Sorbon 2005). 4) CFI (comparative fit index) CFI merupakan index yang menunjukkan tingkat fit-nya model yang dibangun. Index ini pada dasarnya membandingkan angka NCP (non centrality parameter) pada berbagai model. Nilai berkisar antara 0-1. Suatu model dikatakan good fit apabila hasil analisis memiliki nilai CFI > 0.90, sedang 0.80 < CFI < 0.90 adalah marginal fit (Wijanto 2008). 5) IFI (incremental fit index) Nilai berkisar antara 0-1. Suatu model dikatakan fit apabila nilai IFI lebih besar atau sama dengan 0.90, sedang 0.80 < IFI < 0.90 adalah marginal fit (Wijanto 2008) 6) GFI (goodness of fit indices) GFI merupakan suatu ukuran mengenai ketepatan model dalam menghasilkan observed matriks kovarians. Untuk menghasilkan model yang fit nilai GFI antar 0 sampai 1. GFI > 0.90 adalah good fit, sedang 0.80 < GFI < 0.90 adalah marginal fit (Wijanto 2008) 7) AGFI (adjusted goodness of fit index) AGFI adalah sama seperti GFI, tetapi telah menyesuaikan pengaruh degree of freedom pada suatu model (Ghozali 2005). Secara teoritis nilai AGFI berkisar antara 0 (poor fit) sampai 1 (perfect fit) , dengan nilai lebih tinggi adalah lebih baik. AGFI > 0.90 adalah good fit, sedang 0.80 < AGFI < 0.90 adalah marginal fit (Wijanto 2008). 8) PGFI ( parsimony goodness of fit index) 42 Spesifikasi ulang dari GFI, dimana nilai lebih tinggi menunjukkan parsimoni yang lebih besar. Ukuran ini digunakan untuk perbandingan model-model. Nilai PGFI > 0.90 adalah good fit (Wijanto 2008). Berdasarkan batasan dan kriteria untuk menilai suatu model di atas, maka suatu model akan diuji melalui goodness of fit (Tabel 3). Tabel 3 Goodness of fit statistics yang digunakan sebagai pedoman dalam menilai fit-nya suatu model yang dianalisis No. Goodness of fit index Cut-off value 1 2 3 4 5 6 7 8 Chi-square Probability RMSEA CFI IFI GFI AGFI PGFI Diharapkan kecil > 0.05 < 0.08 > 0.90 > 0.90 > 0.90 > 0.90 > 0.90 Sumber: Wijanto (2008) 7) Modifikasi dan interpretasi model Apabila langkah-langkah sebelumnya sudah dilaksanakan dan model cukup baik maka langkah berikutnya dalam SEM melakukan interpretasi dan modifikasi yaitu: a) Interpretasi Penggunaan SEM bukan untuk menghasilkan teori, tetapi menguji model yang mempunyai pijakan teori yang benar dan baik. Berdasarkan pemikiran ini maka interpretasi dari model dapat diterima atau tidak diperlukan kekuatan prediksi dari model dibandingkan dengan residual yang dihasilkan. Penggunaan standardized residual covariance matrik akan dihasilkan nilai residual standar. Apabila interpretasi terhadap residual yang dihasilkan model melalui pengamatan variabel mempunyai nilai residual standard lebih besar dari besaran tertentu maka model dapat diterima sehingga tidak perlu dilakukan modifikasi model. b) Indeks modifikasi 43 Apabila model belum baik, perlu diadakan modifikasi dan di dalam penggunaan indeks modifikasi ini adalah sebagai pedoman untuk melakukan modifikasi terhadap model yang diujikan dengan syarat harus terdapat justifikasi teoritis yang cukup kuat untuk modifikasi. Revisi model melalui suatu modifikasi dilakukan dengan cara melihat niali covariance modification indices yang didapat dari hasil analisis SEM. Nilai modification indices (MI) pada covariance menandakan akan turunnya nilai chi-square jika covariance dari indikatorindikator tersebut dikorelasikan. Dimulai dengan nilai modification indices tertinggi dengan menghubungkan covariance antar variabel yang dituju. Selanjutnya langkah yang harus dilakukan adalah mengorelasikan variabel yang mempunyai nilai MI yang lebih besar dari 4 (nilai MI > 4), sampai diperoleh sebuah model yang dinilai benar-benar fit. 8) Perumusan strategi pengembangan industri perikanan Berdasarkan dari delapan faktor (konstruk) yang dilihat, akan merumuskan strategi pengembangan industri perikanan di Kota Makassar yang berbasis Pelabuhan Perikanan. Dasar dari hasil rumusan tersebut dapat dilihat dari hubungan mana yang signifikan atau tidak signifikan, berhubungan positif atau negatif, kemudian hubungan yang signifikan akan menjadi perhatian dalam mengembangkan industri perikanan di Kota Makassar.