Daftar Pustaka Allen, J.P., Atekwana, E.A., Duris, J.W., Werkema, D.D., dan Rossbach, S. (2007) : The Microbial Community Structure in Petroleum-Contaminated Sediments Corresponds to Geophysical Signatures, Appl. Environ. Microbiol., 73 (9), 2860–2870 Akhmaloka, Suharto, A. Nurbaiti, S. Tika, I. N., dan Warganegara, F. M. (2006) : Ribotyping Identification of Thermophilic Bacterium from Papandayan Crater, Proc. ITB Eng. Science, 38b (1), 1-10 Akkermans, D.L, van Elsas, J.D., dan de Bruijn, F.J. (1995) : Molecular Microbial Ecology Manual. Kluwer Academic Publishers, Dordrecht, The Netherlands Altschul, S.F, Gish, W, Miller, W, Myers, E.W, dan Lipman, D.J. (1990) : Basic local alignment search tool. J. Mol. Biol., 215, 403-410. Amann, R.I, Ludwig, W., dan Schleifer, K.H. (1995) : Phylogenetic identification dan in situ detection of individual microbial cells without cultivation. Microbiol. Rev., 59, 143–169 Aminin A.L.N, Madayanti, F., Aditiawati, P., dan Akhmaloka (2007) : 16S ribosomal RNA-based analysis of thermophilic bacteria in Gedongsongo hot spring. Microbiol. Indones., 1, 37-42. Anđelković, T., Anđelković, D., Perović, J., Purenović, M., dan Polić, P. (2001) : Decrease Of Oxygen Interference On Humic Acid Structure Alteration During Isolation, Fact. Univ. Phys., Chem. Tech., 2 (3), 163 - 171 Atlas, R.M., (2002) : Handbook of Microbiological Media, CRC Press. Inc. Baker, G.C., Gaffar, S., Cowan, D. A., dan Suharto, A. R., (2001) : Bacterial community analysis of Indonesian hot springs, FEMS Microbiol. Lett., 103 – 109. Baker, G.C., Smith, .J.J, dan Cowan, D.A. (2003) : Review dan re-analysis of domain-specific 16S primers, J. Microbiol. Methods, 55, 541– 555 Barns, S.M., Fundyaga, R.E., Jeffries, M.W., dan Pace, N.R. (1994) : Remarkable archaeal diversity detected in a Yellowstone National Park hot spring enviroment, Proc. Natl. Acad. Sci., 91, 1609-1013 Barns, S.M., Delwiche, C.F. Palmer, J.D. dan Pace, N.R. (1996) : Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences. Proc. Natl. Acad. Sci. 93, 9188-9193. Bassam, B. J, Anolles, C.G, dan Greshoff, P.M. (1991) : Fast and sensitive staining of DNA in polyacrylamide gels. Anal. Biochem. 196, 80–83. Belduz, A.O., Dulger, S. dan Demirbag, Z. (2003) : Anoxybacillus gonensis sp. Nov., a Moderately Thermophilic, Xylose-Utilizing, Endospore-Forming Bacterium, Int. J. Sys. Evol. Microbiol., 53, 1315–1320 101 Bertoldo, C., Dock, C., dan Antranikian, G. (2004) : Thermoacidophilic Microorganisms and their Novel Biocatalists, Eng. Life Sci. 4 (6), 521-532. Biddle, J.F., House, C.H., dan Brenchley, J.E. (2005) : Enrichment and cultivation of microorganisms from sediment from the slope of the Peru Trench (ODP Site 1230), Proc. ODP, Sci. Results, 201, 1–19 Bintrim, S.B., Donohue, T.J., Handelsman, J., Roberts, G.P., dan Goodman, R.M. (1997) : Molecular phylogeny of Archaea from soil. Proc. Natl. Acad. Sci. 94, 277-282. Borneman, J, Skroch, P.W, O’Sullivan, K.M, Palus, J.A, Rumjanek, N.G, Jansen, J.L, Nienhuis, J., dan Triplett, E.W. (1996) : Molecular microbial diversity of an agricultural soil in Wisconsin. Appl. Environ. Microbiol. 62, 1935– 1943 Bossio, D.A., Scow, K.M., Gunapala, N., dan Graham, K.J. (1998) : Determinants of soil microbial communities: effects of agricultural management, season, and soil type on phospholipid fatty acid profiles. Microb. Ecol., 36, 1 –12. Boyd, E.S., Jackson, R.A. Encarnacion, G. Zahn, J.A. Beard, T. Leavitt, W.D. Pi, Y. Zhang, C.L. Pearson, A., dan Geesey, G.G. (2007) : Isolation, Characterization, and Ecology of Sulfur-Respiring Crenarchaea Inhabiting Acid-Sulfate-Chloride-Containing Geothermal Springs in Yellowstone National Park, Appl. Environ. Microbiol., 73 (20), 6669–6677 Brock T. D. (1998) : Microbiology in Yellowstone at first focused on the basic science and ecology but gradually has expanded in scope, ASM News, 64, 3, 137-140 Case, R.J., Boucher, Y., Dahllo, I., Holmstrom, C., Doolittle, W.F., dan S. Kjelleberg (2007) : Use of 16S rRNA and rpoB Genes as Molecular Markers for Microbial Ecology Studies, Appl. Environ. Microbiol, 73 (1): 278–288 Chakravorty, S., Helb, D., Burday, M., Connell, N., dan Alland, D. (2007) : A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria, J. Microbiol. Methods, 69, 330–339 Chaudhuri, S.R., Pattanayak, A.K., dan Thakur, A.R. (2006) : Microbial DNA extraction from samples of varied origin. Current Science, 91, 1697-1700. Clarridge III, J.E. (2004) : Impact of 16S rRNA Gene Sequence Analysis for Identification of Bacteria on Clinical Microbiology and Infectious Diseases, Clin. Microbiol. Rev., 17 (4), 840–862 Cleaver, A.A., Burton, N. P. dan Norris, P.R. (2007) : A Novel Acidimicrobium Species in Continuous Cultures of Moderately Thermophilic, MineralSulfide-Oxidizing Acidophiles, Appl. Environ. Microbiol., 73 (13), 4294– 4299 Coates, J.D., Cole, K.A., Chakraborty, R., O’Connor, S.M., dan Achenbach, L.A. (2002) : Diversity and Ubiquity of Bacteria Capable of Utilizing Humic Substances as Electron Donors for Anaerobic Respiration, Appl. Environ. Microbiol., 68 (5), 2445–2452 102 DeLong, E.F., Wu, K.Y., Prezelin, B.B., dan Jovine, R.V.M. (1994) : Archaea in Antarctic marine environments. Nature, 371, 695-697. DeLong, Jr, D.C. (1996) : Defining Biodiversity, Wildlife Society Bulletin, 24 (4), 738-749 DeLong, E.F., dan Pace, N.R. (2001) : Environmental diversity of bacteria and archaea. Syst Biol, 50:470-478. Dhungana, S., Anthony III, C.R., dan Hersman, L.E. (2007) : Effect of Exogenous Reductant on Growth and Iron Mobilization