F -X C h a n ge F -X C h a n ge N y bu MATERI PRAKTIKUM Fakultas Jurusan/Program Studi Kode Mata Kuliah Nama Mata Kuliah : TeknologiIndustri : TeknikIndustri : 52213604 : AnalisisKeputusandan Data Mining Pertemuanke Modulke JumlahHalaman Mulaiberlaku :2 :2 : 14 : 2011 Praktikum 2 Analytical Network Process (ANP) Definisi Analyitical Network Process (ANP) Metode ANP merupakan salah satu metode yang dikembangkan dari metode sebelumnya yaitu metode AHP. Metode ANP dapat memperbaiki kekurangan-kekurangan metode AHP dimana kemampuannya dapat mengakomodasi keterkaitan antar kriteria atau antar alternatif–alternatif (Saaty, 2003). Keterkaitan antar kriteria pada metode ANP ada 2 jenis yaitu keterkaitan dalam satu set elemen (inner dependence) dan keterkaitan antar elemen yang berbeda (outer dependence). Tujuan Praktikum ANP 1. Memahami Konsep ANP 2. Mampu memodelkan permasalahan pengambilan keputusan dan menyelesaikan masalah dengan metoe ANP. Landasan Teori ANP Keputusan (Decision) berarti pilihan (choice) yaitu pilihan dua atau lebih dari dua kemungkinan. Persoalan pengambilan keputusan publik, manajerial dan bisnis bersifat kompleks, dinamis, kadang kurang terstruktur bersifat melibatkan kelompok pengambil keputusan yang kepentingannya berbeda, sehingga dalam perumusannya memerlukan teori dan teknik yang andal dan operasional untuk diimplementasikan. Penyelesaian persoalan melibatkan kriteria majemuk dan alternatif dengan berbagai karakteristik dan struktur yang bersifat dinamis dan probabilistik. Kemajuan di bidang teori keputusan telah memungkinkan dikembangkan teknik dan metode pengambilan keputusan yang mampu membantu dalam pemecahan persoalan tersebut. Penyelesaian persoalan ditekankan pada aspek komprehensivitas, efektifitas dengan tetap memperhatikan aspek efisiensi metode maupun dalam penerapannya. ac om to k tr .c .c e ar . . k e r- s o ft w lic k lic C FM-UII-AA-FKA-07/R0 w w ac om to bu UNIVERSITAS ISLAM INDONESIA ww ww tr C y N O W ! PD O W ! PD k e r- s o ft w a re F -X C h a n ge F -X C h a n ge Fakultas Jurusan/Program Studi Kode Mata Kuliah Nama Mata Kuliah : TeknologiIndustri : TeknikIndustri : 52213604 : AnalisisKeputusandan Data Mining Pertemuanke Modulke JumlahHalaman Mulaiberlaku :2 :2 : 14 : 2011 Langkah-langkah yang dilalui dalam pengambilan keputusan adalah sebagai berikut : 1. Definisikan permasalahan. Permasalahan harus didefinisikan dengan jelas agar pemecahan tidak menyimpang dari tujuan. 2. Identifikasi kriteria. Adanya kriteria memudahkan penilaian pada setiap alternatif yang ada. 3. Pembobotan kriteria. Setiap kriteria dapat memiliki tingkat kepentingan yang berbeda, oleh karena itu bobot tiap kriteria bisa tidak sama. 4. Identifikasi alternatif. Setiap alternatif yang mungkin ada harus diidentikasikan agar jangan ada yang terlewatkan. 5. Penilaian tiap alternatif. Alternatif dinilai berdasarkan kriteria yang telah ditentukan. Perhitungan secara kuantitatif dilakukan dengan cara mengalikan nilai tiap kriteria dengan pembobotan. 6. Penetapan alternatif yang diambil. Pengertian ANP (Analytcal Network Process) Secara umum banyak orang melakukan pengambilan keputusan hanya didasarkan pada suatu struktur hirarki yang sederhana yaitu goal, kriteria dan alternatif. Namun untuk menyelesaikan permasalahan yang komplek, menurut Saaty dengan menggunakan model AHP saja masih banyak faktor-faktor yang ternyata tidak dapat mendukung dalam pengambilan keputusan. Saaty & Roozan telah mengembangkan ANP. Metode Analytic Network Process (ANP) merupakan teori yang digunakan untuk menurunkan rasio prioritas komposit dari skala rasio individu yang mencerminkan pengukuran relatif dari pengaruh elemen-elemen yang saling berinteraksi berkenaan dengan kriteria kontrol (Saaty, 1999). Metode ANP merupakan salah