x = [0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1]; y = [-.447 1.978 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.30 11.2]; plot(x,y,'-o') n = 2; p = polyfit(x,y,n) p = -9.8108 20.1293 -0.0317 xi = linspace(0,1,100); yi = polyval(p,xi); figure,plot(x,y,'-o',xi,yi,' :') pp = polyfit(x,y,10) ; z = polyval(pp,xi); figure, plot(x,y,'o',xi,z,':' ) figure, plot(x,y,'o',xi,z,':' ) % One Dimensional Interpolation yi = interp1(x,y,xi) yi = interp1(x,y,xi) interpolasi linier interpolasi linier | { Error: Unexpected MATLAB expression. } x1 = linspace(0 , 2*pi, 60); x2 = linspace(0 , 2*pi, 6) ; figure, plot(x1 , sin(x1) ) figure, plot(x2 , sin(x2) , '?') { Error using <a href="matlab:helpUtils.errorDocCallback('plot')" style="font-weight:bold">plot</a> Error in color/linetype argument } figure, plot(x2 , sin(x2) , '-') figure, plot(x1 , sin(x1), x2 , sin(x2) , '-') ), grid on figure, plot(x1 , sin(x1), x2 , sin(x2) , '-') ), grid on | { Error: Unbalanced or unexpected parenthesis or bracket. } figure, plot(x1 , sin(x1), x2 , sin(x2),'-'),grid on xlabel('x'), ylabel('Sin(x)') , title('Linear Interpolation') % Sound Pressure Level Data M-File sound.m sound s = interp1(Hz,spl,2.5e3) s = -5.5000 s = interp1(Hz,spl,2.5e3,'linear') s = -5.5000 s = interp1(Hz,spl,2.5e3,'spline') s = -5.8690 s = interp1(Hz,spl,2.5e3,'cubic') s = -6.0488 s = interp1(Hz,spl,2.5e3,'nearest') s = -8 % Two-Dimensional Interpolation ocean zi = interp2(x,y,z,2.2,3.3) zi = 103.9200 zi = interp2(x,y,z,2.2,3.3,'linear') zi = 103.9200 zi = interp2(x,y,z,2.2,3.3,'cubic') zi = 104.1861 zi = interp2(x,y,z,2.2,3.3,'spline') zi = 104.3016 zi = interp2(x,y,z,2.2,3.3,'nearest') zi = 102 xi = linspace(0,4,30) ; yi = linspace(0,6,40) ; [xxi,yyi] = meshgrid(xi,yi) ; of xi and yi zzi = interp2(x,y,z,xxi,yyi,'cubic'); mesh(xxi,yyi,zzi) hold on [xx,yy] = meshgrid(x,y); plot3 (xx,yy,z+0.1,'ok') bit to show nodos hold off zmax = max(max(zzi)) zmax = 108.0520 % finer x-axis % finer y-axis % grid of all combinations % interpolate % plot smoothed data % grid original data % plot original data up a [i,j] = find(zmax == zzi) i = 20 j = 20 xmzx = xi(j) xmzx = 2.6207 ymax = yi(i) ymax = 2.9231 xi(20) ans = 2.6207 yi(20) ans = 2.9231 diary off