from Ferrihydrite by the Pseudomonas mendocina ymp Strain, Appl. Environ. Microbiol, 73 (10), 3428–3430 Druschel, G.K., Schoonen, M.A.A. Nordstrom, D.K. Ball, J.W. Xu, Y., dan Cohn, C.A. (2003) : Sulfur geochemistry of hydrothermal waters in Yellowstone National Park, Wyoming, USA. III. An anion-exchange resin technique for sampling and preservation of sulfoxyanions in natural waters, Geochem. Trans., 4 (3), 12–19 Dunbar, J., Ticknor, L.O, dan Kuske, C.R (2000) : Assessment of microbial diversity in four southwestern United States by 16S rRNA gene terminal restriction fragment analysis. Appl. Environ. Microbiol., 66, 2943–2950 Eckert K. dan Schneider, E. (2003) : A Thermoacidophilic Endoglucanase (Celb) from Alicyclobacillus acidocaldarius Displays High Sequence Similarity to Arabinofuranosidases Belonging to Family 51 of Glycoside Hydrolases, Eur. J. Biochem. 270, 3593–3602 Edward, C. (1990) : Thermophiles, In Microbiology of Extreme Environments, C. Edward, Ed., McGraw-Hill Publishing Company: Oxford, p. 1-32. Edwards, K. J., Rogers, D. R. Wirsen, C. O. dan McCollom, T. M. (2003) : Isolation and Characterization of Novel Psychrophilic, Neutrophilic, FeOxidizing, Chemolithoautotrophic α- and γ-Proteobacteria from the Deep Sea, Appl. Environ. Microbiol, 69 (5), 2906–2913 Egert, M., dan Friedrich, M.W. (2003) : Formation of Pseudo-Terminal Restriction Fragment, a PCR-Related Bias Affecting Terminal Restriction Fragment Length Polymorphism Analysis of Microbial Community Structure. Appl. Environ. Microbiol. 69 (5), 2555-2562. Faiz, Ö., Colak, A., Saglam, N., Çanakçi, S., dan Beldüz, A.O. (2007) : Determination and Characterization of Thermostable Esterolytic Activity from a Novel Thermophilic Bacterium Anoxybacillus gonensis A4, J. Biochem. Mol. Biol., 40 (4), 588-594 Felsenstein, J. (1989) : PHYLIP- phylogeny inference package. Cladistic, 5, 164166. Ferris, M.J., Muyzer, G., dan Ward, D.M., (1996) : Denaturing Gradient Gel Electrophoresis Profiles of 16S rRNA-Defined Populations Inhabiting a Hot Spring Microbial Mat Community, Appl. Environ. Microbiol., 62 (2), 340 – 346 103 Fischer, S.G. dan Lerman, L.S. (1983) : DNA fragments differing by single basepair substitutions are separated in denaturing gradient gels: correspondence with melting theory. Proc. Natl. Acad. Sci. 80, 1579–1583 Fisher, C.R. (1990) : Chemoautotrophic and methanotrophic symbiosis in marine invertebrates. Rev. Aquat. Sci. 2, 399–436 Frostegård, Å., Courtois, S., Ramisse, V., Clerc, S., Bernillon, D., Gall, F.L., Jeannin, P., Nesme, X., dan Simonet, P. (1999) : Quantification of Bias Related to the Extraction of DNA Directly from Soils, Appl. Environ. Microbiol., 65 (12), 5409–5420 Fuhrman, J.A., McCallum, K., dan Davis, A.A. (1992) : Novel marine archaebacterial group from marine plankton, Nature, 356, 148-149. Fuhrman, J.A., McCallum, K., dan Davis, A.A. (1993) : Phylogenetic diversity of subsurface marine microbial communities from the Atlantic and Pacific Oceans, Appl. Environ. Microbiol., 59, 1294–1302 Gelsomino, A., Keijzer-Wolters, A.C., Cacco, G., dan van Elsas, J.D. (1999) : Assessment of bacterial community structure in soil by polymerase chain reaction and denaturing gradient gel electrophoresis. J Microbiol Methods, 38, 1–15 Giovannoni, S.J., Britschgi, T.B., Moyer, C.L., dan Field, K.G. (1990) : Genetic diversity in Sargasso Sea bacterioplankton, Nature, 344, 60–63 Ghosh, D.,B. Bal, V. K. Kashyap, dan S. Pal. (2003) : Molecular Phylogenetic Exploration of Bacterial Diversity in a Bakreshwar (India) Hot Spring and Culture of Shewanella-Related Thermophiles, Appl. Environ. Microbiol., 69 (7), 4332–4336 Grey, J.P., dan Herwig, R..P (1996) : Phylogenetic analysis of the bacterial communities in marine sediments. Appl. Environ. Microbiol., 62, 4049– 4059 Hamamura, N., Olson, S. H., Ward, D. M., dan Inskeep, W.P. (2005) : Diversity and Functional Analysis of Bacterial Communities Associated with Natural Hydrocarbon Seeps in Acidic Soils at Rainbow Springs, Yellowstone National Park. Appl. Environ. Microbiol., 71 (10), 5943–5950 Hao, X., dan Ma, K. (2003) : Minimal Sulfur Requirement for Growth and SulfurDependent Metabolism of the Hyperthermophilic Archaeon Staphylothermus marinus, Archaea, 1, 191–197 Harry, M., Gambier, B. Bourezgui, Y. dan Garnier-Sillam, E. (1999) : Evaluation of purification procedures for DNA extracted from organic rich samples: Interference with humic substances, Analusis, 27( 5), 439-442 Healy, J. dan Mahon, W.A.J. (1982) : Kawah Kamojang Geothermal Field, West Java, Indonesia. Proc. of Pacific Geothermal Conference incorporating the 4th New Zealand Geothermal Workshop 2, The University of Auckland, 313-319. Hershberger, K.L., Barns, S. M. Reysenbach, A.L. Dawson, S.C. dan Pace, N.R.. (1996) : Wide diversity of Crenarchaeota. Nature 384, 420 104 Horiuchi, J.I., Ebie, K., Tada, K., Kobayashi, M., dan Kanno, T. (2003) : Simplified method for estimation of microbial activity in compost by ATP analysis, Biores. Technol., 86, 95–98 Hou, S., Saw, J.H., Lee, K.S., Freitas, T.A., Belisle, C., Kawarabayasi, Y., Donachie, S.P., Pikina, A., Galperin, M.Y., Koonin, E.V., Makarova, K.S., Omelchenko, M.V., Sorokin, A., Wolf, Y.I., Li, QX., Keum, Y.S., Campbell, S., Denery, J., Aizawa, S., Shibata, S., Malahoff, A., dan Alam, M. (2004): Genome sequence of the deep-sea γ-proteobacterium Idiomarina loihiensis reveals amino acid fermentation as a source of carbon and energy, Proc. Natl. Acad. Sci., 101, 52 Huber, R., Huber, H., dan Stetter, K.O. (2000) : Toward the