Nama : Moh. Luthfi Zainullah NIM : 191810201063 TUGAS FISIKA MODERN Persamaan Gelombang 𝜕𝟐𝜙 𝜕𝟐𝜙 𝜕𝟐𝜙 1 𝜕𝟐𝜙 + + + =0 𝜕𝑥 𝟐 𝜕𝑦 𝟐 𝜕𝑧 𝟐 𝑐 𝟐 𝜕𝑡 𝟐 Transformasi Lorent 𝑥 − 𝑣𝑡 𝑥′ = 𝟐 √1 − 𝑣𝟐 𝑐 y’ = y z’ = z 𝑣𝑥 𝑐𝟐 𝑡 = 𝟐 √1 − 𝑣𝟐 𝑐 𝑡− ′ Turunkan terhadap x, y, z, t 𝜕𝑥′ = 𝜕𝑥 1 𝟐 √1 − 𝑣𝟐 𝑐 𝜕𝑦′ 𝜕𝑧′ = =0 𝜕𝑥 𝜕𝑥 𝑣 𝜕𝑡′ 𝟐 𝑐 = − 𝟐 𝜕𝑥 √1 − 𝑣 𝟐 𝑐 Aturan Rantai 𝜕𝜙 𝜕𝜙 𝜕𝑥 ′ 𝜕𝜙 𝜕𝑦 ′ 𝜕𝜙 𝜕𝑧 ′ 𝜕𝜙 𝜕𝑡 ′ = ′ + + + = 𝜕𝑥 𝜕𝑥 𝜕𝑥 𝜕𝑦 ′ 𝜕𝑥 𝜕𝑧 ′ 𝜕𝑥 𝜕𝑡 ′ 𝜕𝑥 = 1 𝟐 √1 − 𝑣𝟐 𝑐 1 𝟐 √1 − 𝑣𝟐 𝑐 𝜕𝜙 𝑣 𝜕𝜙 ( ′ − 𝟐 ) 𝜕𝑥 𝑐 𝜕𝑡 ′ 𝜕𝜙 − 𝜕𝑥 ′ 𝑣 𝑐𝟐 𝟐 √1 − 𝑣 𝟐 𝑐 𝜕𝜙 𝜕𝑡 ′ 𝟐 2 𝜕 𝜙 = 𝜕𝑥 2 1 𝟐 √1 − 𝑣 𝟐 [ 𝑐 𝜕𝜙 𝑣 𝜕𝜙 1 𝜕2𝜙 2𝑣 𝜕𝜙 𝜕𝜙 𝑣 𝟐 𝜕 2 𝜙 ( ′ − 𝟐 ) = [ ( ′2 − 𝟐 ′ ′ + 4 )] 𝑣𝟐 𝜕𝑥 𝑐 𝜕𝑡 ′ 𝑐 𝜕𝑥 𝜕𝑡 𝑐 𝜕𝑡 ′ 2 1 − 𝟐 𝜕𝑥 𝑐 ] 𝜕𝜙 𝜕𝜙 𝜕𝑥 ′ 𝜕𝜙 𝜕𝑦 ′ 𝜕𝜙 𝜕𝑧 ′ 𝜕𝜙 𝜕𝑡 ′ 𝜕𝜙 𝜕𝜙 (1) = = ′ + + + ′ = ′ ′ ′ 𝜕𝑦 𝜕𝑥 𝜕𝑦 𝜕𝑦 𝜕𝑦 𝜕𝑧 𝜕𝑦 𝜕𝑡 𝜕𝑦 𝜕𝑦 𝜕𝑦 ′ 𝜕2𝜙 𝜕2𝜙 = 𝜕𝑦 2 𝜕𝑦 ′ 2 𝜕𝜙 𝜕𝜙 