Uploaded by User56965

tugas ekonometrika

advertisement
Nama
Npm
Kelas
Matakuliah
: Krysda Marsina Situmorang
: 174210027
: Agribisnis 6/D
: Ekonometrika
1. Lakukanlah uji asumsi klasik dengan menggunakan uji multikolinearitas,
autokorelasi, heteroskedastisitas dan normalitas dengan menggunakan sampel n=35.
Jawab :
No
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
Berat badan
(kg)
75
80
87
65
67
78
79
82
84
77
66
76
74
83
68
70
76
90
89
86
88
91
92
88
80
66
67
68
80
86
87
90
Tinggi
badan (cm)
150
160
155
164
150
155
170
164
167
150
170
180
177
175
145
166
158
160
155
157
155
175
157
160
160
160
146
148
157
158
159
165
33
34
35
94
95
89
166
167
170
A. Uji Multikolinearitas
Variables Entered/Removeda
Variables
Variables
Model
Entered
Removed
Method
1
tinggi badanb
. Enter
a. Dependent Variable: berat badan
b. All requested variables entered.
Model Summary
Adjusted R Std. Error of
Model
R
R Square
Square
the Estimate
a
1
.239
.057
.029
8.976
a. Predictors: (Constant), tinggi badan
ANOVAa
Sum of
Model
Squares
df
Mean Square
1
Regression
161.292
1
161.292
Residual
2658.879
33
80.572
Total
2820.171
34
a. Dependent Variable: berat badan
b. Predictors: (Constant), tinggi badan
Unstandardized
Coefficients
Model
1
(Constant)
F
2.002
Sig.
.166b
Coefficientsa
Standardized
Coefficients
B
Std. Error
40.601
28.150
Beta
t
1.442
Sig.
.159
Collinearity
Statistics
Toleranc
e
VIF
tinggi
.247
badan
a. Dependent Variable: berat badan
.175
.239
1.415
.166
1.000
Coefficient Correlationsa
Model
1
Correlations tinggi badan
tinggi
badan
1.000
Covariances tinggi badan
a. Dependent Variable: berat badan
.031
Collinearity Diagnosticsa
Model Dimension Eigenvalue
1
1
1.999
2
.001
Variance Proportions
Condition
tinggi
Index
(Constant)
badan
1.000
.00
.00
37.079
1.00
1.00
a. Dependent Variable: berat badan
B. Uji Autokorelasi
Variables Entered/Removeda
Variables
Variables
Model
Entered
Removed
Method
b
1
tinggi badan
. Enter
a. Dependent Variable: berat badan
b. All requested variables entered.
Model Summaryb
Adjusted R Std. Error of
Model
R
R Square
Square
the Estimate
a
1
.239
.057
.029
8.976
a. Predictors: (Constant), tinggi badan
b. Dependent Variable: berat badan
DurbinWatson
.784
K=2, n=35 maka dL=1.353 dan dU=1.584
Karena nilai DW lebih kecil dari du dan lebih kecil dari nilai dl, maka tidak menghasilkan
kesimpulan yang tidak pasti
1.000
ANOVAa
Sum of
Model
Squares
df
Mean Square
1
Regression
161.292
1
161.292
Residual
2658.879
33
80.572
Total
2820.171
34
a. Dependent Variable: berat badan
b. Predictors: (Constant), tinggi badan
Unstandardized
Coefficients
F
2.002
Coefficientsa
Standardized
Coefficients
Model
B
Std. Error
1
(Constant)
40.601
28.150
tinggi
.247
.175
badan
a. Dependent Variable: berat badan
Beta
.239
t
1.442
Sig.
.159
1.415
.166
Coefficient Correlationsa
Model
1
Correlations tinggi badan
Covariances tinggi badan
a. Dependent Variable: berat badan
tinggi
badan
1.000
.031
Collinearity Diagnosticsa
Variance Proportions
Model Dimension Eigenvalue
1
1
1.999
2
.001
a. Dependent Variable: berat badan
Sig.