ecology of hyperthermophile: biotopes, new isolation strategies and novel metabolic properties. FEMS Microbiol. Rev., 24, 615-623. Ibekwe, A.M., dan Kennedy, A.C. (1998) : Phospholipid fatty acid profiles and carbon utilization patterns for analysis of microbial community structure under field and greenhouse conditions. FEMS Microbiol. Ecol. 26, 151–163. Ikeda, S, Watanabe, K.N., Minamisawa, K., dan Ytow, N. (2004) : Evaluation of soil DNA from arable land in Japan using a modified direct-extraction method. Microbes Environ., 19, 301–309 Ikeda, S., Ytow, N., Ezura, H., Minamisawa, K., dan Fujimura, T. (2006) : Soil microbial community analysis in the environmental risk assessment of transgenic plants. Plant Biotechnol., 23, 137–151. Illanes, A. (1999) : Stability of Biocataliysts, J. Biotechnol, 2, 1-9 Indrajaya, Warganegara, F. M., dan Akhmaloka (2003) : Isolasi dan Identifikasi Mikroorganisme Termofilik Isolat Kawah Wayang, J. Mikrobiol. Indones., 8 (2), 53-56 Ito, T., Sugita, K. dan Okabe, S. (2004) : Isolation, Characterization, and in situ Detection of a Novel Chemolithoautotrophic Sulfur-Oxidizing Bacterium in Wastewater Biofilms Growing under Microaerophilic Conditions, Appl. Environ. Microbiol., 70 (5), 3122–3129 Jackson, C.R., Langner, H.W., Donahoe-Christiansen, J., Inskeep, W.P. dan McDermott, T.R. (2001) : Molecular analysis of microbial community structure in an arsenite-oxidizing acidic thermal spring, Environ. Microbiol., 3 (8), 532-542 Karavaiko, G.I., Bogdanova, T.I., Tourova, T.P., Kondrat’eva, T.F., Tsaplina, I.A., Egorova, M.A., Krasil’nikova, E.N. dan Zakharchuk, L.M. (2005) : Reclassification of Sulfobacillus thermosulfidooxidans Subsp. thermotolerans’ Strain K1 as Alicyclobacillus tolerans Sp. Nov. and Sulfobacillus disulfidooxidans Dufresne et al. 1996 as Alicyclobacillus disulfidooxidans Comb. Nov., and Emended Description of the Genus Alicyclobacillus, Int. J. Sys. Evol. Microbiol, 55, 941–947 Kawai, M., Matsutera, E., Kanda, H., Yamaguchi, N., Tani, K., dan Nasu, M. (2002) : 16S Ribosomal DNA-Based Analysis of Bacterial Diversity in 105 Purified Water Used in Pharmaceutical Manufacturing Processes by PCR and Denaturing Gradient Gel Electrophoresis, Appl Environ Microbiol, 68 (2), 699–704 Khalil, A.B., Zarqa, M.A., dan Al-Qaryouti, M. (2006) : Production of Antimicrobial Agents from Thermophilic Yersinia sp.1 and Aeromonas hyddrophila Isolated from Hot Spring in Yordan Valley, Biotechnol, 5 (3), 252-256. Kieft, T. L., Fredrickson, J. K., Onstott, T. C., Gorby, Y. A., Kostandarithes, H. M., Bailey, T. J., Kennedy, D. W., Li, S. W., Plymale, A. E., Spadoni, C. M. dan Gray, M. S. (1999) : Dissimilatory Reduction of Fe(III) and other Electron Acceptors by a Thermus Isolate, Appl. Environ. Microbiol, 65 (3), 1214–1221 Kirk J. L., Beaudette, L.A., Hart, M., Moutoglis, P., Klironomos, J.N., Lee, H., dan Trevors, J.T. (2004) : Methods of studying soil microbial diversity, J. Microbiol. Methods, 58, 169-188. Kisand, V., dan Wikner, J. (2003) : Limited resolution of 16S rDNA DGGE caused by melting properties and closely related DNA sequences. J. Microbiol Methods, 54, 183–191 Klijn, N., Weerkamp, A.H., dan de Vos, W.M. (1991) : Identification of Mesophilic Lactic Acid Bacteria by using Polymerase Chain ReactionAmplified Variable Regions of 16S rRNA and Specific DNA Probes. Appl. Environ. Microbiol., 57 (11), 3390-3393 Kozubal, M., Macur, R. E., Korf, S., Taylor, W. P., Ackerman, G. G., Nagy, A. dan Inskeep, W. P. (2008) : Isolation and Distribution of a Novel IronOxidizing Crenarchaeon from Acidic Geothermal Springs in Yellowstone National Park, Appl. Environ. Microbiol, 74 (4), 942–949 Kusumadinata, K (1979) : Data Dasar Gunung Api Indonesia (Catalogue of References on Indonesian Volcanoes with Eruptions in Historical Time). Direktorat Vulkanologi, Direktorat Pertambangan Dasar, Departemen Pertambangan dan Energi RI, Bandung. Liesack, W., dan Stackebrandt, E. (1992) : Occurence of novel groups of the domain Bacteria as revealed by analysis of genetic material isolated from an Austalian terrestrial environment. J. Bacteriol. 174, 5072–5078 Liu, W.T., Marsh, T.L., Cheng, H., dan Forney, L.J. (1997) : Characterization of Microbial Diversity by Determining Terminal Restriction Fragment Length Polymorphisms of Genes Encoding 16S rRNA, Appl. Environ. Microbiol., 63, 4516-4522 Lohr, A.J., Laverman, A.M., Braster, M., van Straalen, N.M. dan Roling, W.F.M. (2006) : Microbial Communities in the World’s Largest Acidic Volcanic Lake, Kawah Ijen in Indonesia, and in the Banyupahit River Originating from It. Microb. Ecol., 52, 609-618. Lu S., Park, M., Ro, H., Lee, D. S., Park, W., dan Jeon, C. O. (2006) : Analysis of Microbial Communities Using Culture-dependent and Culture-independent 106 Approaches in an Anaerobic/Aerobic SBR Reactor, J. Microbiol, 44, 2, 155161 Maarit-Niemi, R., Heiskanen, I., Wallenius, K., dan Lindstrom, K. (2001) : Extraction and purification of DNA in rhizosphere soil samples for PCRDGGE analysis of bacterial consortia. J. Microbiol. Methods, 45, 155–165 Madigan, M.T. dan Martinko, J.M. (2006) : Brock Biology of Microorganisms, Prentice-Hall, Upper Sadle River, NJ, ed.11. Madigan, M.T., dan Oren, A. (1999) : Thermophilic and halophilic extremophiles. Curr. Opin. Microbiol., 2, 265-269. Maidak, B. L., Cole, J., Lilburn, R., Parker, Jr., C. T., Saxman, P. R., Stredwick, J. M., Garrity, G. M., Li, B., Olsen, G. J., Pramanik, S., Schmidt, T. M. dan Tiedje, J. M. (2000) : The RDP (Ribosomal Database Project) continues. Nucleic