𝜕𝑥 ′ 𝜕𝜙 𝜕𝑦 ′ 𝜕𝜙 𝜕𝑧 ′ 𝜕𝜙 𝜕𝑡 ′ 𝜕𝜙 𝜕𝜙 (1) = = ′ + + + ′ = ′ ′ ′ 𝜕𝑧 𝜕𝑥 𝜕𝑧 𝜕𝑦 𝜕𝑧 𝜕𝑧 𝜕𝑧 𝜕𝑡 𝜕𝑧 𝜕𝑧 𝜕𝑧 ′ 𝜕2𝜙 𝜕2𝜙 = 𝜕𝑧 2 𝜕𝑧 ′ 2 𝜕𝜙 𝜕𝜙 𝜕𝑥 ′ 𝜕𝜙 𝜕𝑦 ′ 𝜕𝜙 𝜕𝑧 ′ 𝜕𝜙 𝜕𝑡 ′ = ′ + + + = 𝜕𝑡 𝜕𝑥 𝜕𝑡 𝜕𝑦 ′ 𝜕𝑡 𝜕𝑧 ′ 𝜕𝑡 𝜕𝑡 ′ 𝜕𝑡 = 1 √1 − 𝑣𝟐 ( −𝑣 𝟐 √1 − 𝑣𝟐 𝑐 𝜕𝜙 + 𝜕𝑥 ′ 1 𝟐 √1 − 𝑣𝟐 𝑐 𝜕𝜙 𝜕𝑡 ′ 𝜕𝜙 𝜕𝜙 − (𝒗) ′ ) ′ 𝜕𝑡 𝜕𝑥 𝑐𝟐 𝟐 2 𝜕 𝜙 = 𝜕𝑡 2 1 𝑣𝟐 √ [ 1 − 𝑐𝟐 𝜕𝜙 𝜕𝜙 1 𝜕2𝜙 𝜕𝜙 𝜕𝜙 𝜕2𝜙 2 ( ′ − (𝒗) ′ ) = [ − 2𝑣 + 𝑣 ( )] ′2 𝑣𝟐 𝜕𝑡 𝜕𝑥 𝜕𝑥 ′ 𝜕𝑡 ′ 𝜕𝑥 ′ 2 1 − 𝟐 𝜕𝑡 𝑐 ] Substitusi 𝜕𝟐𝜙 𝜕𝟐𝜙 𝜕𝟐𝜙 1 𝜕𝟐𝜙 + + + =0 𝜕𝑥 𝟐 𝜕𝑦 𝟐 𝜕𝑧 𝟐 𝑐 𝟐 𝜕𝑡 𝟐 1 [ 1− [ 𝑣𝟐 𝑐𝟐 1 1− 𝑣𝟐 𝑐𝟐 ( 𝜕2 𝜙 𝜕𝑥′ 2 − 2𝑣 𝜕𝜙 𝜕𝜙 𝑣𝟐 𝜕2 𝜙 𝜕2𝜙 𝜕2𝜙 1 1 𝜕2𝜙 𝜕𝜙 𝜕𝜙 𝜕2𝜙 + 4 )] + + − 𝟐[ ( ′ 2 − 2𝑣 + 𝑣 2 ′ 2 )] = 0 2 2 𝟐 ′ ′ 𝟐 2 ′ ′ ′ ′ 𝑐 𝑣 𝜕𝑥 𝜕𝑡 𝑐 𝜕𝑥 𝜕𝑡 𝑐 𝜕𝑡′ 𝜕𝑥 𝜕𝑦 𝜕𝑧 1 − 𝟐 𝜕𝑡 𝑐 𝜕2𝜙 2𝑣 𝜕𝜙 𝜕𝜙 𝑣 𝟐 𝜕 2 𝜙 𝜕2𝜙 𝜕2𝜙 1 1 𝜕2𝜙 2𝑣 𝜕𝜙 𝜕𝜙 𝑣2 𝜕2𝜙 ( ′2 − 𝟐 ′ ′ + 4 )] + + − [ ( − + )] = 0 2 2 2 2 𝟐 𝟐 𝟐 ′ ′ 𝑐 