PENDAHULUAN Keanekaragaman flora (biodiversity) berarti keanekaragaman senyawa kimia (chemodiversity) yang kemungkinan terkandung di dalamnya. Hal ini memacu dilakukannya penelitian dan penelusuran senyawa kimia terutama metabolit sekunder yang terkandung dalam tumbuh-tumbuhan, seiring dengan kemajuan ilmu pengetahuan dan teknologi, seperti teknik pemisahan, metode analisis, dan uji farmakologi. Senyawa hasil isolasi atau senyawa semi sintetik yang diperoleh dari tumbuhan sebagai obat atau bahan baku obat (Hariana, 2004; Anonim, 2006). Salah satu tanaman yang dapat dimanfaatkan sebagai obat tradisional adalah tanaman pepaya (Carica papaya L.). Secara tradisional biji pepaya dapat dimanfaatkan sebagai obat cacing gelang, gangguan pencernaan, diare, penyakit kulit, kontrasepsi pria, bahan baku obat masuk angin dan sebagai sumber untuk mendapatkan minyak dengan kandungan asam-asam lemak tertentu. Minyak biji pepaya yang berwarna kuning diketahui mengandung 71,60 % asam oleat, 15,13 % asam palmitat, 7,68 % asam linoleat, 3,60% asam stearat, dan asam-asam lemak lain dalam jumlah relatif sedikit atau terbatas. Selain mengandung asam-asam lemak, biji pepaya diketahui mengandung senyawa kimia lain seperti golongan fenol, alkaloid, dan saponin (Warisno, 2003). Biji pepaya juga mempunyai aktivitas farmakologi daya antiseptik terhadap bakteri penyebab diare, yaitu Escherichia coli dan Vibrio cholera (Anonim, 2006; Warisno, 2003). Hasil uji fitokimia terhadap ekstrak kental metanol biji pepaya diketahui mengandung senyawa metabolit sekunder golongan triterpenoid, flavonoid, alkaloid, dan saponin. Secara kualitatif, berdasarkan terbentuknya endapan atau intensitas warna yang dihasilkan dengan pereaksi uji fitokimia, diketahui bahwa kandungan senyawa metabolit sekunder golongan triterpenoid merupakan komponen utama biji pepaya. Uji fitokimia triterpenoid lebih lanjut terhadap ekstrak kental nheksana menggunakan pereaksi Liebermann–Burchard juga menunjukkan adanya senyawa golongan triterpenoid. Hal ini memberi indikasi bahwa pada biji pepaya terkandung senyawa golongan triterpenoid bebas. Berdasarkan pemanfaatan secara tradisional biji pepaya yang salah satunya sebagai obat diare dan berdasarkan aktivitas fisiologis dari senyawa golongan triterpenoid bebas sebagai antibakteri, maka perlu dilakukan penelitian untuk mengisolasi senyawa golongan triterpenoid 1 bebas pada ekstrak kental n-heksana biji pepaya dan menguji isolat triterpenoid yang diperoleh terhadap bakteri penyebab diare, yaitu Escherichia coli dan Staphylococcus aureus. 2 TINJAUAN PUSTAKA TERPENOID Terpenoid merupakan komponen-komponen tumbuhan yang mempunyai bau dan dapat diisolasi dari bahan nabati dengan penyulingan yang disebut minyak atsiri. Minyak atsiri yang berasal dari bunga pada awalnya dikenal dari penentuan struktur secara sederhana, yaitu dengan perbandingan atom hidrogen dan atom karbon dari senyawa terpenoid yaitu 8:5 dan dengan perbandingan tersebut dapat dikatakan bahwa senyawa tersebut adalah golongan terpenoid. Minyak atsiri bukanlah senyawa murni akan tetapi merupakan campuran senyawa organik yang kadang kala terdiri dari lebih besar dari 25 senyawa atau komponen yang berlainan. Sebagian besar komponen minyak atsiri adalah senyawa yang hanya mengandung karbon, dan hidrogen atau karbon, hidrogen dan oksigen yang tidak bersifat aromatik yang secara umum disebut terpenoid. Fraksi yang paling mudah menguap biasanya terdiri dari golongan terpenoid yang mengandung 10 atom karbon. Fraksi yang mempunyai titik didih lebih tinggi terdiri dari terpenoid yang mengandung 15 atom karbon. Sebagian besar terpenoid mempunyai kerangka karbon yang dibangun oleh dua atau lebih unit C-5 yang disebut isopren. Klasifikasi terpenoid ditentukan dari unit isopren atau unit C-5 penyusun senyawa tersebut. Senyawa umum biosintesa terpenoid dengan terjadinya 3 reaksi dasar, yaitu: 1. Pembentukan isoprene aktif berasal dari asam asetat melalui asam mevalonat. 