Acids Res. 28, 173–174 Marteinsson, V.T., Hauksdottir, S.R., Hobel, C.F.V., Kristmannsdottir, H., Hreggvidsson, G.O., dan Kristjansson, J. K. (2001) : Phylogenetic Diversity Analysis of Subterranean Hot Springs in Iceland, Appl. Environ. Microbiol, 67 (9), 4242–4248 Mathur, J., Bizzoco, R.W., Ellis, D.G., Lipson, D.A., Poole, A.W., Levine, R. dan Kelley, S.T. (2007) : Effects of Abiotic Factors on the Phylogenetic Diversity of Bacterial Communities in Acidic Thermal Springs, Appl. Environ. Microbiol., 73 (8), 2612–2623 Matsubara, H., Goto, K., Matsumura, T., Mochida, K., Iwaki, M., Niwa, M. dan Yamasato, K. (2002) : Alicyclobacillus Acidiphilus sp. Nov., a Novel Thermo-Acidophilic, X-Alicyclic Fatty Acid containing Bacterium Isolated from Acidic Beverages, Int. J. Syst. Evol. Microbiol, 52, 1681–1685 McMullan, G., Christie, J.M., Rahman, T.J., Banat, I.M., Ternan, N.G. dan Marchant, R. (2004) : Habitat, applications and genomics of the aerobic, thermophilic genus Geobacillus, Biochem. Soc. Trans, 32, 2, 214-217 Menking, D.E., Emanuel, P.A., Valdes, J.J., dan Kracke, S.K. (1999) : Rapid cleanup of bacterial DNA from field samples, Res. Conserv. Recycl., 27, 179–186 Miller, D.N., Bryant, J.E., Madsen, E.L., dan Ghiorse, W.C. (1999) : Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Appl. Environ. Microbiol, 65, 4715–4724 Muyzer, G., de Waal, E.C. dan Uitterlinden, A.G. (1993) : Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reactionamplified genes encoding for 16S rRNA. Appl. Environ. Microbiol. 59, 695–700 Muyzer, G., dan Ramsing, N.B. (1995) : Molecular methods to study the organization of microbial communities. Wat. Sci. Tech. 32, 1–9 Muyzer, G., dan Smalla, K. (1998) : Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology, Antonie van Leeuwenhoek, 73, 127–141 107 Muyzer, G. (1999) : DGGE/TGGE a method for identifying genes from natural ecosystems. Curr. Opin. Microbiol., 2, 317–322 Myers, R.M., Fischer, S.G, Lerman, L.S., dan Maniatis, T. (1985) : Nearly all single base substitutions in DNA fragments joined to a GC140 clamp can be detected by denaturing gradient gel electrophoresis. Nucleic Acids Res. 13, 3131–3145 Nakatsu, C.H., Torsvik, V., dan Øvreås, L. (2000) : Soil community analysis using DGGE of 16S rDNA polymerase chain reaction products. Soil Sci. Soc. Am. J., 64, 1382–1388 Newman, D.K., dan Banfield, J.F. (2002) : Geomicrobiology: How MolecularScale Interactions Underpin Biogeochemical Systems, Science, 296, 10711077 Nikolausz, M., Sipos, R., Révész, S., Székely, A., dan Márialigeti, K. (2005) : Observation of bias associated with re-amplification of DNA isolated from denaturing gradient gels. FEMS Microbiol. Lett., 244, 385–390 Nunes, O.C., Manaia, C.M., Da Costa, M S. dan Santos, H. (1995) : Compatible Solutes in the Thermophilic Bacteria Rhodothermus marinus and ‘‘Thermus thermophilus’’, Appl. Environ. Microbiol, 61(6), 2351–2357 Osborn, A.M., Moore, E.R.B., dan Timmis, K.N. (2000) : An evaluation of terminal-restriction fragment length polymorphisms (T-RFLP) analysis for the study of microbial community structure and dynamics. Environ. Microbiol., 2, 39–50 Pace, N.R., (1997) : A Molecular View of Microbial Diversity and the Biosphere, Science, 276, 734 – 740 Pavlostathis, S.G., Marchant, R., Banat, I.M., Ternan, N.G., dan McMullan, G. (2006) : High Growth Rate and Substrate Exhaustion Results in Rapid Cell Death and Lysis in the Thermophilic Bacterium Geobacillus thermoleovorans, Biotechnol. Bioeng., 95 (1), 84-96 Pikuta, E., Lysenko, A., Chuvilskaya, N., Mendrock, U., Hippe, H., Suzina, N., Nikitin, D., Osipov, G., dan Laurinavichius, K. (2000) : Anoxybacillus pushchinensis Gen. Nov., Sp. Nov., A Novel Anaerobic, Alkaliphilic, Moderately Thermophilic Bacterium from Manure, and Description of Anoxybacillus flavithermus Comb. Nov., Int. J. Syst. Evol. Microbiol., 50, 2109–2117 Prokofeva, M., Miroshnichenko, M., Kostrikina, N., Chernyh, N., Kuznetsov, B., Tourova, T. dan Bonch-Osmolovskaya, E. (2000) : Acidilobus aceticus Gen. Nov., sp. Nov., a Novel Anaerobic Thermoacidophilic Archaeon from Continental Hot Vents in Kamchatka, Int. J. Syst. Evol. Microbiol., 50, 2001–2008. Prosser, J.I. (2002) : Molecular and functional diversity in soil microorganisms. Plant Soil, 244, 9–17 108 Raskin, L., Zheng, D., Griffin, M.E., Stroot, P.G., dan Misra, P. (1995) : Characterization of microbial communities in anaerobic bioreactors using molecular probes. Antonie van Leeuwenhoek, 68, 297–308 Reysenbach, A.L., Ehringer, M., dan Hershberger, K. (2000) : Microbial diversity at 83°C in Calcite Springs, Yellowstone National Park:another environment where the Aquaficales and “Korarchaeota” coexist. Extremophile, 4, 61-67. Reysenbach, A.L., Wickham, G.S., dan Pace, N.R. (1994) : Phylogenetic analysis of hyperthermophilic pink filament community in Octopus Sping, Yellowstone National Park. Appl. Environ. Microbiol. 60, 2113-2119. Reysenbach, A.L., dan Cady, S.L. (2001) : Microbiology of ancient and modern hydrothermal systems. TRENDS in Microbiology. 