-------------------------------------------------------------------------------name: <unnamed> log: C:\Users\etisu\Downloads\altman_ave_clean.smcl log type: smcl opened on: 13 Jan 2021, 13:13:05 . ***** ASUMSI ***** . mvtest norm X1 X2 X3 X4 X5, bivariate univariate stats(all) Test for univariate normality --------------------------------------------------------------------| ------- joint -----Variable | Pr(Skewness) Pr(Kurtosis) adj chi2(2) Prob>chi2 -------------+------------------------------------------------------X1 | 0.0000 0.0000 . 0.0000 X2 | 0.0000 0.0000 . 0.0000 X3 | 0.0007 0.0000 . 0.0000 X4 | 0.0000 0.0000 . 0.0000 X5 | 0.0000 0.0000 . 0.0000 --------------------------------------------------------------------Doornik-Hansen test for bivariate normality -------------------------------------------------------Pair of variables | chi2 df Prob>chi2 ---------------------------+---------------------------X1 X2 | 394.04 4 0.0000 X3 | 601.38 4 0.0000 X4 | 1431.28 4 0.0000 X5 | 796.61 4 0.0000 X2 X3 | 625.02 4 0.0000 X4 | 1400.90 4 0.0000 X5 | 781.61 4 0.0000 X3 X4 | 1571.72 4 0.0000 X5 | 1048.42 4 0.0000 X4 X5 | 1714.72 4 0.0000 -------------------------------------------------------Test for multivariate normality Mardia mSkewness = Mardia mKurtosis = Henze-Zirkler = Doornik-Hansen 22.03103 82.64757 12.53281 chi2(35) chi2(1) chi2(1) chi2(10) = = = = 1949.767 4273.012 1910.792 2791.679 Prob>chi2 Prob>chi2 Prob>chi2 Prob>chi2 . mvtest covariances X1 X2 X3 X4 X5, by(Y) Test of equality of covariance matrices across 2 samples Modified LR chi2 = Box F(15,3674.8) = Box chi2(15) = 166.9338 9.98 150.43 Prob > F = Prob > chi2 = 0.0000 0.0000 . collin X1 X2 X3 X4 X5 (obs=527) Collinearity Diagnostics SQRT RVariable VIF VIF Tolerance Squared ---------------------------------------------------X1 1.28 1.13 0.7827 0.2173 X2 1.70 1.30 0.5889 0.4111 X3 1.77 1.33 0.5642 0.4358 X4 1.12 1.06 0.8936 0.1064 X5 1.14 1.07 0.8769 0.1231 = = = = 0.0000 0.0000 0.0000 0.0000 ---------------------------------------------------Mean VIF 1.40 Cond Eigenval Index --------------------------------1 3.5309 1.0000 2 0.9772 1.9009 3 0.5516 2.5300 4 0.4718 2.7356 5 0.2439 3.8045 6 0.2246 3.9651 --------------------------------Condition Number 3.9651 Eigenvalues & Cond Index computed from scaled raw sscp (w/ intercept) Det(correlation matrix) 0.4237 . ***** MODEL ***** . candisc X1 X2 X3 X4 X5, group(Y) priors(proportional) Canonical linear discriminant analysis | | Like| Canon. EigenVariance | lihood Fcn | Corr. value Prop. Cumul. | Ratio F df1 df2 Prob>F ----+---------------------------------+-----------------------------------1 | 0.3011 .099669 1.0000 1.0000 | 0.9094 10.385 5 521 0.0000 e --------------------------------------------------------------------------Ho: this and smaller canon. corr. are zero; e = exact F Standardized canonical discriminant function coefficients | function1 -------------+----------X1 | -.0494878 X2 | -.7913253 X3 | -.2028565 X4 | -.1694271 X5 | -.0822451 Canonical structure | function1 -------------+----------X1 | -.4666958 X2 | -.9526089 X3 | -.7307529 X4 | -.3107377 X5 | -.269869 Group means on canonical variables Y | function1 -------------+----------0 | -.0609394 1 | 1.629328 Resubstitution classification summary +---------+ | Key | |---------| | Number | | Percent | +---------+ True Y | Classified | 0 1 | Total -------------+----------------+------0 | 500 8 | 508 | 98.43 1.57 | 100.00 | | 1 | 12 7 | 19 | 63.16 36.84 | 100.00 -------------+----------------+------Total | 512 15 | 527 | 97.15 2.85 | 100.00 | | Priors | 0.9639 0.0361 | . discrim lda X1 X2 X3 X4 X5, group(Y) priors(proportional) Linear discriminant analysis Resubstitution classification summary +---------+ | Key | |---------| | Number | | Percent | +---------+ | Classified True Y | 0 1 | Total -------------+----------------+------0 | 500 8 | 508 | 98.43 1.57 | 100.00 | | 1 | 12 7 | 19 | 63.16 36.84 | 100.00 -------------+----------------+------Total | 512 15 | 527 | 97.15 2.85 | 100.00 | | Priors | 0.9639 0.0361 | . estat loadings, standardized totalstandardized unstandardized Canonical discriminant function coefficients | function1 -------------+----------X1 | -.1953518 X2 | -2.363181 X3 | -2.536854 X4 | -.0989809 X5 | -.106855 _cons | .6122528 Standardized canonical discriminant function coefficients | function1 -------------+----------X1 | -.0494878 X2 | -.7913253 X3 | -.2028565 X4 | -.1694271 X5 | -.0822451 Total-sample standardized canonical discriminant function coefficients | function1 -------------+----------X1 | -.0499745 X2 | -.8255508 X3 | -.2079869 X4 | -.1700785 X5 | -.0824645 . estat anova Univariate ANOVA summaries | Adj. Variable | Model MS Resid MS Total MS R-sq R-sq F Pr > F ------------+--------------------------------------------------------------X1 | .73138587 33.691531 33.628869 0.0212 0.0194 11.397 0.0008 X2 | 5.3243023 58.86747 58.765677 0.0829 0.0812 47.484 0.0000 X3 | .17866749 3.3569616 3.3509192 0.0505 0.0487 27.942 0.0000 X4 | 14.803621 1538.2325 1535.3363 0.0095 0.0076 5.0525 0.0250 X5 | 2.2576322 311.02051 310.43351 0.0072 0.0053 3.8109 0.0515 ---------------------------------------------------------------------------Number of obs = 527 Model df = 1 Residual df = 525 . estat summarize Estimation sample discrim Number of obs = 527 ------------------------------------------------------------------Variable | Mean Std. Dev. Min Max -------------+----------------------------------------------------groupvar | Y | .0360531 .1865995 0 1 -------------+----------------------------------------------------variables | X1 | .1569139 .2558179 -1.782568 .9396485 X2 | .079334 .3493388 -1.630069 .8991286 X3 | .0632895 .0819861 -.4908823 .5306633 X4 | 1.46559 1.718296 .0003002 10.50156 X5 | .8281983 .7717421 .0003002 6.206231 ------------------------------------------------------------------. mvtest means X1 X2 X3 X4 X5, by(Y) Test for equality of 2 group means, assuming homogeneity | Statistic F(df1, df2) = F Prob>F -----------------------+----------------------------------------------Wilks' lambda | 0.9094 5.0 521.0 10.39 0.0000 Pillai's trace | 0.0906 5.0 521.0 10.39 0.0000 Lawley-Hotelling trace | 0.0997 5.0 521.0 10.39 0.0000 Roy's largest root | 0.0997 5.0 521.0 10.39 0.0000 ----------------------------------------------------------------------e = exact, a = approximate, u = upper bound on F e e e e . mvtest means X1, by(Y) Test for equality of 2 group means, assuming homogeneity | Statistic F(df1, df2) = F Prob>F -----------------------+----------------------------------------------Wilks' lambda | 0.9788 1.0 525.0 11.40 0.0008 Pillai's trace | 0.0212 1.0 525.0 11.40 0.0008 Lawley-Hotelling trace | 0.0217 1.0 525.0 11.40 0.0008 Roy's largest root | 0.0217 1.0 525.0 11.40 0.0008 ----------------------------------------------------------------------e = exact, a = approximate, u = upper bound on F e e e