.166b
Condition
Index
(Constant)
1.000
.00
37.079
1.00
tinggi
badan
.00
1.00
Collinearity
Statistics
Toleranc
e
VIF
1.000
1.000
Predicted Value
Residual
Std. Predicted
Value
Std. Residual
Residuals Statisticsa
Minimu Maximu
m
m
Mean
76.44
85.10
80.37
-16.624
13.117
.000
Std.
Deviation
2.178
8.843
N
35
35
-1.803
2.169
.000
1.000
35
-1.852
1.461
.000
.985
35
a. Dependent Variable: berat badan
C. Uji Heteroskedastisitas
Variables Entered/Removeda
Variables
Variables
Model
Entered
Removed
Method
b
1
tinggi badan
. Enter
a. Dependent Variable: berat badan
b. All requested variables entered.
Model Summaryb
Adjusted R Std. Error of
Model
R
R Square
Square
the Estimate
1
.239a
.057
.029
8.976
a. Predictors: (Constant), tinggi badan
b. Dependent Variable: berat badan
ANOVAa
Sum of
Model
Squares
df
Mean Square
1
Regression
161.292
1
161.292
Residual
2658.879
33
80.572
Total
2820.171
34
a. Dependent Variable: berat badan
b. Predictors: (Constant), tinggi badan
F
2.002
Sig.
.166b
Coefficientsa
Unstandardized
Standardized
Coefficients
Coefficients
Model
B
Std. Error
Beta
1
(Constant)
40.601
28.150
tinggi badan
.247
.175
.239
a. Dependent Variable: berat badan
t
1.442
1.415
Sig.
.159
.166
Residuals Statisticsa
Minimu Maximu
m
m
Mean
76.44
85.10
80.37
-16.624
13.117
.000
Std.
Deviation
2.178
8.843
.000
1.000
35
.000
.985
35
Predicted Value
Residual
Std. Predicted
-1.803
2.169
Value
Std. Residual
-1.852
1.461
a. Dependent Variable: berat badan
N
35
35
•
Terjadi heteroskedastisitas karena titik-titik tidak menyebar secara acak serta tidak
tersebar baik di atas maupun di bawah angka 0 pada sumbu Y.
D. Uji Normalitas
Variables Entered/Removeda
Variables
Variables
Model
Entered
Removed
Method
1
tinggi badanb
. Enter
a. Dependent Variable: berat badan
b. All requested variables entered.
Model
1
R
.239a
Model Summaryb
Adjusted R Std. Error of
R Square
Square
the Estimate
.057
.029
8.976
a. Predictors: (Constant), tinggi badan
b. Dependent Variable: berat badan
ANOVAa
Sum of
Model
Squares
df
Mean Square
1
Regression
161.292
1
161.292
Residual
2658.879
33
80.572
Total
2820.171
34
a. Dependent Variable: berat badan
b. Predictors: (Constant), tinggi badan
F
2.002
Coefficientsa
Unstandardized
Standardized
Coefficients
Coefficients
Model
B
Std. Error
Beta
1
(Constant)
40.601
28.150
tinggi badan
.247
.175
.239
a. Dependent Variable: berat badan
Sig.
.166b
t
1.442
1.415
Sig.
.159
.166
Residuals Statisticsa
Minimu Maximu
m
m
Mean
76.44
85.10
80.37
-16.624
13.117
.000
Std.
Deviation
2.178
8.843
.000
1.000
35
.000
.985
35
Predicted Value
Residual
Std. Predicted
-1.803
2.169
Value
Std. Residual
-1.852
1.461
a. Dependent Variable: berat badan
N
35
35
Normal, karena grafik histogram memberikan pola distribusi yang tidak merata (kurtosis
positif).
Normal karena titik-titik menyebar di sekitar garis diagonal, serta penyebarannya mengikuti
arah garis diagonal.
Download