9 (2), 79-86. Reysenbach, A.L., dan Shock, E. (2002) : Merging Genomes with Geochemistry in Hydrothermal Ecosystems. Science, 296,1077-1082. Saitou, N., dan Nei, M. (1987) : The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425. Sambrook, J. dan Russel, D.W. (2001) : Molecular Cloning: A Laboratory Manual, Cold Spring Harbour Press, New York. Santegoeds, C.M., Nold, S.C., dan Ward, D.M. (1996) : Denaturing Gradient Gel Electrophoresis Used to Monitor the Enrichment Culture of Aerobic Chemoorganotrophic Bacteria from a Hot Spring Cyanobacterial Mat, Appl. Environ. Microbiol, 62, 11, 3922–3928 Satokari, R.M., Vaughan, E.E., Akkermans, A.D.L., Saarela, M., dan de Vos, W.M. (2001) : Polymerase chain reaction and denaturing gradient gel electrophoresis monitoring of fecal Bifidobacterium populations in a prebiotic and probiotic feeding trial. Syst. Appl. Microbiol., 24, 227–231 Schafer, G., Engelhard, M., dan Muller, V. (1999) : Bioenergetics of the Archaea, Microbiol. Mol. Biol. Rev., 63 (3),570–620 Schönheit, P., dan Schäfer, T. (1995) : Metabolism of Hyperthermophiles, World J. Microbiol. Biotechnol., 11, 26-57 Schwieger dan Tebbe, C.C. (1998) : A new approach to utilize PCR-single stranded conformation polymorphism for 16S rRNA gene-based microbial community analysis, Appl. Environ. Microbiol., 64, 4870-4876 Sekiguchi, H., Tomioka, N., Nakahara, T., dan Uchiyama, H. (2001) : A single band does not always represent single bacterial strains in denaturing gradient gel electrophoresis analysis. Biotechnol. Lett., 23, 1205–1208 Sharma, R., Ranjan, R., Kapardar, R. K. dan Grover, A. (2005) : ‘Unculturable’ bacterial diversity: an untapped resource, Curr. Scie., 89 (1), 72-77 Sheffield, V. C., Cox, D.R., Lerman,L.S., dan Myers,R.M., (1989) : Attachment of a 40-base-pair G+C-rich sequence (G-C-clamp) to genomic DNA fragments by the polymerase chain reaction results in improved detection of single-base changes, Appl. Environ. Microbiol. 86, 232-236 109 Skirnisdottir, S., Hreggvidsson, G.O., Holst, O. dan Kristjansson, J.K. (2001) : A new ecological adaptation to high sulfide by a Hidrogenobacter sp. growing on sulfur compound but not on hydrogen. Microbiol. Res.. 156, 41-47. Smalla, K., Oros-Sichler, M., Milling, A., Heuer, H., Baumgarte, S., Becker, R., Neuber, G., Kropf, S., Ulrich, A., dan Tebbe, C.C. (2007) Bacterial Diversity of Soils Assessed by DGGE, T-RFLP and SSCP Fingerprints of PCR-Amplified 16S rRNA Gene Fragments: Do the Different Methods Provide Similar Results?, J. Microbiol. Methods, 69, 470–479 Speksnijder, A, Kowalchuk, G.A., De Jong, S., Kline, E., Stephen, J.R., dan Laanbroek, H.J. (2001) : Microvariation artifacts introduced by PCR and cloning of closely related 16S rRNA gene sequences. Appl. Environ. Microbiol., 67, 469–472 Stahl, D.A., Flesher, B., Mansfield, H.R., dan Montgomery, L. (1988) : Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Appl. Environ. Microbiol. 54, 1079–1084 Stetter, K.O., (1996). Hyperthermophilic procaryotes, FEMS Microbiol. Rev., 18, 149-158 Sudarman, S., Boedihardi, M., Pudyastuti, K., dan Bardan (1995) : Kamojang Geothermal Field: 10 Year Operation Experience. Proc. of the World Geothermal Congress (Florence) 2, 1773-1777. Swofford, D.L, dan Sullivan, J. (2003) : Phylogeny inference based on parsimony and other methods using PAUP, in The Phylogenetic Handbook (Salemi dan Vandamme, ed.), Cambridge University Press. Tamaki, H., Sekiguchi, Y., Hanada, S., Nakamura, K., Nomura, N., Matsumura, M. dan Kamagata, Y. (2005) : Comparative Analysis of Bacterial Diversity in Freshwater Sediment of a Shallow Eutrophic Lake by Molecular and Improved Cultivation-Based Techniques, Appl. Environ. Microbiol, 71 (4), 2162–2169 Theron, J, dan Cloete, T.E (2000) : Molecular techniques for determining microbial diversity and community structure in natural environments. Crit. Rev. Microbiol., 26, 37–57 Thompson, J.D., Higgins, D.G. dan Gibson, T.J. (1994) : CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Research, 22, 4673-4680 Tiedje, J.M., Asuming-Brempong, S., Nusslein, K., Marsh, T.L., Flynn, S.J. (1999) : Opening the black box of soil microbial diversity. Appl. Soil Ecol., 13, 109–122 Utami, P. (2000) : Characteristics of the Kamojang Geothermal Reservoir (West Java) as Revealed by its Hydrothermal Alteration Mineralogy, Proc. World Geothermal Congress, Kyushu - Tohoku Utami, P. dan Browne, P.R.L. (1999) : Subsurface Hydrothermal Alteration in the Kamojang Geothermal Field, West Java, Indonesia, Proc. Twenty-Fourth 110 Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California Van de Peer, Y (2003) : Phylogeny inference based on distance methods, in the Phylogenetic Handbook (Salemi dan Vandamme, ed.), Cambridge University Press. Vieille, C. dan Zeikus, G.J., (2001) : Hyperthermophilic Enzymes: Sources, Uses and Mechanisms for Thermostability, Microbiol. Mol. Biol. Rev., 65, 1-43. Von Haeseler, A, dan K. Trimmer (2003) : Phylogeny inference based on maximum-likelihood methods with TREE-PUZZLE, in the Phylogenetic Handbook (Salemi dan Vandamme, ed.), Cambridge University Press. Ward, D.M., Ferris, M.J., Nold, S.C., dan Bateson, M.M., (1998) : A Natural View of Microbial Biodiversity within Hot Spring Cyanobacterial Mat Communities, Microbiol. Mol. Biol. Rev., 62, 1353-1370 Weller, R., Weller, J.W. dan Ward, D.M. (1991) : 16S rRNA sequences of uncultivated hot spring cyanobacterial mat inhabitants retrieved as randomly primed cDNA. Appl. Environ. Microbiol. 57, 1146–1151 Wintzingerode, F.V., Landt, O., Ehrlich, A., dan Gobel, U.B. (2000) : Peptide Nucleic Acid-Mediated PCR Clamping as a Useful Supplement in the Determination of Microbial Diversity, Appl Environ Microbiol, 66 (2), 549– 557 Woese, C. R., (1987) : Bacterial Evolution, Microbiol Rev, 51, 221 – 271 Yamamoto, H., Hiraishi, A., Kato, K., Chiura, H.X., Maki, Y., dan Shimizu, A. (1998) : Phylogenetic evidence for the existence of novel thermophilic bacteria in hot spring sulfur-turf microbial mats in Japan. Appl. Environ. Microbiol. 