Daftar Pustaka - Institut Teknologi Bandung

advertisement
Daftar Pustaka
Allen, J.P., Atekwana, E.A., Duris, J.W., Werkema, D.D., dan Rossbach, S.
(2007) : The Microbial Community Structure in Petroleum-Contaminated
Sediments Corresponds to Geophysical Signatures, Appl. Environ.
Microbiol., 73 (9), 2860–2870
Akhmaloka, Suharto, A. Nurbaiti, S. Tika, I. N., dan Warganegara, F. M. (2006) :
Ribotyping Identification of Thermophilic Bacterium from Papandayan
Crater, Proc. ITB Eng. Science, 38b (1), 1-10
Akkermans, D.L, van Elsas, J.D., dan de Bruijn, F.J. (1995) : Molecular
Microbial Ecology Manual. Kluwer Academic Publishers, Dordrecht, The
Netherlands
Altschul, S.F, Gish, W, Miller, W, Myers, E.W, dan Lipman, D.J. (1990) : Basic
local alignment search tool. J. Mol. Biol., 215, 403-410.
Amann, R.I, Ludwig, W., dan Schleifer, K.H. (1995) : Phylogenetic identification
dan in situ detection of individual microbial cells without cultivation.
Microbiol. Rev., 59, 143–169
Aminin A.L.N, Madayanti, F., Aditiawati, P., dan Akhmaloka (2007) : 16S
ribosomal RNA-based analysis of thermophilic bacteria in Gedongsongo hot
spring. Microbiol. Indones., 1, 37-42.
Anđelković, T., Anđelković, D., Perović, J., Purenović, M., dan Polić, P. (2001) :
Decrease Of Oxygen Interference On Humic Acid Structure Alteration
During Isolation, Fact. Univ. Phys., Chem. Tech., 2 (3), 163 - 171
Atlas, R.M., (2002) : Handbook of Microbiological Media, CRC Press. Inc.
Baker, G.C., Gaffar, S., Cowan, D. A., dan Suharto, A. R., (2001) : Bacterial
community analysis of Indonesian hot springs, FEMS Microbiol. Lett., 103 –
109.
Baker, G.C., Smith, .J.J, dan Cowan, D.A. (2003) : Review dan re-analysis of
domain-specific 16S primers, J. Microbiol. Methods, 55, 541– 555
Barns, S.M., Fundyaga, R.E., Jeffries, M.W., dan Pace, N.R. (1994) : Remarkable
archaeal diversity detected in a Yellowstone National Park hot spring
enviroment, Proc. Natl. Acad. Sci., 91, 1609-1013
Barns, S.M., Delwiche, C.F. Palmer, J.D. dan Pace, N.R. (1996) : Perspectives on
archaeal diversity, thermophily and monophyly from environmental rRNA
sequences. Proc. Natl. Acad. Sci. 93, 9188-9193.
Bassam, B. J, Anolles, C.G, dan Greshoff, P.M. (1991) : Fast and sensitive
staining of DNA in polyacrylamide gels. Anal. Biochem. 196, 80–83.
Belduz, A.O., Dulger, S. dan Demirbag, Z. (2003) : Anoxybacillus gonensis sp.
Nov., a Moderately Thermophilic, Xylose-Utilizing, Endospore-Forming
Bacterium, Int. J. Sys. Evol. Microbiol., 53, 1315–1320
101
Bertoldo, C., Dock, C., dan Antranikian, G. (2004) : Thermoacidophilic
Microorganisms and their Novel Biocatalists, Eng. Life Sci. 4 (6), 521-532.
Biddle, J.F., House, C.H., dan Brenchley, J.E. (2005) : Enrichment and cultivation
of microorganisms from sediment from the slope of the Peru Trench (ODP
Site 1230), Proc. ODP, Sci. Results, 201, 1–19
Bintrim, S.B., Donohue, T.J., Handelsman, J., Roberts, G.P., dan Goodman, R.M.
(1997) : Molecular phylogeny of Archaea from soil. Proc. Natl. Acad. Sci.
94, 277-282.
Borneman, J, Skroch, P.W, O’Sullivan, K.M, Palus, J.A, Rumjanek, N.G, Jansen,
J.L, Nienhuis, J., dan Triplett, E.W. (1996) : Molecular microbial diversity
of an agricultural soil in Wisconsin. Appl. Environ. Microbiol. 62, 1935–
1943
Bossio, D.A., Scow, K.M., Gunapala, N., dan Graham, K.J. (1998) : Determinants
of soil microbial communities: effects of agricultural management, season,
and soil type on phospholipid fatty acid profiles. Microb. Ecol., 36, 1 –12.
Boyd, E.S., Jackson, R.A. Encarnacion, G. Zahn, J.A. Beard, T. Leavitt, W.D. Pi,
Y. Zhang, C.L. Pearson, A., dan Geesey, G.G. (2007) : Isolation,
Characterization, and Ecology of Sulfur-Respiring Crenarchaea Inhabiting
Acid-Sulfate-Chloride-Containing Geothermal Springs in Yellowstone
National Park, Appl. Environ. Microbiol., 73 (20), 6669–6677
Brock T. D. (1998) : Microbiology in Yellowstone at first focused on the basic
science and ecology but gradually has expanded in scope, ASM News, 64, 3,
137-140
Case, R.J., Boucher, Y., Dahllo, I., Holmstrom, C., Doolittle, W.F., dan S.
Kjelleberg (2007) : Use of 16S rRNA and rpoB Genes as Molecular Markers
for Microbial Ecology Studies, Appl. Environ. Microbiol, 73 (1): 278–288
Chakravorty, S., Helb, D., Burday, M., Connell, N., dan Alland, D. (2007) : A
detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of
pathogenic bacteria, J. Microbiol. Methods, 69, 330–339
Chaudhuri, S.R., Pattanayak, A.K., dan Thakur, A.R. (2006) : Microbial DNA
extraction from samples of varied origin. Current Science, 91, 1697-1700.
Clarridge III, J.E. (2004) : Impact of 16S rRNA Gene Sequence Analysis for
Identification of Bacteria on Clinical Microbiology and Infectious Diseases,
Clin. Microbiol. Rev., 17 (4), 840–862
Cleaver, A.A., Burton, N. P. dan Norris, P.R. (2007) : A Novel Acidimicrobium
Species in Continuous Cultures of Moderately Thermophilic, MineralSulfide-Oxidizing Acidophiles, Appl. Environ. Microbiol., 73 (13), 4294–
4299
Coates, J.D., Cole, K.A., Chakraborty, R., O’Connor, S.M., dan Achenbach, L.A.
(2002) : Diversity and Ubiquity of Bacteria Capable of Utilizing Humic
Substances as Electron Donors for Anaerobic Respiration, Appl. Environ.
Microbiol., 68 (5), 2445–2452
102
DeLong, E.F., Wu, K.Y., Prezelin, B.B., dan Jovine, R.V.M. (1994) : Archaea in
Antarctic marine environments. Nature, 371, 695-697.
DeLong, Jr, D.C. (1996) : Defining Biodiversity, Wildlife Society Bulletin, 24 (4),
738-749
DeLong, E.F., dan Pace, N.R. (2001) : Environmental diversity of bacteria and
archaea. Syst Biol, 50:470-478.