e . mvtest means X2, by(Y) Test for equality of 2 group means, assuming homogeneity | Statistic F(df1, df2) = F Prob>F -----------------------+----------------------------------------------Wilks' lambda | 0.9171 1.0 525.0 47.48 0.0000 e Pillai's trace | 0.0829 1.0 525.0 47.48 0.0000 e Lawley-Hotelling trace | 0.0904 1.0 525.0 47.48 0.0000 e Roy's largest root | 0.0904 1.0 525.0 47.48 0.0000 e ----------------------------------------------------------------------e = exact, a = approximate, u = upper bound on F . mvtest means X3, by(Y) Test for equality of 2 group means, assuming homogeneity | Statistic F(df1, df2) = F Prob>F -----------------------+----------------------------------------------Wilks' lambda | 0.9495 1.0 525.0 27.94 0.0000 Pillai's trace | 0.0505 1.0 525.0 27.94 0.0000 Lawley-Hotelling trace | 0.0532 1.0 525.0 27.94 0.0000 Roy's largest root | 0.0532 1.0 525.0 27.94 0.0000 ----------------------------------------------------------------------e = exact, a = approximate, u = upper bound on F e e e e . mvtest means X4, by(Y) Test for equality of 2 group means, assuming homogeneity | Statistic F(df1, df2) = F Prob>F -----------------------+----------------------------------------------Wilks' lambda | 0.9905 1.0 525.0 5.05 0.0250 Pillai's trace | 0.0095 1.0 525.0 5.05 0.0250 Lawley-Hotelling trace | 0.0096 1.0 525.0 5.05 0.0250 Roy's largest root | 0.0096 1.0 525.0 5.05 0.0250 ----------------------------------------------------------------------e = exact, a = approximate, u = upper bound on F e e e e . mvtest means X5, by(Y) Test for equality of 2 group means, assuming homogeneity | Statistic F(df1, df2) = F Prob>F -----------------------+----------------------------------------------Wilks' lambda | 0.9928 1.0 525.0 3.81 0.0515 Pillai's trace | 0.0072 1.0 525.0 3.81 0.0515 Lawley-Hotelling trace | 0.0073 1.0 525.0 3.81 0.0515 Roy's largest root | 0.0073 1.0 525.0 3.81 0.0515 ----------------------------------------------------------------------e = exact, a = approximate, u = upper bound on F e e e e . qnorm X1 . qnorm X2 . qnorm X3 . qnorm X4 . qnorm X5 . sktest X1 X2 X3 X4 X5 Skewness/Kurtosis tests for Normality ------ joint -----Variable | Obs Pr(Skewness) Pr(Kurtosis) adj chi2(2) Prob>chi2 -------------+--------------------------------------------------------------X1 | 527 0.0000 0.0000 . 0.0000 X2 | 527 0.0000 0.0000 . 0.0000 X3 | 527 0.0007 0.0000 . 0.0000 X4 | 527 0.0000 0.0000 . 0.0000 X5 | 527 0.0000 0.0000 . 0.0000 . histogram X1, normal (bin=22, start=-1.7825683, width=.12373713) . swilk X1 X2 X3 X4 X5 Shapiro-Wilk W test for normal data Variable | Obs W V z Prob>z -------------+-----------------------------------------------------X1 | 527 0.93652 22.391 7.490 0.00000 X2 | 527 0.87279 44.869 9.165 0.00000 X3 | 527 0.92003 28.206 8.047 0.00000 X4 | 527 0.69924 106.087 11.239 0.00000 X5 | 527 0.79118 73.658 10.360 0.00000 . sfrancia X1 X2 X3 X4 X5 Shapiro-Francia W' test for normal data Variable | Obs W' V' z Prob>z -------------+----------------------------------------------------X1 | 527 0.93256 25.500 7.129 0.00001 X2 | 527 0.87151 48.587 8.548 0.00001 X3 | 527 0.91454 32.316 7.650 0.00001 X4 | 527 0.69850 114.010 10.425 0.00001 X5 | 527 0.78909 79.753 9.639 0.00001 . log close name: <unnamed> log: C:\Users\etisu\Downloads\altman_ave_clean.smcl log type: smcl closed on: 13 Jan 2021, 13:19:15 --------------------------------------------------------------------------------