2. Penggabungan senyawa dan ekor dua unit isopren akan membentuk mono-, seskui-, di-, sester-, dan poli-terpenoid. 3. Pengabungan ekor dan ekor dari unit C15 atau C20 menghasilkan terpenoid atau steroid. Senyawa terpenoid dapat dikelompokkan sebagai berikut : 3 Monoterpenoid Monoterpeoid merupakan senyawa essence dan memiliki dan memiliki bau yang spesifik yang dibangun oleh 2 unti isopren atau dengan jumlah atom karbon 10. Lebih dari 1000 jenis senyawa monoterpenoid telah diisolasi dari tumbuhan tingkat tinggi, binatang laut, serangga, dan jenis vertebrata dan struktur senyawanya telah diketahui. Struktur dari senyawa monoterpenoid yang telah dikenal merupakan perbedaan dari 38 jenis kerangka yang berbeda, sedangkan prinsip dasar penyusunannya tetap sebagai penggabungan kepala dan ekor dari 2 unit isoprene. Struktur monoterpenoid dapat berupa rantai terbuka dan tertutup atau siklik. Senyawa monoterpenoid banyak dimanfaatkan sebagai antiseptik, ekspektoran, spasmolotik, dan sedatif. Disamping itu monoterpenoid yang sudah banyak dikenal banyak dimanfaatkan sebagai bahan pemberi aroma makanan dan parfum dan ini banyak digunakan komersial dalam perdagangan. Dari segi biogenetik, perubahan geraniol nerol dan linaol dari salah satu menjadi yang lain berlangsung sebagai akibat reaksi isomerisasi. Ketiga alkohol ini yang berasal dari hidrolisa geranil pirofosfat (GPP) dapat menjadi reaksi-reaksi sekunder, misalnya dehidrasi menghasilkan mirsen, oksidasi menghasilkan sitral dan oksidasi reduksi menghasilkan sitronelal. Peubahan GPP in vivo menjadi senyawa-senyawa monoterpen siklik dari segi biogenetic disebabkan reaksi siklisasi yang diikuti oleh reaksi-reaksi sekunder. Senyawa seperti monoterpenoid mempunyai kerangka karbon yang banyak variasinya. Oleh karena itu penetapan struktur merupakan hal yang penting. Jenis kerangka karbon monoterpenoid antara lain dapat ditetapkan oleh reaksi dehidrogenasi menjadi senyawa aromatik. Penetapan struktur selanjutnya adalah melalui penetapan gugus fungsi dari senyawa yang bersangkutan. Seskuiterpenoid Seskuiterpenoid merupakan senyawa terpenoid yang dibangun oleh 3 unit isoprene yang terdiri dari kerangka unit asiklik atau bisiklik dengan kerangka naphtalen. Senyawa terpenoid mempunyai boiaktifitas yang cukup besar, diantaranya sebagai antifeedant, hormone, antimikroba, antibiotic dan toksin sebagai regulator pertumbuhan tanaman dan pemanis. 4 Senyawa-senyawa seskuiterpen diturunkan dari cis-farnesil pirofosfat dan trans farnesil piropospat melaului reaksi siklisasi dan reaksi sekunder lain. Kedua isomer farnesil piropospat ini dihasilkan dari melalui mekanisme yang sama seperti isomerisasi abtara geranil dan nerol. Diterpenoid Diterpenoid merupakan senyawa yang mempunyai 20 atom karbon yang dibangun oleh 4 unti isoprene. Senyawa ini mempunyai bioaktifitas yang cukup luas yaitu sebagai hormone pertumbuhan tanaman, podolakton inhibitor pertumbuhan tanaman, antifeedant serangga, inhibitor tumor, senyawa pemanis, abtifouling dan anti karsinogenik. Senyawa diterpenoid dapat membentuk asiklik, bisiklik, trisiklik, dan tetrasiklik. Tata nama yang digunakan merupakan tata nama trivial. Triterpenoid Lebih dari 4000 jenis triterpenoid, telah diisolasi dengan lebih dari 40 jenis kerangka dasar yang sudah dikenal dan pada prinsipnya merupakan proses siklisasi dar sekualen. Tritepenoid terdiri dari