𝜕𝑡 𝜕𝑥 𝑐 𝜕𝑡 ′ 𝑣 𝑐 𝜕𝑡 ′ 𝑐 𝜕𝑡 𝜕𝑥 𝑐 𝟐 𝜕𝑥 ′ 2 𝜕𝑥 𝜕𝑦 ′ 𝜕𝑧 ′ 1− 𝟐 𝑐 [ 1 1− 𝑣𝟐 𝑐𝟐 1 𝜕2𝜙 2𝑣 𝜕𝜙 𝜕𝜙 𝑣 𝟐 𝜕 2 𝜙 1 1 𝜕2𝜙 2𝑣 𝜕𝜙 𝜕𝜙 𝑣 2 𝜕2𝜙 𝜕2𝜙 𝜕2𝜙 ( ′2 − 𝟐 ′ ′ + 4 )] − [ ( 𝟐 ′2 − 𝟐 ′ + 𝟐 ′ 2 )] + + =0 2 2 𝟐 ′ ′ 𝑐 𝜕𝑡 𝜕𝑥 𝑐 𝜕𝑡 𝑣 𝑐 𝜕𝑡 𝑐 𝜕𝑡 𝜕𝑥 𝑐 𝜕𝑥 𝜕𝑥 𝜕𝑦 ′ 𝜕𝑧 ′ 2 1− 𝟐 𝑐 [ 𝑣𝟐 1− 𝟐 𝑐 𝜕 2𝜙 𝑣 𝟐 𝜕 2𝜙 1 1 𝜕 2𝜙 𝑣 𝟐 𝜕 2𝜙 𝜕 2𝜙 𝜕 2𝜙 ( ′ 2 + 4 ′ 2 )] − [ ( + 𝟐 ′ 2 )] + + =0 𝑣 𝟐 𝑐 𝟐 𝜕𝑡 ′ 2 𝑐 𝜕𝑡 𝑐 𝜕𝑥 𝜕𝑥 𝜕𝑦 ′ 2 𝜕𝑧 ′ 2 1− 𝟐 𝑐 1 [ 1− [ ( 𝑣𝟐 𝑐𝟐 𝜕𝑥 + ′2 𝑣𝟐 𝑐𝟐 2 2 𝜕𝑦 𝜕𝑧 2 2 𝜕𝑦 𝜕𝑧 𝑣 𝟐 𝜕2𝜙 1 𝜕 2 𝜙 𝑣𝟐 𝜕 2 𝜙 𝜕 𝜙 𝜕 𝜙 − − + + =0 )] 2 2 2 4 𝟐 𝟐 𝑐 𝜕𝑡 ′ 𝑐 𝜕𝑡 ′ 𝑐 𝜕𝑥 ′ ′2 ′2 𝑣𝟐 𝜕2𝜙 1 1− 𝜕2𝜙 𝜕2𝜙 𝑣 𝟐 1 𝜕 𝜙 𝜕 𝜙 ( ′ 2 (1 − 𝟐 ) + ′ 2 ( 4 − 𝟐 ))] + + =0 𝑐 𝑐 𝑐 ′2 ′2 𝜕𝑥 𝜕𝑡 ( 𝜕2 𝜙 2 𝜕𝑥 ′ − 𝜕2 𝜙 1 2 𝜕𝑡 ′ 𝜕2 𝜙 2 𝜕𝑥 ′ + 𝑣𝟐 1 𝑐𝟐 𝑣𝟐 1− 𝟐 𝑐 𝜕2 𝜙 2 𝜕𝑦 ′ (1 − 𝑐 2 )) + + 𝜕2 𝜙 2 𝜕𝑧 ′ − Invarian 𝜕2 𝜙 2 𝜕𝑦 ′ 1 𝜕2 𝜙 𝑐 𝟐 𝜕𝑡 ′ 2 + =0 𝜕2 𝜙 𝜕𝑧 ′ 2 =0