Dhungana, S., Anthony III, C.R., dan Hersman, L.E. (2007) : Effect of Exogenous
Reductant on Growth and Iron Mobilization from Ferrihydrite by the
Pseudomonas mendocina ymp Strain, Appl. Environ. Microbiol, 73 (10),
3428–3430
Druschel, G.K., Schoonen, M.A.A. Nordstrom, D.K. Ball, J.W. Xu, Y., dan Cohn,
C.A. (2003) : Sulfur geochemistry of hydrothermal waters in Yellowstone
National Park, Wyoming, USA. III. An anion-exchange resin technique for
sampling and preservation of sulfoxyanions in natural waters, Geochem.
Trans., 4 (3), 12–19
Dunbar, J., Ticknor, L.O, dan Kuske, C.R (2000) : Assessment of microbial
diversity in four southwestern United States by 16S rRNA gene terminal
restriction fragment analysis. Appl. Environ. Microbiol., 66, 2943–2950
Eckert K. dan Schneider, E. (2003) : A Thermoacidophilic Endoglucanase (Celb)
from Alicyclobacillus acidocaldarius Displays High Sequence Similarity to
Arabinofuranosidases Belonging to Family 51 of Glycoside Hydrolases,
Eur. J. Biochem. 270, 3593–3602
Edward, C. (1990) : Thermophiles, In Microbiology of Extreme Environments, C.
Edward, Ed., McGraw-Hill Publishing Company: Oxford, p. 1-32.
Edwards, K. J., Rogers, D. R. Wirsen, C. O. dan McCollom, T. M. (2003) :
Isolation and Characterization of Novel Psychrophilic, Neutrophilic, FeOxidizing, Chemolithoautotrophic α- and γ-Proteobacteria from the Deep
Sea, Appl. Environ. Microbiol, 69 (5), 2906–2913
Egert, M., dan Friedrich, M.W. (2003) : Formation of Pseudo-Terminal
Restriction Fragment, a PCR-Related Bias Affecting Terminal Restriction
Fragment Length Polymorphism Analysis of Microbial Community
Structure. Appl. Environ. Microbiol. 69 (5), 2555-2562.
Faiz, Ö., Colak, A., Saglam, N., Çanakçi, S., dan Beldüz, A.O. (2007) :
Determination and Characterization of Thermostable Esterolytic Activity
from a Novel Thermophilic Bacterium Anoxybacillus gonensis A4, J.
Biochem. Mol. Biol., 40 (4), 588-594
Felsenstein, J. (1989) : PHYLIP- phylogeny inference package. Cladistic, 5, 164166.
Ferris, M.J., Muyzer, G., dan Ward, D.M., (1996) : Denaturing Gradient Gel
Electrophoresis Profiles of 16S rRNA-Defined Populations Inhabiting a Hot
Spring Microbial Mat Community, Appl. Environ. Microbiol., 62 (2), 340 –
346
103
Fischer, S.G. dan Lerman, L.S. (1983) : DNA fragments differing by single
basepair substitutions are separated in denaturing gradient gels:
correspondence with melting theory. Proc. Natl. Acad. Sci. 80, 1579–1583
Fisher, C.R. (1990) : Chemoautotrophic and methanotrophic symbiosis in marine
invertebrates. Rev. Aquat. Sci. 2, 399–436
Frostegård, Å., Courtois, S., Ramisse, V., Clerc, S., Bernillon, D., Gall, F.L.,
Jeannin, P., Nesme, X., dan Simonet, P. (1999) : Quantification of Bias
Related to the Extraction of DNA Directly from Soils, Appl. Environ.
Microbiol., 65 (12), 5409–5420
Fuhrman, J.A., McCallum, K., dan Davis, A.A. (1992) : Novel marine
archaebacterial group from marine plankton, Nature, 356, 148-149.
Fuhrman, J.A., McCallum, K., dan Davis, A.A. (1993) : Phylogenetic diversity of
subsurface marine microbial communities from the Atlantic and Pacific
Oceans, Appl. Environ. Microbiol., 59, 1294–1302
Gelsomino, A., Keijzer-Wolters, A.C., Cacco, G., dan van Elsas, J.D. (1999) :
Assessment of bacterial community structure in soil by polymerase chain
reaction and denaturing gradient gel electrophoresis. J Microbiol Methods,
38, 1–15
Giovannoni, S.J., Britschgi, T.B., Moyer, C.L., dan Field, K.G. (1990) : Genetic
diversity in Sargasso Sea bacterioplankton, Nature, 344, 60–63
Ghosh, D.,B. Bal, V. K. Kashyap, dan S. Pal. (2003) : Molecular Phylogenetic
Exploration of Bacterial Diversity in a Bakreshwar (India) Hot Spring and
Culture of Shewanella-Related Thermophiles, Appl. Environ. Microbiol., 69
(7), 4332–4336
Grey, J.P., dan Herwig, R..P (1996) : Phylogenetic analysis of the bacterial
communities in marine sediments. Appl. Environ. Microbiol., 62, 4049–
4059
Hamamura, N., Olson, S. H., Ward, D. M., dan Inskeep, W.P. (2005) : Diversity
and Functional Analysis of Bacterial Communities Associated with Natural
Hydrocarbon Seeps in Acidic Soils at Rainbow Springs, Yellowstone
National Park. Appl. Environ. Microbiol., 71 (10), 5943–5950
Hao, X., dan Ma, K. (2003) : Minimal Sulfur Requirement for Growth and SulfurDependent
Metabolism
of
the
Hyperthermophilic
Archaeon
Staphylothermus marinus, Archaea, 1, 191–197
Harry, M., Gambier, B. Bourezgui, Y. dan Garnier-Sillam, E. (1999) : Evaluation
of purification procedures for DNA extracted from organic rich samples:
Interference with humic substances, Analusis, 27( 5), 439-442
Healy, J. dan Mahon, W.A.J. (1982) : Kawah Kamojang Geothermal Field, West
Java, Indonesia. Proc. of Pacific Geothermal Conference incorporating the
4th New Zealand Geothermal Workshop 2, The University of Auckland,
313-319.
Hershberger, K.L., Barns, S. M. Reysenbach, A.L. Dawson, S.C. dan Pace, N.R..
(1996) : Wide diversity of Crenarchaeota. Nature 384, 420
104
Horiuchi, J.I., Ebie, K., Tada, K., Kobayashi, M., dan Kanno, T. (2003) :
Simplified method for estimation of microbial activity in compost by ATP
analysis, Biores. Technol., 86, 95–98
Hou, S., Saw, J.H., Lee, K.S., Freitas, T.A., Belisle, C., Kawarabayasi, Y.,
Donachie, S.P., Pikina, A., Galperin, M.Y., Koonin, E.V., Makarova, K.S.,
Omelchenko, M.V., Sorokin, A., Wolf, Y.I., Li, QX., Keum, Y.S.,
Campbell, S., Denery, J., Aizawa, S., Shibata, S., Malahoff, A., dan Alam,
M. (2004): Genome sequence of the deep-sea γ-proteobacterium Idiomarina
loihiensis reveals amino acid fermentation as a source of carbon and energy,
Proc. Natl. Acad. Sci., 101, 52
Huber, R., Huber, H., dan Stetter, K.O. (2000) : Toward the ecology of
hyperthermophile: biotopes, new isolation strategies and novel metabolic
properties. FEMS Microbiol. Rev., 24, 615-623.
Ibekwe, A.M., dan Kennedy, A.C. (1998) : Phospholipid fatty acid profiles and
carbon utilization patterns for analysis of microbial community structure
under field and greenhouse conditions. FEMS Microbiol. Ecol. 26, 151–163.