kerangka dengan 3 siklik 6 yang bergabung dengan siklik 5 atau berupa 4 siklik 6 yang mempunyai fungsi siklik pada siklik tertentu. Struktur terpenoid yang bermacam ragam timbul akibat dari reaksi sekunder berikutnya seperti hidrolisa, isomerisasi, oksidasi, reduksi dan siklisasi atas geranil, farnesil, dan geranil-geranil pirofosfat. Triterpenoid adalah senyawa yang kerangka karbonnya berasal dari enam satuan isoprena dan secara biosintesis diturunkan dari hidrokarbon C30 asiklik, yaitu skualena. Senyawa ini berstruktur siklik yang nisbi rumit, kebanyakan berupa alkohol, aldehida atau asam karboksilat. Mereka berupa senyawa tanwarna, berbentuk kristal, seringkali bertitik leleh tinggi dan aktif optik, yang umumnya sukar dicirikan karena tak ada kereaktifan kimianya. Uji yang banyak digunakan ialah reaksi Lieberman-Burchard (anhidrida asetat-H2SO4 pekat) yang dengan kebanyakan triterpena dan sterol memberikan warna hijau biru. Triterpenoid dapat dipilih menjadi sekurang-kurangnya empat golongan senyawa : triterpena sebenarnya, steroid, saponin, dan glikosida jantung. Kedua golongan yang terakhir sebenarnya triterpena atau steroid yang terutama terdapat sebagai glikosida. Banyak triterpena dikenal dalam tumbuhan dan secara berkala senyawa baru 5 ditemukan dan cirikan. Sampai saat ini hanya beberapa saja yang diketahui tersebar luas. Senyawa tersebut ialah triterpena pentasiklik α-amirin dan β-amirin serta asam turunannya yaitu asam ursolat dan asam oleanolat. Senyawa ini dan senyawa sekerabatnya terutama terdapat dalam lapisan malam daun dan dalam buah, seperti apel dan pear, dan mungkin mereka berfungsi sebagai pelindung untuk menolak serangga dan dan serangan mikroba. Triterpena terdapat juga dalam damar, kulit batang, dan getah seperti : Euphorbia, Hevea, dan lain-lain (Harborne, 1987). SINTESIS TERPENOID Terpenoid merupakan bentuk senyawa dengan struktur yang besar dalam produk alami yang diturunkan dan unit isoprene (C5)yang bergandengan dalam model kepala ke ekor, sedangkan unit isoprene diturunkan dari metabolism asam asetat oleh jalur asam mevalonat (MVA). Adapun reaaksinya adalah sebagai berikut: Gambar 1 Jalur Asetat dalam Pembentukkan IPP yang Merupakan Batu Bata Pembentukkan Terpenoid Via Asam Mevalonat (http://nadjeeb.wordpress.com). Secara umum biosintesa dari terpenoid dengan terjadinya 3 reaksi dasar, yaitu: 1. Pembentukan isoprene aktif berasal dari asam asetat melalui asam mevalonat. 2. Penggabungan kepala dan ekor dua unit isoprene akan membentuk mono-, seskui-, di-. sester-, dan poli-terpenoid. 3. Penggabungan ekor dan ekor dari unit C-15 atau C-20 menghasilkan 6 triterpenoid dan steroid. Mekanisme dari tahap-tahap reaksi biosintesis terpenoid adalah asam asetat setelah diaktifkan oleh koenzim A melakukan kondensasi jenis Claisen menghasilkan asam asetoasetat. Senyawa yang dihasilkan ini dengan asetil koenzim A melakukan kondensasi jenis aldol menghasilkan rantai karbon bercabang sebagaimana ditemukan pada asam mevalinat, reaksi-reaksi berikutnya adalah fosforialsi, eliminasi asam fosfat dan dekarboksilasimenghasilkan isopentenil (IPP) yang selanjutnya berisomerisasi menjadi dimetil alil piropospat (DMAPP) oleh enzim isomeriasi. IPP sebagai unti isoprene aktif bergabung secara kepala ke ekor dengan DMAPP dan penggabungan ini merupakan langkah pertama dari polimerisasi isoprene untuk menghasilkan terpenoid. Penggabungan ini terjadi karena serangan electron dari ikatan rangkap IPP terhadap atom karbon dari DMAPP yang kekurangan electron diikuti oleh penyingkiran ion pirofosfat yang menghasilkan geranil.pirofosfat (GPP) yaitu senyawa antara bagi semua senyawa monoterpenoid. Penggabungan selanjutnya