64, 1680-1687. Yeates,C., Gillings, M.R., Davison, A.D., Altavilla, N., dan Veal, D.A. (1998) : Methods for microbial DNA extraction from soil for PCR amplification, Biol Procedures Online, 1 (1), 40-47 Zhang, G., Dong, H., Xu, Z., Zhao, D., dan Zhang, C. (2005) : Microbial Diversity in Ultra-High-Pressure Rocks and Fluids from the Chinese Continental Scientific Drilling Project in China, Appl. Environ. Microbiol, 71 (6), 3213–3227 Zhou, J., Bruns, M.A., dan Tiedje, J.M. (1996) : DNA Recovery from Soils of Diverse Composition, Appl. Environ. Microbiol, 62, 316–322. Zuhro, A.A. (2004) : Numerical Modelling of the Kamojang Geothermal System, Indonesia, Geothermal Training Programme Reports, Orkustofnun, Reykjavík 111 Pustaka dari situs: National Centre of Biotechnological Information (NCBI), alamat situs http://www.ncbi.nlm.nih.gov, tanggal download: 3 Oktober 2006 – 17 April 2008. Ribosomal Database Project (RDP), alamat situs http://rdp.cme.msu.edu, tanggal download: 8 – 28 Februari 2008. 112 LAMPIRAN 113 Lampiran A. Komposisi Media Pertumbuhan Mikroba (Atlas, 1993) Sulfolobus Medium (Revised) Castenholtz D Medium (Cast D) Komposisi medium per liter: NaNO3 Na2HPO4 KNO3 MgSO4.7H2O Nitrilotriacetic acid CaSO4.2H2O NaCl FeCl3 sol Mikronutrien sol 0,7 g 0,11 g 0,10 g 0,10 g 0,10 g 0,06 g 8,0 mg 1,0 mL 0,5 mL Mikronutrien sol per liter: MnSO4.H2O H3BO3 ZnSO4.7H2O CoCl2.6H2O CuSO4.5H2O Na2MoO4.2H2O H2SO4 2,28 g 0,5 g 0,5 g 0,025 g 0,025 g 0,025 g 0,5 mL Czapek Dox Broth (CzD) Komposisi medium per liter: Sukrosa 30,0 g 4,0 g NaNO3 K2HPO4 1,0 g MgSO4.7H2O 0,5 g KCl 0,5 g FeSO4.7H2O 0,01 g Komposisi medium per liter: (NH4)2SO4 Tripton KH2PO4 MgSO4.7H2O CaCl2.2H2O Ekstrak ragi FeCl3.6H2O Na2B4O7 MnCl2.4H2O ZnSO4.7H2O CuCl2.H2O Na2MoO4.H2O VOSO4.2H2O CoSO4 1,3 g 1,0 g 0,28 g 0,25 g 0,07 g 0,05 g 0,02 g 4,5 mg 1,8 mg 0,22 mg 0,05 mg 0,03 mg 0,03 mg 0,01 mg Sulfate-Reducing Medium (SRM) Komposisi medium per liter: Natrium laktat MgSO4.7H2O Pepton Na2SO4 Beef extract K2HPO4 CaCl2 Fe(NH4) 2(SO4) 2.6H2O sol Natrium askorbat sol 3,5 g 2,0 g 2,0 g 1,5 g 1,0 g 0,5 g 0,1 g 10 mL 10 mL Fe(NH4) 2(SO4) 2.6H2O sol: 3,92 g Fe(NH4) 2(SO4) 2.6H2O ditambahkan dH2O menjadi 100 mL larutan. Natrium askorbat sol: 0,050 g Natrium askorbat ditambahkan dH2O menjadi 100 mL larutan. 114 Lampiran B. Prosedur Analisis Penjajaran Nukleotida dan Konstruksi Pohon Filogenetik Penjajaran menggunakan program ClustalW Program ClustalW versi 1.83 dibuka. Data dimasukkan dengan cara memilih nomor 1 (sequence input from disk) dan memasukkan nama file dalam format .txt. Pilihan multiple alignment dilakukan dengan menuliskan nomor 2. Keluaran (output) hasil penjajaran dalam format MSF dan PHYLIP dipilih dengan menuliskan no 9 (output format option) pada menu multiple alignments. Penjajaran dilakukan dengan memilih do complete multiple alignment now (nomor 1) pada menu multiple alignment. Konstruksi Pohon Filogenetik menggunakan program Phylip Program SEQBOOT dijalankan. Nama file dengan format phylip dimasukkan ketika diminta. Tombol R ditekan yang dilanjutkan dengan memasukkan nilai 1000 sebagai nilai replikasi. Nilai berapapun (ganjil) diberikan ketika keluar perintah random number seed (must be odd). Tombol y ditekan untuk memproses data yang dimasukkan. File dengan nama outfile diubah namanya sesuai dengan nama yang ingin diolah. Progran DNAdist dijalankan. Nama file yang semula diubah, dimasukkan. Tombol M ditekan dan angka 1000 dimasukkan sebagai banyaknya data yang hendak diolah. Tombol y ditekan untuk memproses data yang dimasukkan. File dengan nama outfile diubah namanya sesuai dengan nama yang dikehendaki untuk diproses. Program Neighbor dijalankan. Nama file yang semula diubah, dimasukkan. Tombol M ditekan dilanjutkan dengan memasukkan angka 1000. Nilai ganjil dimasukkan ketika keluar pperintah random seed number. Tombol y ditekan untuk memproses data yang dimasukkan. File dengan nama outree diubah namanya sesuai dengan nama yang dikehendaki untuk diproses lebih lanjut. 115 Progran CONSENSE dijalankan. Nama file hasil terakhir dimasukkan kemudian dilanjutkan dengan penekanan tombol y untuk memproses data. File dengan nama outree diubah sesuai dengan nama yang diinginkan dan ditambahkan extention .phb atau .tre. Visualisasi hasil penjajaran dengan program GenDoc Program GenDoc dijalankan. Selanjutnya “import” pada menu file dipilih. Pada perintah “Please Select The Type of File”, pilih file yang extensionnya sesuai dengan permintaan. Selanjutnya tombol “Done” ditekan. Visualisasi Pohon Filogenetik dengan Program Treeview Program digunakan untuk membuka pohon filogenetik dari program ClustalW dan Phylip. Program Treeview dijalankan. Selanjutnya dipilih “Open” pada menu file. Cari nama file dengan extention .phy .tre atau .phb pada kolom “File name”. 