Ikeda, S, Watanabe, K.N., Minamisawa, K., dan Ytow, N. (2004) : Evaluation of
soil DNA from arable land in Japan using a modified direct-extraction
method. Microbes Environ., 19, 301–309
Ikeda, S., Ytow, N., Ezura, H., Minamisawa, K., dan Fujimura, T. (2006) : Soil
microbial community analysis in the environmental risk assessment of
transgenic plants. Plant Biotechnol., 23, 137–151.
Illanes, A. (1999) : Stability of Biocataliysts, J. Biotechnol, 2, 1-9
Indrajaya, Warganegara, F. M., dan Akhmaloka (2003) : Isolasi dan Identifikasi
Mikroorganisme Termofilik Isolat Kawah Wayang, J. Mikrobiol. Indones., 8
(2), 53-56
Ito, T., Sugita, K. dan Okabe, S. (2004) : Isolation, Characterization, and in situ
Detection of a Novel Chemolithoautotrophic Sulfur-Oxidizing Bacterium in
Wastewater Biofilms Growing under Microaerophilic Conditions, Appl.
Environ. Microbiol., 70 (5), 3122–3129
Jackson, C.R., Langner, H.W., Donahoe-Christiansen, J., Inskeep, W.P. dan
McDermott, T.R. (2001) : Molecular analysis of microbial community
structure in an arsenite-oxidizing acidic thermal spring, Environ. Microbiol.,
3 (8), 532-542
Karavaiko, G.I., Bogdanova, T.I., Tourova, T.P., Kondrat’eva, T.F., Tsaplina,
I.A., Egorova, M.A., Krasil’nikova, E.N. dan Zakharchuk, L.M. (2005) :
Reclassification
of
Sulfobacillus
thermosulfidooxidans
Subsp.
thermotolerans’ Strain K1 as Alicyclobacillus tolerans Sp. Nov. and
Sulfobacillus disulfidooxidans Dufresne et al. 1996 as Alicyclobacillus
disulfidooxidans Comb. Nov., and Emended Description of the Genus
Alicyclobacillus, Int. J. Sys. Evol. Microbiol, 55, 941–947
Kawai, M., Matsutera, E., Kanda, H., Yamaguchi, N., Tani, K., dan Nasu, M.
(2002) : 16S Ribosomal DNA-Based Analysis of Bacterial Diversity in
105
Purified Water Used in Pharmaceutical Manufacturing Processes by PCR
and Denaturing Gradient Gel Electrophoresis, Appl Environ Microbiol, 68
(2), 699–704
Khalil, A.B., Zarqa, M.A., dan Al-Qaryouti, M. (2006) : Production of
Antimicrobial Agents from Thermophilic Yersinia sp.1 and Aeromonas
hyddrophila Isolated from Hot Spring in Yordan Valley, Biotechnol, 5 (3),
252-256.
Kieft, T. L., Fredrickson, J. K., Onstott, T. C., Gorby, Y. A., Kostandarithes, H.
M., Bailey, T. J., Kennedy, D. W., Li, S. W., Plymale, A. E., Spadoni, C. M.
dan Gray, M. S. (1999) : Dissimilatory Reduction of Fe(III) and other
Electron Acceptors by a Thermus Isolate, Appl. Environ. Microbiol, 65 (3),
1214–1221
Kirk J. L., Beaudette, L.A., Hart, M., Moutoglis, P., Klironomos, J.N., Lee, H.,
dan Trevors, J.T. (2004) : Methods of studying soil microbial diversity, J.
Microbiol. Methods, 58, 169-188.
Kisand, V., dan Wikner, J. (2003) : Limited resolution of 16S rDNA DGGE
caused by melting properties and closely related DNA sequences. J.
Microbiol Methods, 54, 183–191
Klijn, N., Weerkamp, A.H., dan de Vos, W.M. (1991) : Identification of
Mesophilic Lactic Acid Bacteria by using Polymerase Chain ReactionAmplified Variable Regions of 16S rRNA and Specific DNA Probes. Appl.
Environ. Microbiol., 57 (11), 3390-3393
Kozubal, M., Macur, R. E., Korf, S., Taylor, W. P., Ackerman, G. G., Nagy, A.
dan Inskeep, W. P. (2008) : Isolation and Distribution of a Novel IronOxidizing Crenarchaeon from Acidic Geothermal Springs in Yellowstone
National Park, Appl. Environ. Microbiol, 74 (4), 942–949
Kusumadinata, K (1979) : Data Dasar Gunung Api Indonesia (Catalogue of
References on Indonesian Volcanoes with Eruptions in Historical Time).
Direktorat Vulkanologi, Direktorat Pertambangan Dasar, Departemen
Pertambangan dan Energi RI, Bandung.
Liesack, W., dan Stackebrandt, E. (1992) : Occurence of novel groups of the
domain Bacteria as revealed by analysis of genetic material isolated from an
Austalian terrestrial environment. J. Bacteriol. 174, 5072–5078
Liu, W.T., Marsh, T.L., Cheng, H., dan Forney, L.J. (1997) : Characterization of
Microbial Diversity by Determining Terminal Restriction Fragment Length
Polymorphisms of Genes Encoding 16S rRNA, Appl. Environ. Microbiol.,
63, 4516-4522
Lohr, A.J., Laverman, A.M., Braster, M., van Straalen, N.M. dan Roling, W.F.M.
(2006) : Microbial Communities in the World’s Largest Acidic Volcanic
Lake, Kawah Ijen in Indonesia, and in the Banyupahit River Originating
from It. Microb. Ecol., 52, 609-618.
Lu S., Park, M., Ro, H., Lee, D. S., Park, W., dan Jeon, C. O. (2006) : Analysis of
Microbial Communities Using Culture-dependent and Culture-independent
106
Approaches in an Anaerobic/Aerobic SBR Reactor, J. Microbiol, 44, 2, 155161
Maarit-Niemi, R., Heiskanen, I., Wallenius, K., dan Lindstrom, K. (2001) :
Extraction and purification of DNA in rhizosphere soil samples for PCRDGGE analysis of bacterial consortia. J. Microbiol. Methods, 45, 155–165
Madigan, M.T. dan Martinko, J.M. (2006) : Brock Biology of Microorganisms,
Prentice-Hall, Upper Sadle River, NJ, ed.11.
Madigan, M.T., dan Oren, A. (1999) : Thermophilic and halophilic extremophiles.
Curr. Opin. Microbiol., 2, 265-269.
Maidak, B. L., Cole, J., Lilburn, R., Parker, Jr., C. T., Saxman, P. R., Stredwick, J.
M., Garrity, G. M., Li, B., Olsen, G. J., Pramanik, S., Schmidt, T. M. dan
Tiedje, J. M. (2000) : The RDP (Ribosomal Database Project) continues.
Nucleic Acids Res. 28, 173–174
Marteinsson, V.T., Hauksdottir, S.R., Hobel, C.F.V., Kristmannsdottir, H.,
Hreggvidsson, G.O., dan Kristjansson, J. K. (2001) : Phylogenetic Diversity
Analysis of Subterranean Hot Springs in Iceland, Appl. Environ. Microbiol,
67 (9), 4242–4248
Mathur, J., Bizzoco, R.W., Ellis, D.G., Lipson, D.A., Poole, A.W., Levine, R. dan
Kelley, S.T. (2007) : Effects of Abiotic Factors on the Phylogenetic
Diversity of Bacterial Communities in Acidic Thermal Springs, Appl.