antara satu unti IPP dan GPP dengan menaisme yang sama menghasilkan Farnesil pirofosfat (FPP) yang merupakan senyawa antara bagi semua senyawa seskuiterpenoid. Senyawa diterpenoid diturunkan dari GeranilGeranil Pirofosfat (GGPP) yang berasal dari kondensasi antara satu unti IPP dan GPP dengan mekanisme yang sama. Mekanisme biosintesa senyawa terpenoid adalah sebagai berikut: 7 Gambar 2 Mekanisme Biosintesa Senyawa Terpenoid (http://nadjeeb.wordpress.com) 8 ISOLASI DAN IDENTIFIKASI TERPENOID Ekstraksi senyawa terpenoid dilakukan dengan dua cara yaitu: melalui sokletasi dan maserasi. Sekletasi dilakukan dengan melakukan disokletasi pada serbuk kering yang akan diuji dengan 5L n-hexana. Ekstrak n-hexana dipekatkan lalu disabunkan dalam 50 mL KOH 10%. Ekstrak n-heksana dikentalkan lalu diuji fitokimia dan uji aktifitas bakteri. Teknik maserasi menggunakan pelarut methanol. Ekstrak methanol dipekatkan lalu lalu dihidriolisis dalam 100 mL HCl 4M.hasil hidrolisis diekstraksi dengan 5 x 50 mL n-heksana. Ekstrak n-heksana dipekatkan lalu disabunkan dalam 10 mL KOH 10%. Ekstrak n-heksana dikentalkan lalu diuji fitokimia dan uji aktivitas bakteri. Uji aaktivitas bakteri dilakukan dengan pembiakan bakteri dengan menggunakan jarum ose yang dilakukan secara aseptis. Lalu dimasukkan ke dalam tabung yang berisi 2mL Meller-Hinton broth kemudian diinkubasi bakteri homogen selama 24 jam pada suhu 35°C.suspensi baketri homogeny yang telah diinkubasi siap dioleskan pada permukaan media MuellerHinton agar secara merata dengan menggunakan lidi kapas yang steril. Kemudian tempelkan disk yang berisi sampel, standar tetrasiklin serta pelarutnya yang digunakan sebagai kontrol. Lalu diinkubasi selama 24 jam pada suhu 35°C. dilakukan pengukuran daya hambat zat terhadap baketri. Uji fitokimia dapat dilakukan dengan menggunakan pereaksi LiebermanBurchard. Perekasi Lebermann-Burchard merupakan campuran antara asam setat anhidrat dan asam sulfat pekat. Alasan digunakannya asam asetat anhidrat adalah untuk membentuk turunan asetil dari steroid yang akan membentuk turunan asetil didalam kloroform setelah. Alasan penggunaan kloroform adalah karena golongan senyawa ini paling larut baik didalam pelarut ini dan yang paling prinsipil adalah tidak mengandung molekul air. Jika dalam larutan uji terdapat molekul air maka asam asetat anhidrat akan berubah menjadi asam asetat sebelum reaksi berjalan dan turunan asetil tidak akan terbentuk. 9 MATERI DAN METODE Bahan Biji pepaya yang digunakan dalam penelitian ini adalah biji pepaya yang berwarna putih yang diambil di daerah Kupang-NTT. Bahan kimia yang digunakan seperti metanol (teknis dan p.a), kloroform p.a, n-heksana (p.a dan teknis), asam sulfat pekat, asam asetat anhidrat, kalium bromida (KBr), silika gel GF254, silika gel 60, etilasetat p.a, eter p.a, etanol (p.a dan teknis), dan akuades. Peralatan Peralatan yang digunakan adalah berbagai alat gelas, seperangkat alat kromatografi (KLT dan kolom), lampu ulta violet 254 nm dan 366 nm, spektrofotometer ultra violet -tampak, serta spektrofotometer inframerah. Cara Kerja Biji pepaya yang berwarna putih dicelupkan ke dalam etanol panas kemudian dikeringkan dan dihaluskan. Sebanyak 500 g serbuk kering biji pepaya diekstraksi dengan cara maserasi menggunakan pelarut n-heksana. Ekstrak yang didapat diuapkan dengan rotary vacuum evaporator sehingga diperoleh ekstrak kental nheksana. Ekstrak kental tersebut diuji fitokimia dengan pereaksi LiebermannBurchard untuk menentukan ada tidaknya triterpenoid. Ekstrak kental positif triterpenoid dipisahkan dengan kromatografi kolom. Sebelum dilakukan pemisahan dengan kromatografi kolom, terlebih dahulu dilakukan