116 Lampiran C. Accession Number GenBank Urutan Nukleotida Sampel Kawah Hujan Urutan sampel DNA yang dianalisis dalam penelitian ini dapat di-download melalui situs NCBI (http://www.ncbi.nlm.nih.gov), dengan nomor akses seperti tertera dalam Tabel C-1. Tabel C-1 Sampel KHA-K-1 KHA-K-3 KHA-K-5 KHA-K-6 KHA-K-9 KHA-K-10 KHA-CD-2 KHA-CD-3 KHA-LB-1 KHA-LB-4 KHA-LB-5 KHA-P-4 KHA-PB-2 KHA-PB-4 KHA-T-3 KHA-Z-1 KHA-Z-3 KHA-Z-5 KHA-Z-7 KHA-Z-8 KHA-Z-9 KHA-Z-10 KHA-Z-12 KHB-LB-1 KHB-LB-2 KHB-LB-3 KHB-LB-4 KHB-LB-5 Nomor akses urutan nukleotida sampel yang dideposit di GenBank Acc num. EU625407 EU625408 EU625409 EU625410 EU625411 EU625412 EU625413 EU625414 EU625415 EU625416 EU625417 EU625418 EU625419 EU625420 EU625421 EU625422 EU625423 EU625424 EU625425 EU625426 EU625427 EU625428 EU625429 EU625430 EU625431 EU625432 EU625433 EU625434 Sampel KHB-P-8 KHB-P-14 KHB-P-15 KHB-P-16 KHB-P-17 KHB-P-11 KHB-P-10 KHB-P-9 KHB-P-7 KHB-P-2 KHB-P-3 KHB-PB-2 KHB-PB-6 KHB-PB-7 KHB-PB-1 KHB-PB-8 KHB-PB-9 KHB-PB-10 KHB-PB-11 KHB-K-2 KHB-K-3 KHB-K-5 KHB-K-6 KHB-K-7 KHB-K-8 KHB-K-9 KHB-K-10 KHB-K-12 117 Acc num. EU625435 EU625436 EU625437 EU625438 EU625439 EU625440 EU625441 EU625442 EU625443 EU625444 EU625445 EU625446 EU625447 EU625448 EU625449 EU625450 EU625451 EU625452 EU625453 EU625454 EU625455 EU625456 EU625457 EU625458 EU625459 EU625460 EU625461 EU625462 Sampel KHB-K-14 KHB-Z-3 KHB-Z-4 KHB-Z-7 KHB-Z-8 KHB-Z-9 KHB-Z-10 KHB-Z-11 KHB-Z-12 KHB-Z-13 KHB-Z-15 Isolat P-12 Isolat T-7 Isolat P-13 Isolat T-18 Isolat T-25 Acc num. EU625463 EU625464 EU625465 EU625466 EU625467 EU625468 EU625469 EU625470 EU625471 EU625472 EU625473 EU784082 EU784083 EU784084 EU784085 EU784086 Lampiran D. Contoh Elektroforegram Hasil Sekuensing Contoh elektroforegram sampel hasil filtrasi (KHA-K-9) Contoh elektroforegram sampel hasil kultivasi (KHB-PB-6) 118 Lampiran D (lanjutan) Contoh elektroforegram sampel kultur tunggal (Geobacillus T12) 119 Lampiran E. Posisi Daerah Variabel dan Daerah Lestari pada Gen 16S rRNA Escherichia coli 120 Lampiran E (lanjutan) Keterangan: Arah panah biru tua : posisi primer yang digunakan untuk amplifikasi fragmen gen 16S rRNA Arah panah biru muda: posisi awal dan akhir urutan nukleotida sampel yang digunakan untuk analisis Urutan DNA berwarna ungu: urutan yang sangat lestari Urutan DNA berwarna merah: urutan lestari Urutan DNA berwarna hitang: urutan variabel Urutan DNA berwarna biru: urutan yang sangat variabel Urutan DNA berwarna hijau: urutan DNA >75% variabel. Garis bawah berwarna hijau: daerah variabel Garis bawah berwarna hitam: urutan yang digunakan sebagai primer PCR 121 Lampiran F. Hasil Penjajaran Urutan Gen 16S rRNA Kultur Tunggal (Geobacillus) 122 Lampiran F (lanjutan) 123 Lampiran F (lanjutan) Keterangan: • • • • urutan DNA yang sama dengan urutan konsensus diwakili dengan tanda titik (.). urutan DNA yang berbeda dengan urutan konsensus dituliskan hurufnya. Gap pada urutan DNA ditandai dengan simbol (- ). Urutan DNA yang dijajarkan berukuran sekitar 1,2 kb. 124 Lampiran G. Hasil Penjajaran Urutan Gen 16S rRNA Kultur Tunggal yang Dekat dengan genus Enterobacter 125 Lampiran G (lanjutan) 126 Lampiran G (lanjutan) Keterangan: • • • • urutan DNA yang sama dengan urutan konsensus diwakili dengan tanda titik (.). urutan DNA yang berbeda dengan urutan konsensus dituliskan hurufnya. Gap pada urutan DNA ditandai dengan simbol (- ). Urutan DNA yang dijajarkan berukuran sekitar 1,2 kb. 127 Lampiran H. Penentuan Kadar Logam dengan AAS Tabel H-1. Absorban rata-rata larutan standar Ca dan sampel hasil pengukuran dengan metode AAS pada panjang gelombang 422 nm Analit A rata-rata Larutan standar Ca 3 ppm 0,0327 Larutan standar Ca 6 ppm 0,0586 Larutan standar Ca 9 ppm 0,0856 Larutan standar Ca 12 ppm 0,1055 Larutan standar Ca 15 ppm 0,1316 Sampel KHA 10x pengenceran 0,0285 Sampel KHB 0,0861 Absorban (422,7 nm) Kurva standar Ca 0.1500 y = 0.0086x + 0.0046 R2 = 0.9956 0.1000 0.0500 0.0000 0 5 10 Konsentrasi (ppm ) 128 15 20 Lampiran H (Lanjutan) Tabel H-2. Absorban rata-rata larutan standar Mg dan sampel hasil pengukuran dengan metode AAS pada panjang gelombang 285,2 nm Analit A rata-rata Larutan standar Mg 0,04 ppm 0,2630 Larutan standar Mg 0,08 ppm 0,3611 Larutan standar Mg 0,15 ppm 0,6782 Larutan standar Mg 0,2 ppm 0,8562 Sampel KHA 0,9276 Sampel KHB 0,9708 Absorban (285,2 nm) Kurva standar Mg 1.0000 y = 3.8463x + 0.0877 R2 = 0.992 0.8000 0.6000 0.4000 0.2000 0.0000 0 0.05 0.1 0.15 konsentrasi (ppm ) 129 0.2 0.25 Lampiran H (Lanjutan) Tabel H-3. Absorban rata-rata larutan standar Fe dan sampel hasil pengukuran dengan metode AAS pada panjang gelombang 248,3 nm Analit A rata-rata Larutan standar Fe 0,1 ppm 0,0091 Larutan standar Fe 0,5 ppm 0,0954 Larutan standar Fe 0,8 ppm 0,1189 Larutan standar Fe 1 ppm 0,1406 Larutan standar Fe 2 ppm 0,1820 Sampel KHA 0,0165 Sampel KHB 1000x pengenceran 0,0220 Absorban (248,3 nm) Kurva standar Fe 0.1600 0.1400 0.1200 0.1000 0.0800 0.0600 0.0400 0.0200 0.0000 y = 0.1433x + 0.005 R2 = 0.9482 0 0.5 1 konsentrasi (ppm ) 130 1.5 Lampiran H (Lanjutan) Tabel H-4. Absorban rata-rata larutan standar Mn dan sampel hasil pengukuran dengan metode AAS pada panjang gelombang 279,5 nm Analit A rata-rata Larutan standar Mn 0,1 ppm 0,0248 Larutan standar Mn 0,5 ppm 0,0756 Larutan standar Mn 1 ppm 0,1269 Larutan standar Mn 2 ppm 0,2760 Larutan standar Mn 4 ppm 0,4980 Larutan standar Mn 6 ppm 0,7658 Sampel KHA 0,0051 Sampel KHB 0,0385 Kurva standar Mn Absorban (279,5 nm) 1.0000 y = 0.1249x + 0.0115 R2 = 0.9988 0.8000 0.6000 0.4000 0.2000 0.0000 0 2 4 Konsentrasi (ppm ) 131 6 8 Lampiran H (Lanjutan) Tabel H-5. Absorban rata-rata larutan standar Na dan sampel hasil pengukuran dengan metode AAS pada panjang gelombang 589 nm Analit A rata-rata Larutan standar Na 0,5 ppm 0,1704 Larutan standar Na 1 ppm 0,3421 Larutan standar Na 2 ppm 0,6814 Larutan standar Na 3 ppm 0,9641 Larutan standar Na 4 ppm 1,1373 Sampel KHA 10x pengenceran 0,4524 Sampel KHB 10x pengenceran 0,3172 Absorban (589 nm) Kurva Standar Na 1.2000 y = 0.3236x + 0.0109 R2 = 0.9983 1.0000 0.8000 0.6000 0.4000 0.2000 0.0000 0 1 2 Konsentrasi (ppm ) 132 3 4 Lampiran H (Lanjutan) Tabel H-6. Absorban rata-rata larutan standar K dan sampel hasil pengukuran dengan metode AAS pada panjang gelombang 766,5 nm Analit A rata-rata Larutan standar K 0,5 ppm 0,0088 Larutan standar