Environ. Microbiol., 73 (8), 2612–2623
Matsubara, H., Goto, K., Matsumura, T., Mochida, K., Iwaki, M., Niwa, M. dan
Yamasato, K. (2002) : Alicyclobacillus Acidiphilus sp. Nov., a Novel
Thermo-Acidophilic, X-Alicyclic Fatty Acid containing Bacterium Isolated
from Acidic Beverages, Int. J. Syst. Evol. Microbiol, 52, 1681–1685
McMullan, G., Christie, J.M., Rahman, T.J., Banat, I.M., Ternan, N.G. dan
Marchant, R. (2004) : Habitat, applications and genomics of the aerobic,
thermophilic genus Geobacillus, Biochem. Soc. Trans, 32, 2, 214-217
Menking, D.E., Emanuel, P.A., Valdes, J.J., dan Kracke, S.K. (1999) : Rapid
cleanup of bacterial DNA from field samples, Res. Conserv. Recycl., 27,
179–186
Miller, D.N., Bryant, J.E., Madsen, E.L., dan Ghiorse, W.C. (1999) : Evaluation
and optimization of DNA extraction and purification procedures for soil and
sediment samples. Appl. Environ. Microbiol, 65, 4715–4724
Muyzer, G., de Waal, E.C. dan Uitterlinden, A.G. (1993) : Profiling of complex
microbial populations by denaturing gradient gel electrophoresis analysis of
polymerase chain reactionamplified genes encoding for 16S rRNA. Appl.
Environ. Microbiol. 59, 695–700
Muyzer, G., dan Ramsing, N.B. (1995) : Molecular methods to study the
organization of microbial communities. Wat. Sci. Tech. 32, 1–9
Muyzer, G., dan Smalla, K. (1998) : Application of denaturing gradient gel
electrophoresis (DGGE) and temperature gradient gel electrophoresis
(TGGE) in microbial ecology, Antonie van Leeuwenhoek, 73, 127–141
107
Muyzer, G. (1999) : DGGE/TGGE a method for identifying genes from natural
ecosystems. Curr. Opin. Microbiol., 2, 317–322
Myers, R.M., Fischer, S.G, Lerman, L.S., dan Maniatis, T. (1985) : Nearly all
single base substitutions in DNA fragments joined to a GC140 clamp can be
detected by denaturing gradient gel electrophoresis. Nucleic Acids Res. 13,
3131–3145
Nakatsu, C.H., Torsvik, V., dan Øvreås, L. (2000) : Soil community analysis
using DGGE of 16S rDNA polymerase chain reaction products. Soil Sci.
Soc. Am. J., 64, 1382–1388
Newman, D.K., dan Banfield, J.F. (2002) : Geomicrobiology: How MolecularScale Interactions Underpin Biogeochemical Systems, Science, 296, 10711077
Nikolausz, M., Sipos, R., Révész, S., Székely, A., dan Márialigeti, K. (2005) :
Observation of bias associated with re-amplification of DNA isolated from
denaturing gradient gels. FEMS Microbiol. Lett., 244, 385–390
Nunes, O.C., Manaia, C.M., Da Costa, M S. dan Santos, H. (1995) : Compatible
Solutes in the Thermophilic Bacteria Rhodothermus marinus and ‘‘Thermus
thermophilus’’, Appl. Environ. Microbiol, 61(6), 2351–2357
Osborn, A.M., Moore, E.R.B., dan Timmis, K.N. (2000) : An evaluation of
terminal-restriction fragment length polymorphisms (T-RFLP) analysis for
the study of microbial community structure and dynamics. Environ.
Microbiol., 2, 39–50
Pace, N.R., (1997) : A Molecular View of Microbial Diversity and the Biosphere,
Science, 276, 734 – 740
Pavlostathis, S.G., Marchant, R., Banat, I.M., Ternan, N.G., dan McMullan, G.
(2006) : High Growth Rate and Substrate Exhaustion Results in Rapid Cell
Death and Lysis in the Thermophilic Bacterium Geobacillus
thermoleovorans, Biotechnol. Bioeng., 95 (1), 84-96
Pikuta, E., Lysenko, A., Chuvilskaya, N., Mendrock, U., Hippe, H., Suzina, N.,
Nikitin, D., Osipov, G., dan Laurinavichius, K. (2000) : Anoxybacillus
pushchinensis Gen. Nov., Sp. Nov., A Novel Anaerobic, Alkaliphilic,
Moderately Thermophilic Bacterium from Manure, and Description of
Anoxybacillus flavithermus Comb. Nov., Int. J. Syst. Evol. Microbiol., 50,
2109–2117
Prokofeva, M., Miroshnichenko, M., Kostrikina, N., Chernyh, N., Kuznetsov, B.,
Tourova, T. dan Bonch-Osmolovskaya, E. (2000) : Acidilobus aceticus Gen.
Nov., sp. Nov., a Novel Anaerobic Thermoacidophilic Archaeon from
Continental Hot Vents in Kamchatka, Int. J. Syst. Evol. Microbiol., 50,
2001–2008.
Prosser, J.I. (2002) : Molecular and functional diversity in soil microorganisms.
Plant Soil, 244, 9–17
108
Raskin, L., Zheng, D., Griffin, M.E., Stroot, P.G., dan Misra, P. (1995) :
Characterization of microbial communities in anaerobic bioreactors using
molecular probes. Antonie van Leeuwenhoek, 68, 297–308
Reysenbach, A.L., Ehringer, M., dan Hershberger, K. (2000) : Microbial diversity
at 83°C in Calcite Springs, Yellowstone National Park:another environment
where the Aquaficales and “Korarchaeota” coexist. Extremophile, 4, 61-67.
Reysenbach, A.L., Wickham, G.S., dan Pace, N.R. (1994) : Phylogenetic analysis
of hyperthermophilic pink filament community in Octopus Sping,
Yellowstone National Park. Appl. Environ. Microbiol. 60, 2113-2119.
Reysenbach, A.L., dan Cady, S.L. (2001) : Microbiology of ancient and modern
hydrothermal systems. TRENDS in Microbiology. 9 (2), 79-86.
Reysenbach, A.L., dan Shock, E. (2002) : Merging Genomes with Geochemistry
in Hydrothermal Ecosystems. Science, 296,1077-1082.
Saitou, N., dan Nei, M. (1987) : The neighbor-joining method: a new method for
reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
Sambrook, J. dan Russel, D.W. (2001) : Molecular Cloning: A Laboratory
Manual, Cold Spring Harbour Press, New York.
Santegoeds, C.M., Nold, S.C., dan Ward, D.M. (1996) : Denaturing Gradient Gel
Electrophoresis Used to Monitor the Enrichment Culture of Aerobic
Chemoorganotrophic Bacteria from a Hot Spring Cyanobacterial Mat, Appl.
Environ. Microbiol, 62, 11, 3922–3928
Satokari, R.M., Vaughan, E.E., Akkermans, A.D.L., Saarela, M., dan de Vos,
W.M. (2001) : Polymerase chain reaction and denaturing gradient gel
electrophoresis monitoring of fecal Bifidobacterium populations in a
prebiotic and probiotic feeding trial. Syst. Appl. Microbiol., 24, 227–231
Schafer, G., Engelhard, M., dan Muller, V. (1999) : Bioenergetics of the Archaea,
Microbiol. Mol. Biol. Rev., 63 (3),570–620
Schönheit, P., dan Schäfer, T. (1995) : Metabolism of Hyperthermophiles, World
J. Microbiol. Biotechnol., 11, 26-57
Schwieger dan Tebbe, C.C. (1998) : A new approach to utilize PCR-single
stranded conformation polymorphism for 16S rRNA gene-based microbial
community analysis, Appl. Environ. Microbiol., 64, 4870-4876
Sekiguchi, H., Tomioka, N., Nakahara, T., dan Uchiyama, H. (2001) : A single
band does not always represent single bacterial strains in denaturing gradient
gel electrophoresis analysis. Biotechnol. Lett., 23, 1205–1208
Sharma, R., Ranjan, R., Kapardar, R. K. dan Grover, A. (2005) : ‘Unculturable’
bacterial diversity: an untapped resource, Curr. Scie., 89 (1), 72-77
Sheffield, V. C., Cox, D.R., Lerman,L.S., dan Myers,R.M., (1989) : Attachment
of a 40-base-pair G+C-rich sequence (G-C-clamp) to genomic DNA
fragments by the polymerase chain reaction results in improved detection of
single-base changes, Appl. Environ. Microbiol. 86, 232-236
109
Skirnisdottir, S., Hreggvidsson, G.O., Holst, O. dan Kristjansson, J.K. (2001) : A
new ecological adaptation to high sulfide by a Hidrogenobacter sp. growing
on sulfur compound but not on hydrogen. Microbiol. Res.. 156, 41-47.
