Table of Laplace Transforms 469 Table of Laplace Transforms y = f (t), t > 0 [y = f (t) = 0, t < 0] Y = L(y) = F (p) = ∞ e−pt f (t) dt 0 L1 1 1 p L2 e−at 1 p+a Re (p + a) > 0 L3 sin at a p 2 + a2 Re p > | Im a| L4 cos at p + a2 Re p > | Im a| L5 tk , k > −1 L6 tk e−at , k > −1 L7 e−at − e−bt b−a 1 (p + a)(p + b) L8 ae−at − be−bt a−b p (p + a)(p + b) L9 sinh at a p 2 − a2 Re p > | Re a| L10 cosh at p p 2 − a2 Re p > | Re a| L11 t sin at L12 p2 k! Γ(k + 1) or pk+1 pk+1 k! Γ(k + 1) or k+1 (p + a) (p + a)k+1 Re p > 0 Re p > 0 Re (p + a) > 0 Re (p + a) > 0 Re (p + b) > 0 Re (p + a) > 0 Re (p + b) > 0 2ap + a2 )2 Re p > | Im a| t cos at p 2 − a2 (p2 + a2 )2 Re p > | Im a| L13 e−at sin bt b (p + a)2 + b2 Re (p + a) > | Im b| L14 e−at cos bt p+a (p + a)2 + b2 Re (p + a) > | Im b| L15 1 − cos at a2 p(p2 + a2 ) Re p > | Im a| L16 at − sin at a3 + a2 ) Re p > | Im a| L17 sin at − at cos at (p2 p2 (p2 2a3 (p2 + a2 )2 Re p > | Im a| 470 Ordinary Differential Equations Chapter 8 Table of Laplace Transforms (continued) y = f (t), t > 0 [y = f (t) = 0, t < 0] L18 e−at (1 − at) L19 sin at t L20 1 sin at cos bt, t Y = L(y) = F (p) = L22 L23 L24 L25 e−pt f (t) dt 0 p (p + a)2 Re (p + a) > 0 a p Re p > | Im a| arc tan 1 2 arc tan a+b a−b + arc tan p p a > 0, b > 0 Re p > 0 e−at − e−bt t L21 ∞ ln p+b p+a a √ , a>0 2 t (See Chapter 11, Section 9) 1 −a√p e p J0 (at) (See Chapter 12, Section 12) (p2 + a2 )−1/2 1, t > a > 0 0, t < a (unit step, or Heaviside function) 1 −pa e p 1 − erf u(t − a) = f (t) = u(t − a) − u(t − b) Re (p + a) > 0 Re (p + b) > 0 Re p > 0 Re p > | Im a|; or Re p ≥ 0 for real a = 0 Re p > 0 e−ap − e−bp p All p 1 tanh 12 ap p Re p > 0 1 a 0 L26 b t f (t) 1 t −1 L27 a 2a 3a 4a δ(t − a), a ≥ 0 (See Section 11) L28 L29 g(t − a), t > a > 0 0, t<a = g(t − a)u(t − a) f (t) = e−at g(t) e−pa e−pa G(p) [G(p) means L(g).] G(p + a) Table of Laplace Transforms Table of Laplace Transforms (continued) y = f (t), t > 0 [y = f (t) = 0, t < 0] L30 L31 L33 G(u) du (−1)n t L34 0 0 g(t − τ )h(τ ) dτ = 0 dn G(p) dpn 1 G(p) p g(τ ) dτ t ∞ p tn g(t) 1 p G a a (if integrable) L32 L35 0 g(at), a > 0 g(t) t ∞ Y = L(y) = F (p) = t g(τ )h(t − τ ) dτ G(p)H(p) (convolution of g and h, often written as g ∗ h; see Section 10) Transforms L(y ) = L(y ) = L(y ) = L(y (n) ) = of derivatives of y (see Section 9): pY − y0 p2 Y − py0 − y0 p3 Y − p2 y0 − py0 − y0 , etc. (n−1) pn Y − pn−1 y0 − pn−2 y0 − · · · − y0 e−pt f (t) dt 471