pemilihan eluen dengan teknik KLT. Hasil pemisahan kromatografi kolom (silika gel 60, n-heksana : eter : etilasetat : etanol (2:3:3:2)) yang sama digabungkan dan dikelompokkan menjadi kelompok fraksi. Masing-masing kelompok fraksi tersebut diuji untuk triterpenoid. Fraksi yang positif mengandung triterpenoid dengan noda tunggal dilanjutkan dengan uji kemurnian secara KLT dengan beberapa campuran eluen. Bila tetap menghasilkan satu noda maka fraksi tersebut dapat dikatakan sebagai isolat relatif murni secara KLT. Isolat relatif murni ini kemudian dianalisis dengan Spektrofotometer Ultra violettampak dan Inframerah. 10 HASIL DAN PEMBAHASAN Isolat yang diperoleh sebanyak 50 mg dari sekitar 500 g sampel serbuk kering biji papaya. Pemisahan 21,66 g ekstrak kental nheksana menggunakan kromatografi kolom (silika gel 60, n-heksana : eter : etilasetat : etanol (2:3:3:2)) menghasilkan 127 eluat, yang kemudian difraksinasi denagn KLT menghasilkan 3 kelompok fraksi. Ketiga kelompok fraksi tersebut diuji untuk triterpenoid dengan pereaksi Liebermann-Burchard. Hasil uji triterpenoid ketiga kelompok fraksi tersebut dipaparkan pada Tabel 1. Tabel 1. Hasil uji triterpenoid Fraksi F1 (5-23) F2 (24-65) F3 (66-127) Berat (g) 0,10 1,22 0,05 Pereaksi LB Coklat Merah ungu Merah ungu Fraksi yang dilanjutkan untuk analisis lebih lanjut adalah fraksi F3. Uji kemurnian dengan analisis KLT menggunakan beberapa fase gerak menghasilkan isolat relatif murni dengan satu noda pada berbagai polaritas eluen yang digunakan. Hasil analisis dengan spektrofotometri inframerah menunjukkan adanya serapan -1 -1 tajam pada daerah bilangan gelombang 2923,8 cm dan 2852,2 cm yang diduga serapan dari gugus C-H alifatik stretching. Dugaan ini diperkuat oleh adanya serapan pada daerah bilangan gelombang 1464,4 cm -1 dan 1206,5 cm -1 yang merupakan serapan dari -CH2 dan –CH3 bending. Pita serapan yang tajam pada daerah bilangan -1 gelombang 1710,4 cm dengan intensitas kuat mengidentifikasikan gugus karbonil (C=O) (Sastrohamidjojo, 1985). Identifikasi dengan spektrofotometri ultra violet tampak menunjukkan serapan maksimum pada panjang gelombang 228,5 nm yang * kemungkinan diakibatkan oleh terjadinya transisi elektrón n-0 dari kromofor C=O. Hal ini didukung hasil analisis spektrofotometri inframerah yang menunjukkan isolat mempunyai gugus fungsi C=O pada panjang gelombang 1710,4 nm. Serapan ultra violet yang landai pada panjang gelombang 287,7 nm kemungkinan diakibatkan oleh * terjadinya transisi elektronik n -J dari ikatan rangkap C=O (Sastrohamidjojo, 1985). Hasil uji aktivitas antibakteri menunjukkan bahwa isolat triterpenoid (F3) dengan konsentrasi 1000 ppm memiliki potensi menghambat pertumbuhan bakteri 11 dengan diameter daerah hambat sebesar 10 mm untuk bakteri E. coli dan 7 mm untuk bakteri S. aureus. 12 SIMPULAN DAN SARAN Simpulan Berdasarkan hasil penelitian dapat disimpulkan bahwa isolat dari biji pepaya kemungkinan merupakan senyawa golongan triterpenoid aldehida dengan karakteristik gugus fungsi: –CH2, –CH3, dan C=O. Isolat triterpenoid mempunyai potensi sebagai antibakteri pada konsentrasi 1000 ppm. Saran Perlu dilakukan uji aktivitas lain untuk mengetahui keaktifan dari isolat triterpenoid. 13 DAFTAR PUSTAKA Harborne JB. 1987. Metode Fitokimia. Padmawinata K, Soediro I, penerjemah. Bandung : Penerbit ITB. Terjemahan dari : Phytochemical methods. IW.G Gunawan, dkk. 2008. Isolasi dan Identifikasi Senyawa Terpenoid yang Aktif Antibakteri pada Herba Meniran (Phyllanthus niruri Linn). ISSN 1907-9850 http://nadjeeb.wordpress.com Sukadan I.M, dkk. 2008. Aktivitas Antibakteri Golongan Triterpenoid dari Biji Pepaya (Carisa papaya L). ISSN 1907-9850. 14