Smalla, K., Oros-Sichler, M., Milling, A., Heuer, H., Baumgarte, S., Becker, R.,
Neuber, G., Kropf, S., Ulrich, A., dan Tebbe, C.C. (2007) Bacterial
Diversity of Soils Assessed by DGGE, T-RFLP and SSCP Fingerprints of
PCR-Amplified 16S rRNA Gene Fragments: Do the Different Methods
Provide Similar Results?, J. Microbiol. Methods, 69, 470–479
Speksnijder, A, Kowalchuk, G.A., De Jong, S., Kline, E., Stephen, J.R., dan
Laanbroek, H.J. (2001) : Microvariation artifacts introduced by PCR and
cloning of closely related 16S rRNA gene sequences. Appl. Environ.
Microbiol., 67, 469–472
Stahl, D.A., Flesher, B., Mansfield, H.R., dan Montgomery, L. (1988) : Use of
phylogenetically based hybridization probes for studies of ruminal microbial
ecology. Appl. Environ. Microbiol. 54, 1079–1084
Stetter, K.O., (1996). Hyperthermophilic procaryotes, FEMS Microbiol. Rev., 18,
149-158
Sudarman, S., Boedihardi, M., Pudyastuti, K., dan Bardan (1995) : Kamojang
Geothermal Field: 10 Year Operation Experience. Proc. of the World
Geothermal Congress (Florence) 2, 1773-1777.
Swofford, D.L, dan Sullivan, J. (2003) : Phylogeny inference based on parsimony
and other methods using PAUP, in The Phylogenetic Handbook (Salemi dan
Vandamme, ed.), Cambridge University Press.
Tamaki, H., Sekiguchi, Y., Hanada, S., Nakamura, K., Nomura, N., Matsumura,
M. dan Kamagata, Y. (2005) : Comparative Analysis of Bacterial Diversity
in Freshwater Sediment of a Shallow Eutrophic Lake by Molecular and
Improved Cultivation-Based Techniques, Appl. Environ. Microbiol, 71 (4),
2162–2169
Theron, J, dan Cloete, T.E (2000) : Molecular techniques for determining
microbial diversity and community structure in natural environments. Crit.
Rev. Microbiol., 26, 37–57
Thompson, J.D., Higgins, D.G. dan Gibson, T.J. (1994) : CLUSTAL W:
improving the sensitivity of progressive multiple sequence alignment
through sequence weighting, position-specific gap penalties and weight
matrix choice, Nucleic Acids Research, 22, 4673-4680
Tiedje, J.M., Asuming-Brempong, S., Nusslein, K., Marsh, T.L., Flynn, S.J.
(1999) : Opening the black box of soil microbial diversity. Appl. Soil Ecol.,
13, 109–122
Utami, P. (2000) : Characteristics of the Kamojang Geothermal Reservoir (West
Java) as Revealed by its Hydrothermal Alteration Mineralogy, Proc. World
Geothermal Congress, Kyushu - Tohoku
Utami, P. dan Browne, P.R.L. (1999) : Subsurface Hydrothermal Alteration in the
Kamojang Geothermal Field, West Java, Indonesia, Proc. Twenty-Fourth
110
Workshop on Geothermal Reservoir Engineering, Stanford University,
Stanford, California
Van de Peer, Y (2003) : Phylogeny inference based on distance methods, in the
Phylogenetic Handbook (Salemi dan Vandamme, ed.), Cambridge
University Press.
Vieille, C. dan Zeikus, G.J., (2001) : Hyperthermophilic Enzymes: Sources, Uses
and Mechanisms for Thermostability, Microbiol. Mol. Biol. Rev., 65, 1-43.
Von Haeseler, A, dan K. Trimmer (2003) : Phylogeny inference based on
maximum-likelihood methods with TREE-PUZZLE, in the Phylogenetic
Handbook (Salemi dan Vandamme, ed.), Cambridge University Press.
Ward, D.M., Ferris, M.J., Nold, S.C., dan Bateson, M.M., (1998) : A Natural
View of Microbial Biodiversity within Hot Spring Cyanobacterial Mat
Communities, Microbiol. Mol. Biol. Rev., 62, 1353-1370
Weller, R., Weller, J.W. dan Ward, D.M. (1991) : 16S rRNA sequences of
uncultivated hot spring cyanobacterial mat inhabitants retrieved as randomly
primed cDNA. Appl. Environ. Microbiol. 57, 1146–1151
Wintzingerode, F.V., Landt, O., Ehrlich, A., dan Gobel, U.B. (2000) : Peptide
Nucleic Acid-Mediated PCR Clamping as a Useful Supplement in the
Determination of Microbial Diversity, Appl Environ Microbiol, 66 (2), 549–
557
Woese, C. R., (1987) : Bacterial Evolution, Microbiol Rev, 51, 221 – 271
Yamamoto, H., Hiraishi, A., Kato, K., Chiura, H.X., Maki, Y., dan Shimizu, A.
(1998) : Phylogenetic evidence for the existence of novel thermophilic
bacteria in hot spring sulfur-turf microbial mats in Japan. Appl. Environ.
Microbiol. 64, 1680-1687.
Yeates,C., Gillings, M.R., Davison, A.D., Altavilla, N., dan Veal, D.A. (1998) :
Methods for microbial DNA extraction from soil for PCR amplification,
Biol Procedures Online, 1 (1), 40-47
Zhang, G., Dong, H., Xu, Z., Zhao, D., dan Zhang, C. (2005) : Microbial
Diversity in Ultra-High-Pressure Rocks and Fluids from the Chinese
Continental Scientific Drilling Project in China, Appl. Environ. Microbiol,
71 (6), 3213–3227
Zhou, J., Bruns, M.A., dan Tiedje, J.M. (1996) : DNA Recovery from Soils of
Diverse Composition, Appl. Environ. Microbiol, 62, 316–322.
Zuhro, A.A. (2004) : Numerical Modelling of the Kamojang Geothermal System,
Indonesia, Geothermal Training Programme Reports, Orkustofnun,
Reykjavík
111
Pustaka dari situs:
National Centre of Biotechnological Information (NCBI), alamat situs
http://www.ncbi.nlm.nih.gov, tanggal download: 3 Oktober 2006 – 17 April
2008.
Ribosomal Database Project (RDP), alamat situs http://rdp.cme.msu.edu, tanggal
download: 8 – 28 Februari 2008.
112
LAMPIRAN
113
Lampiran A.