K 1 ppm 0,0249 Larutan standar K 2 ppm 0,0831 Larutan standar K 3 ppm 0,1470 Larutan standar K 4 ppm 0,2242 Larutan standar K 5 ppm 0,3212 Sampel KHA 10x pengenceran 0,0153 Sampel KHB 0,0518 Absorban (766,5 nm) Kurva standar K 0.2000 y = 0.0564x - 0.0256 R2 = 0.9914 0.1500 0.1000 0.0500 0.0000 0 1 2 Konsentrasi (ppm ) 133 3 4 Lampiran H (Lanjutan) Tabel H-7. Absorban rata-rata larutan standar Pb dan sampel hasil pengukuran dengan metode AAS pada panjang gelombang 217 nm Analit A rata-rata Larutan standar Pb 2 ppm 0,0670 Larutan standar Pb 4 ppm 0,1409 Larutan standar Pb 6 ppm 0,2015 Larutan standar Pb 8 ppm 0,2680 Larutan standar Pb 10 ppm 0,3244 Sampel KHA 0,0000 Sampel KHB 0,0049 Absorban (217 nm) Kurva standar Pb y = 0.0326x + 0.0044 R2 = 0.9987 0.3500 0.3000 0.2500 0.2000 0.1500 0.1000 0.0500 0.0000 0 2 4 6 8 Konsentrasi (ppm ) 134 10 12 Lampiran H (Lanjutan) Tabel H-8. Absorban rata-rata larutan standar Cu dan sampel hasil pengukuran dengan metode AAS pada panjang gelombang 324,7 nm Analit A rata-rata Larutan standar Cu 1 ppm 0,1335 Larutan standar Cu 2 ppm 0,2720 Larutan standar Cu 3 ppm 0,4017 Larutan standar Cu 4 ppm 0,0542 Larutan standar Cu 5 ppm 0,6397 Sampel KHA 0,0000 Sampel KHB 0,0663 Absorban (324,7 nm) Kurva standar Cu y = 0.1285x + 0.0072 R2 = 0.9989 0.7000 0.6000 0.5000 0.4000 0.3000 0.2000 0.1000 0.0000 0 1 2 3 4 Konsentrasi (ppm ) 135 5 6 RIWAYAT HIDUP Penulis dilahirkan sebagai putri ketujuh dari pasangan Bapak H.Yuhana Saefullah dengan Ibu Hj. Ai Hotimah pada tanggal 5 November 1970 di Tasikmalaya. Penulis menyelesaikan pendidikan dasar dan menengah di Tasikmalaya dan lulus dari SMA Negeri I Tasikmalaya pada tahun 1989. Gelar sarjana kimia diperoleh pada tahun 1994 di Departemen Kimia Institut Teknologi Bandung dan Magister Sains diperoleh pada tahun 2002 di Program Pascasarjana ITB dalam bidang Biokima dengan beasiswa DUE-Karyasiswa. Pada tahun 2003 penulis mendapat kesempatan untuk mengikuti Program Doktor di Sekolah Pascasarjana ITB dalam bidang Biokimia di bawah bimbingan Bapak Akhmaloka, Ph.D sebagai Promotor, dengan Ko-Promotor Ibu Fida Madayanti, Ph.D dan Ibu Dr. Pingkan Aditiawati. Sejak tahun 2000 hingga sekarang penulis menjadi staf pengajar di Jurusan Kimia FMIPA Universitas Sriwijaya, Sumatera Selatan. Penulis menikah dengan M.H. Aripin Ali dan dikaruniai 3 orang putra yaitu Adry Fahmi Arifin, Azmi Kautsar Alim, dan Ali Muhammad Raihan. Selama mengikuti pendidikan Program Doktor di ITB, penulis telah menghasilkan beberapa publikasi, antara lain: • Yohandini, H., F. Madayanti, P. Aditiawati, dan Akhmaloka (2005) Biodiversitas Mikroorganisme Termofilik Isolat Kawah Hujan, Kamojang, Jawa Barat. Proceeding of JSChem ITB-UKM VI, Sanur, Bali • Yohandini, H., F. Madayanti, P. Aditiawati, dan Akhmaloka (2006) Bacterial Community Analysis of Kawah Hujan, Kamojang Hot Spring, West Java. Proceeding of International Conference on Mathematic and Natural Sciences, Bandung, Indonesia 136 • Yohandini, H., F. Madayanti, P. Aditiawati, dan Akhmaloka (2007) Culture-Independent and Culture-Dependent Analysis of Microbial Community in Kawah Hujan. JSChem ITB-UKM-2007. Bandung, Indonesia • Akhmaloka, S. Nurbaiti, R. Hertadi, H. Yohandini, A.L. Aminin, H. Helwati, and F. Madayanti (2006). Thermophilic Microorganism and Thermostable Enzyme from Indonesian Isolates. Proceeding of International Conference on Mathematics and Natural Sciences, Bandung, Indonesia • Viera, B.V.E., H. Yohandini, M.P. Widhiastuty, F. Madayanti, dan Akhmaloka (2007) Isolation and Identification of the Thermophilic Bacteria Producing Lipase from Kawah Hujan Hot Springs. JSChem ITB-UKM-2007. Bandung, Indonesia • Yohandini, H., F. Madayanti, P. Aditiawati, dan Akhmaloka (2008) Diversity of Microbial Thermophiles in a Neutral Hot Spring (Kawah Hujan A) of Kamojang Geothermal Field, Indonesia, Journal of Pure and Applied Microbiology (submitted) • Yohandini, H., F. Madayanti, P. Aditiawati, dan Akhmaloka (2008). Microbial Diversity in Acidic Hot Spring (Kawah Hujan B) of Kamojang Area, West Java-Indonesia, Microbes and Environment (submitted) • Yohandini, H., F. Madayanti, P. Aditiawati, dan Akhmaloka (2008) Cell Lysis Variation on Assessment of Microbial Diversity Based on Ribotyping Analysis, Microbiology Indonesia (accepted) • Akhmaloka, S. Nurbaiti, P. Aditiawati, R. Hertadi, H. Yohandini, A.L.Aminin, H.Helwati, and F. Madayanti (2006) Exploration of Thermophilic Microorganism from Hot Spring Around Java. Journal of the Indonesian Chemical Society, 1, 1-9 Hasil-hasil penelitian juga telah dipresentasikan dalam beberapa kegiatan seminar, diantaranya: • Analysis of Microbial Community in Kawah Hujan Using Denaturing Gradient Gel Electrophoresis. Internatioanal Seminar in Advances Biological Sciences, 2007, Yogyakarta, Indonesia 137 • Biodiversitas Mikroorganisme Termofilik Isolat Kawah Hujan, Kamojang, Jawa Barat. Seminar JSChem ITB-UKM VI, Sanur, Bali • Bacterial Community Analysis of Kawah Hujan, Kamojang Hot Spring, West Java. International Conference on Mathematic and Natural Sciences, 2006, Bandung, Indonesia • Culture-Independent and Culture-Dependent Analysis of Microbial Community in Kawah Hujan. Seminar JSChem ITB-UKM-2007. Bandung, Indonesia • Isolation and Identification of the Thermophilic Bacteria Producing Lipase from Kawah Hujan Hot Springs. Seminar JSChem ITB-UKM-2007. Bandung, Indonesia • Thermophilic Microorganism and Thermostable Enzyme from Indonesian Isolates. International Conference on Mathematics and Natural Sciences, 2006, Bandung, Indonesia 138