Komposisi Media Pertumbuhan Mikroba (Atlas, 1993)
Sulfolobus Medium (Revised)
Castenholtz D Medium (Cast D)
Komposisi medium per liter:
NaNO3
Na2HPO4
KNO3
MgSO4.7H2O
Nitrilotriacetic acid
CaSO4.2H2O
NaCl
FeCl3 sol
Mikronutrien sol
0,7 g
0,11 g
0,10 g
0,10 g
0,10 g
0,06 g
8,0 mg
1,0 mL
0,5 mL
Mikronutrien sol per liter:
MnSO4.H2O
H3BO3
ZnSO4.7H2O
CoCl2.6H2O
CuSO4.5H2O
Na2MoO4.2H2O
H2SO4
2,28 g
0,5 g
0,5 g
0,025 g
0,025 g
0,025 g
0,5 mL
Czapek Dox Broth (CzD)
Komposisi medium per liter:
Sukrosa
30,0 g
4,0 g
NaNO3
K2HPO4
1,0 g
MgSO4.7H2O
0,5 g
KCl
0,5 g
FeSO4.7H2O
0,01 g
Komposisi medium per liter:
(NH4)2SO4
Tripton
KH2PO4
MgSO4.7H2O
CaCl2.2H2O
Ekstrak ragi
FeCl3.6H2O
Na2B4O7
MnCl2.4H2O
ZnSO4.7H2O
CuCl2.H2O
Na2MoO4.H2O
VOSO4.2H2O
CoSO4
1,3 g
1,0 g
0,28 g
0,25 g
0,07 g
0,05 g
0,02 g
4,5 mg
1,8 mg
0,22 mg
0,05 mg
0,03 mg
0,03 mg
0,01 mg
Sulfate-Reducing Medium (SRM)
Komposisi medium per liter:
Natrium laktat
MgSO4.7H2O
Pepton
Na2SO4
Beef extract
K2HPO4
CaCl2
Fe(NH4) 2(SO4) 2.6H2O sol
Natrium askorbat sol
3,5 g
2,0 g
2,0 g
1,5 g
1,0 g
0,5 g
0,1 g
10 mL
10 mL
Fe(NH4) 2(SO4) 2.6H2O sol:
3,92 g Fe(NH4) 2(SO4) 2.6H2O
ditambahkan dH2O menjadi 100 mL
larutan.
Natrium askorbat sol:
0,050 g Natrium askorbat ditambahkan
dH2O menjadi 100 mL larutan.
114
Lampiran B.
Prosedur Analisis Penjajaran Nukleotida dan Konstruksi
Pohon Filogenetik
Penjajaran menggunakan program ClustalW
Program ClustalW versi 1.83 dibuka. Data dimasukkan dengan cara memilih
nomor 1 (sequence input from disk) dan memasukkan nama file dalam format .txt.
Pilihan multiple alignment dilakukan dengan menuliskan nomor 2. Keluaran
(output) hasil penjajaran dalam format MSF dan PHYLIP dipilih dengan
menuliskan no 9 (output format option) pada menu multiple alignments.
Penjajaran dilakukan dengan memilih do complete multiple alignment now
(nomor 1) pada menu multiple alignment.
Konstruksi Pohon Filogenetik menggunakan program Phylip
Program SEQBOOT dijalankan. Nama file dengan format phylip dimasukkan
ketika diminta. Tombol R ditekan yang dilanjutkan dengan memasukkan nilai
1000 sebagai nilai replikasi. Nilai berapapun (ganjil) diberikan ketika keluar
perintah random number seed (must be odd). Tombol y ditekan untuk memproses
data yang dimasukkan. File dengan nama outfile diubah namanya sesuai dengan
nama yang ingin diolah.
Progran DNAdist dijalankan. Nama file yang semula diubah, dimasukkan.
Tombol M ditekan dan angka 1000 dimasukkan sebagai banyaknya data yang
hendak diolah. Tombol y ditekan untuk memproses data yang dimasukkan. File
dengan nama outfile diubah namanya sesuai dengan nama yang dikehendaki untuk
diproses.
Program Neighbor dijalankan. Nama file yang semula diubah, dimasukkan.
Tombol M ditekan dilanjutkan dengan memasukkan angka 1000. Nilai ganjil
dimasukkan ketika keluar pperintah random seed number. Tombol y ditekan
untuk memproses data yang dimasukkan. File dengan nama outree diubah
namanya sesuai dengan nama yang dikehendaki untuk diproses lebih lanjut.
115
Progran CONSENSE dijalankan. Nama file hasil terakhir dimasukkan kemudian
dilanjutkan dengan penekanan tombol y untuk memproses data. File dengan nama
outree diubah sesuai dengan nama yang diinginkan dan ditambahkan extention
.phb atau .tre.
Visualisasi hasil penjajaran dengan program GenDoc
Program GenDoc dijalankan. Selanjutnya “import” pada menu file dipilih. Pada
perintah “Please Select The Type of File”, pilih file yang extensionnya sesuai
dengan permintaan. Selanjutnya tombol “Done” ditekan.
Visualisasi Pohon Filogenetik dengan Program Treeview
Program digunakan untuk membuka pohon filogenetik dari program ClustalW
dan Phylip. Program Treeview dijalankan. Selanjutnya dipilih “Open” pada menu
file. Cari nama file dengan extention .phy .tre atau .phb pada kolom “File name”.
116
Lampiran C.
Accession Number GenBank Urutan Nukleotida Sampel
Kawah Hujan
Urutan sampel DNA yang dianalisis dalam penelitian ini dapat di-download
melalui situs NCBI (http://www.ncbi.nlm.nih.gov), dengan nomor akses seperti
tertera dalam Tabel C-1.
Tabel C-1
Sampel
KHA-K-1
KHA-K-3
KHA-K-5
KHA-K-6
KHA-K-9
KHA-K-10
KHA-CD-2
KHA-CD-3
KHA-LB-1
KHA-LB-4
KHA-LB-5
KHA-P-4
KHA-PB-2
KHA-PB-4
KHA-T-3
KHA-Z-1
KHA-Z-3
KHA-Z-5
KHA-Z-7
KHA-Z-8
KHA-Z-9
KHA-Z-10
KHA-Z-12
KHB-LB-1
KHB-LB-2
KHB-LB-3
KHB-LB-4
KHB-LB-5
Nomor akses urutan nukleotida sampel yang dideposit di GenBank
Acc num.
EU625407
EU625408
EU625409
EU625410
EU625411
EU625412
EU625413
EU625414
EU625415
EU625416
EU625417
EU625418
EU625419
EU625420
EU625421
EU625422
EU625423
EU625424
EU625425
EU625426
EU625427
EU625428
EU625429
EU625430
EU625431
EU625432
EU625433
EU625434
Sampel
KHB-P-8
KHB-P-14
KHB-P-15
KHB-P-16
KHB-P-17
KHB-P-11
KHB-P-10
KHB-P-9
KHB-P-7
KHB-P-2
KHB-P-3
KHB-PB-2
KHB-PB-6
KHB-PB-7
KHB-PB-1
KHB-PB-8
KHB-PB-9
KHB-PB-10
KHB-PB-11
KHB-K-2
KHB-K-3
KHB-K-5
KHB-K-6
KHB-K-7
KHB-K-8
KHB-K-9
KHB-K-10
KHB-K-12
117
Acc num.
EU625435
EU625436
EU625437
EU625438
EU625439
EU625440
EU625441
EU625442
EU625443
EU625444
EU625445
EU625446
EU625447
EU625448
EU625449
EU625450
EU625451
EU625452
EU625453
EU625454
EU625455
EU625456
EU625457
EU625458
EU625459
EU625460
EU625461
EU625462
Sampel
KHB-K-14
KHB-Z-3
KHB-Z-4
KHB-Z-7
KHB-Z-8
KHB-Z-9
KHB-Z-10
KHB-Z-11
KHB-Z-12
KHB-Z-13
KHB-Z-15
Isolat P-12
Isolat T-7
Isolat P-13
Isolat T-18
Isolat T-25
Acc num.
EU625463
EU625464
EU625465
EU625466
EU625467
EU625468
EU625469
EU625470
EU625471
EU625472
EU625473
EU784082
EU784083
EU784084
EU784085
EU784086
Lampiran D.
Contoh Elektroforegram Hasil Sekuensing
Contoh elektroforegram sampel hasil filtrasi (KHA-K-9)
Contoh elektroforegram sampel hasil kultivasi (KHB-PB-6)
118
Lampiran D (lanjutan)
Contoh elektroforegram sampel kultur tunggal (Geobacillus T12)
119
Lampiran E. Posisi Daerah Variabel dan Daerah Lestari pada Gen 16S
rRNA Escherichia coli
120
Lampiran E (lanjutan)
Keterangan:
Arah panah biru tua
: posisi primer yang digunakan untuk amplifikasi fragmen
gen 16S rRNA
Arah panah biru muda: posisi awal dan akhir urutan nukleotida sampel yang
digunakan untuk analisis
Urutan DNA berwarna ungu: urutan yang sangat lestari
Urutan DNA berwarna merah: urutan lestari
Urutan DNA berwarna hitang: urutan variabel
Urutan DNA berwarna biru: urutan yang sangat variabel
Urutan DNA berwarna hijau: urutan DNA >75% variabel.
Garis bawah berwarna hijau: daerah variabel
Garis bawah berwarna hitam: urutan yang digunakan sebagai primer PCR
121
Lampiran F.
Hasil Penjajaran Urutan Gen 16S rRNA Kultur Tunggal
(Geobacillus)
122
Lampiran F (lanjutan)
123
Lampiran F (lanjutan)
Keterangan:
•
•
•
•
urutan DNA yang sama dengan urutan konsensus diwakili dengan tanda
titik (.).
urutan DNA yang berbeda dengan urutan konsensus dituliskan hurufnya.
Gap pada urutan DNA ditandai dengan simbol (- ).
Urutan DNA yang dijajarkan berukuran sekitar 1,2 kb.
124
Lampiran G.
Hasil Penjajaran Urutan Gen 16S rRNA Kultur Tunggal
yang Dekat dengan genus Enterobacter
125
Lampiran G (lanjutan)
126
Lampiran G (lanjutan)
Keterangan:
•
•
•
•
urutan DNA yang sama dengan urutan konsensus diwakili dengan tanda
titik (.).
urutan DNA yang berbeda dengan urutan konsensus dituliskan hurufnya.
Gap pada urutan DNA ditandai dengan simbol (- ).
Urutan DNA yang dijajarkan berukuran sekitar 1,2 kb.
127
Lampiran H. Penentuan Kadar Logam dengan AAS
Tabel H-1. Absorban rata-rata larutan standar Ca dan sampel hasil pengukuran
dengan metode AAS pada panjang gelombang 422 nm
Analit
A rata-rata
Larutan standar Ca 3 ppm
0,0327
Larutan standar Ca 6 ppm
0,0586
Larutan standar Ca 9 ppm
0,0856
Larutan standar Ca 12 ppm
0,1055
Larutan standar Ca 15 ppm
0,1316
Sampel KHA 10x pengenceran
0,0285
Sampel KHB
0,0861
Absorban (422,7 nm)
Kurva standar Ca
0.1500
y = 0.0086x + 0.0046
R2 = 0.9956
0.1000
0.0500
0.0000
0
5
10
Konsentrasi (ppm )
128
15
20
Lampiran H (Lanjutan)
Tabel H-2. Absorban rata-rata larutan standar Mg dan sampel hasil pengukuran
dengan metode AAS pada panjang gelombang 285,2 nm
Analit
A rata-rata
Larutan standar Mg 0,04 ppm
0,2630
Larutan standar Mg 0,08 ppm
0,3611
Larutan standar Mg 0,15 ppm
0,6782
Larutan standar Mg 0,2 ppm
0,8562
Sampel KHA
0,9276
Sampel KHB
0,9708
Absorban (285,2 nm)
Kurva standar Mg
1.0000
y = 3.8463x + 0.0877
R2 = 0.992
0.8000
0.6000
0.4000
0.2000
0.0000
0
0.05
0.1
0.15
konsentrasi (ppm )
129
0.2
0.25
Lampiran H (Lanjutan)
Tabel H-3. Absorban rata-rata larutan standar Fe dan sampel hasil pengukuran
dengan metode AAS pada panjang gelombang 248,3 nm
Analit
A rata-rata
Larutan standar Fe 0,1 ppm
0,0091
Larutan standar Fe 0,5 ppm
0,0954
Larutan standar Fe 0,8 ppm
0,1189
Larutan standar Fe 1 ppm
0,1406
Larutan standar Fe 2 ppm
0,1820
Sampel KHA
0,0165
Sampel KHB 1000x pengenceran
0,0220
Absorban (248,3 nm)
Kurva standar Fe
0.1600
0.1400
0.1200
0.1000
0.0800
0.0600
0.0400
0.0200
0.0000
y = 0.1433x + 0.005
R2 = 0.9482
0
0.5
1
konsentrasi (ppm )
130
1.5
Lampiran H (Lanjutan)
Tabel H-4. Absorban rata-rata larutan standar Mn dan sampel hasil pengukuran
dengan metode AAS pada panjang gelombang 279,5 nm
Analit
A rata-rata
Larutan standar Mn 0,1 ppm
0,0248
Larutan standar Mn 0,5 ppm
0,0756
Larutan standar Mn 1 ppm
0,1269
Larutan standar Mn 2 ppm
0,2760
Larutan standar Mn 4 ppm
0,4980
Larutan standar Mn 6 ppm
0,7658
Sampel KHA
0,0051
Sampel KHB
0,0385
Kurva standar Mn
Absorban (279,5 nm)
1.0000
y = 0.1249x + 0.0115
R2 = 0.9988
0.8000
0.6000
0.4000
0.2000
0.0000
0
2
4
Konsentrasi (ppm )
131
6
8
Lampiran H (Lanjutan)
Tabel H-5. Absorban rata-rata larutan standar Na dan sampel hasil pengukuran
dengan metode AAS pada panjang gelombang 589 nm
Analit
A rata-rata
Larutan standar Na 0,5 ppm
0,1704
Larutan standar Na 1 ppm
0,3421
Larutan standar Na 2 ppm
0,6814
Larutan standar Na 3 ppm
0,9641
Larutan standar Na 4 ppm
1,1373
Sampel KHA 10x pengenceran
0,4524
Sampel KHB 10x pengenceran
0,3172
Absorban (589 nm)
Kurva Standar Na
1.2000
y = 0.3236x + 0.0109
R2 = 0.9983
1.0000
0.8000
0.6000
0.4000
0.2000
0.0000
0
1
2
Konsentrasi (ppm )
132
3
4
Lampiran H (Lanjutan)
Tabel H-6. Absorban rata-rata larutan standar K dan sampel hasil pengukuran
dengan metode AAS pada panjang gelombang 766,5 nm
Analit
A rata-rata
Larutan standar K 0,5 ppm
0,0088
Larutan standar K 1 ppm
0,0249
Larutan standar K 2 ppm
0,0831
Larutan standar K 3 ppm
0,1470
Larutan standar K 4 ppm
0,2242
Larutan standar K 5 ppm
0,3212
Sampel KHA 10x pengenceran
0,0153
Sampel KHB
0,0518
Absorban (766,5 nm)
Kurva standar K
0.2000
y = 0.0564x - 0.0256
R2 = 0.9914
0.1500
0.1000
0.0500
0.0000
0
1
2
Konsentrasi (ppm )
133
3
4
Lampiran H (Lanjutan)
Tabel H-7. Absorban rata-rata larutan standar Pb dan sampel hasil pengukuran
dengan metode AAS pada panjang gelombang 217 nm
Analit
A rata-rata
Larutan standar Pb 2 ppm
0,0670
Larutan standar Pb 4 ppm
0,1409
Larutan standar Pb 6 ppm
0,2015
Larutan standar Pb 8 ppm
0,2680
Larutan standar Pb 10 ppm
0,3244
Sampel KHA
0,0000
Sampel KHB
0,0049
Absorban (217 nm)
Kurva standar Pb
y = 0.0326x + 0.0044
R2 = 0.9987
0.3500
0.3000
0.2500
0.2000
0.1500
0.1000
0.0500
0.0000
0
2
4
6
8
Konsentrasi (ppm )
134
10
12
Lampiran H (Lanjutan)
Tabel H-8. Absorban rata-rata larutan standar Cu dan sampel hasil pengukuran
dengan metode AAS pada panjang gelombang 324,7 nm
Analit
A rata-rata
Larutan standar Cu 1 ppm
0,1335
Larutan standar Cu 2 ppm
0,2720
Larutan standar Cu 3 ppm
0,4017
Larutan standar Cu 4 ppm
0,0542
Larutan standar Cu 5 ppm
0,6397
Sampel KHA
0,0000
Sampel KHB
0,0663
Absorban (324,7 nm)
Kurva standar Cu
y = 0.1285x + 0.0072
R2 = 0.9989
0.7000
0.6000
0.5000
0.4000
0.3000
0.2000
0.1000
0.0000
0
1
2
3
4
Konsentrasi (ppm )
135
5
6
RIWAYAT HIDUP
Penulis dilahirkan sebagai putri ketujuh dari pasangan Bapak H.Yuhana Saefullah
dengan Ibu Hj. Ai Hotimah pada tanggal 5 November 1970 di Tasikmalaya.
Penulis menyelesaikan pendidikan dasar dan menengah di Tasikmalaya dan lulus
dari SMA Negeri I Tasikmalaya pada tahun 1989.
Gelar sarjana kimia diperoleh pada tahun 1994 di Departemen Kimia Institut
Teknologi Bandung dan Magister Sains diperoleh pada tahun 2002 di Program
Pascasarjana ITB dalam bidang Biokima dengan beasiswa DUE-Karyasiswa. Pada
tahun 2003 penulis mendapat kesempatan untuk mengikuti Program Doktor di
Sekolah Pascasarjana ITB dalam bidang Biokimia di bawah bimbingan Bapak
Akhmaloka, Ph.D sebagai Promotor, dengan Ko-Promotor Ibu Fida Madayanti,
Ph.D dan Ibu Dr. Pingkan Aditiawati.
Sejak tahun 2000 hingga sekarang penulis menjadi staf pengajar di Jurusan Kimia
FMIPA Universitas Sriwijaya, Sumatera Selatan.
Penulis menikah dengan M.H. Aripin Ali dan dikaruniai 3 orang putra yaitu Adry
Fahmi Arifin, Azmi Kautsar Alim, dan Ali Muhammad Raihan.
Selama mengikuti pendidikan Program Doktor di ITB, penulis telah menghasilkan
beberapa publikasi, antara lain:
•
Yohandini, H., F. Madayanti, P. Aditiawati, dan Akhmaloka (2005)
Biodiversitas Mikroorganisme Termofilik Isolat Kawah Hujan, Kamojang,
Jawa Barat. Proceeding of JSChem ITB-UKM VI, Sanur, Bali
•
Yohandini, H., F. Madayanti, P. Aditiawati, dan Akhmaloka (2006)
Bacterial Community Analysis of Kawah Hujan, Kamojang Hot Spring,
West Java. Proceeding of International Conference on Mathematic and
Natural Sciences, Bandung, Indonesia
136
•
Yohandini, H., F. Madayanti, P. Aditiawati, dan Akhmaloka (2007)
Culture-Independent
and
Culture-Dependent
Analysis
of
Microbial
Community in Kawah Hujan. JSChem ITB-UKM-2007. Bandung, Indonesia
•
Akhmaloka, S. Nurbaiti, R. Hertadi, H. Yohandini, A.L. Aminin, H.
Helwati, and F. Madayanti (2006). Thermophilic Microorganism and
Thermostable
Enzyme
from
Indonesian
Isolates.
Proceeding
of
International Conference on Mathematics and Natural Sciences, Bandung,
Indonesia
•
Viera, B.V.E., H. Yohandini, M.P. Widhiastuty, F. Madayanti, dan
Akhmaloka (2007) Isolation and Identification of the Thermophilic Bacteria
Producing Lipase from Kawah Hujan Hot Springs. JSChem ITB-UKM-2007.
Bandung, Indonesia
•
Yohandini, H., F. Madayanti, P. Aditiawati, dan Akhmaloka (2008)
Diversity of Microbial Thermophiles in a Neutral Hot Spring (Kawah Hujan
A) of Kamojang Geothermal Field, Indonesia, Journal of Pure and Applied
Microbiology (submitted)
•
Yohandini, H., F. Madayanti, P. Aditiawati, dan Akhmaloka (2008).
Microbial Diversity in Acidic Hot Spring (Kawah Hujan B) of Kamojang
Area, West Java-Indonesia, Microbes and Environment (submitted)
•
Yohandini, H., F. Madayanti, P. Aditiawati, dan Akhmaloka (2008) Cell
Lysis Variation on Assessment of Microbial Diversity Based on Ribotyping
Analysis, Microbiology Indonesia (accepted)
•
Akhmaloka, S. Nurbaiti, P. Aditiawati, R. Hertadi, H. Yohandini,
A.L.Aminin, H.Helwati, and F. Madayanti (2006) Exploration of
Thermophilic Microorganism from Hot Spring Around Java. Journal of the
Indonesian Chemical Society, 1, 1-9
Hasil-hasil penelitian juga telah dipresentasikan dalam beberapa kegiatan seminar,
diantaranya:
•
Analysis of Microbial Community in Kawah Hujan Using Denaturing
Gradient Gel Electrophoresis. Internatioanal Seminar in Advances Biological
Sciences, 2007, Yogyakarta, Indonesia
137
•
Biodiversitas Mikroorganisme Termofilik Isolat Kawah Hujan, Kamojang,
Jawa Barat. Seminar JSChem ITB-UKM VI, Sanur, Bali
•
Bacterial Community Analysis of Kawah Hujan, Kamojang Hot Spring, West
Java. International Conference on Mathematic and Natural Sciences, 2006,
Bandung, Indonesia
•
Culture-Independent
and
Culture-Dependent
Analysis
of
Microbial
Community in Kawah Hujan. Seminar JSChem ITB-UKM-2007. Bandung,
Indonesia
•
Isolation and Identification of the Thermophilic Bacteria Producing Lipase
from Kawah Hujan Hot Springs. Seminar JSChem ITB-UKM-2007. Bandung,
Indonesia
•
Thermophilic Microorganism and Thermostable Enzyme from Indonesian
Isolates. International Conference on Mathematics and Natural Sciences,
2006, Bandung, Indonesia
138
Download