satu metode yang dikembangkan dari metode sebelumya yaitu metode AHP(Analytic Hierarchy Process) metode ANP dapat memperbaiki kekurangan-kekurangan metode AHP dimana kemampuannya dapat mengakomodasi keterkaitan antar kriteria atau alternatif–alternatif (Saaty,2003). Keterkaitan pada metode ANP ada 2 jenis yaitu keterkaitan dalam satu set elemen (inner dependence) dan keterkaitan antar elemen yang berbeda k lic om to bu y N MATERI PRAKTIKUM ac .c .c tr . . k e r- s o ft w e ar C k lic C FM-UII-AA-FKA-07/R0 w w ac UNIVERSITAS ISLAM INDONESIA ww ww tr om to bu y N O W ! PD O W ! PD k e r- s o ft w a re F -X C h a n ge F -X C h a n ge Fakultas Jurusan/Program Studi Kode Mata Kuliah Nama Mata Kuliah : TeknologiIndustri : TeknikIndustri : 52213604 : AnalisisKeputusandan Data Mining Pertemuanke Modulke JumlahHalaman Mulaiberlaku :2 :2 : 14 : 2011 (outer dependence). Hal ini membutuhkan klasifikasi hirarki yang dimodifikasi menjadi jaringan umpan balik. Hirarki adalah sebuah struktur dengan tujuan pada level atas. Hirarki tergolong menjadi empat kelompok yaitu suparchy, intarchy, sinarchy, Hiernet seperti yang ditunjukkan pada gambar 1: Gambar 1. Klasifikasi Hirarki a. Suparchy merupakan sebuah struktur seperti hirarki dengan pengecualian tidak adatujuan tetapi mempunyai siklus umpan balik pada kedua level paling atas. b. Intarchy merupakan sebuah hirarki dengan umpan siklus balik antara dua level tengah secra berurutan. c. Sinarchy merupakan sebuah hirarki dengan siklus umpan balik pada dua level bawah. d. Hiernet merupakan sebuah jaringan yang tersusun secara vertikal untuk memfasilitasi keanggotaan pada semua level - levelnya. Hal ini mungkin untuk sebuah sistem yang mempunyai komponen yang interaktif, dimana semua komponen memberikan pengaruh kepada semua komponen lain sehingga terbentuk sebuah sistem yang interaktif. Adanya keterkaitan tersebut menyebabkan metode ANP lebih kompleks dibanding metode AHP. ANP merupakan teori matematika yang memungkinkan seseorang untuk memperlakukan dependence dan feedback secara sistematis yang dapat menangkap dan mengkombinasi faktor-faktor tangible dan intangible. ANP merupakan salah satu teori yang baru dalam proses pengambilan keputusan yang memberikan kerangka kerja umum dalam memperlakukan keputusan-keputusan tanpa k lic om to bu y N MATERI PRAKTIKUM ac .c .c tr . . k e r- s o ft w e ar C k lic C FM-UII-AA-FKA-07/R0 w w ac UNIVERSITAS ISLAM INDONESIA ww ww tr om to bu y N O W ! PD O W ! PD k e r- s o ft w a re F -X C h a n ge F -X C h a n ge N y bu MATERI PRAKTIKUM Fakultas Jurusan/Program Studi Kode Mata Kuliah Nama Mata Kuliah : TeknologiIndustri : TeknikIndustri : 52213604 : AnalisisKeputusandan Data Mining Pertemuanke Modulke JumlahHalaman Mulaiberlaku :2 :2 : 14 : 2011 membuat asumsi-asumsi tentang independensi elemen-elemen pada level yang lebih tinggi dari elemen-elemen pada level yang lebih rendah dan tentang independensi elemen-elemen dalam suatu level. Dengan feedback, alternatif-alternatif dapat bergantung atau terikat pada kriteria seperti pada hierarki tetapi dapat juga bergantung atau terikat pada sesama alternatif. Sementara itu, feedback meningkatkan prioritas yang diturunkan dari judgements dan membuat prediksi menjadi lebih akurat. Oleh karena itu, hasil dari ANP diperkirakan akan lebih stabil. Gambar 2. Perbedaan Struktur Hierarki dan Struktur Jaringan Dari jaringan feedback pada gambar 2 dapat dilihat bahwa simpul atau elemen utama dan simpul-simpul yang akan dibandingkan dapat berada pada cluster - cluster yang berbeda. Sebagai contoh, ada hubungan langsung dari simpul utama C4 ke cluster lain (C2 dan C3), yang merupakan outer dependence. Sementara itu, ada simpul utama dan simpul-simpul yang akan dibandingkan berada pada cluster yang sama, sehingga cluster ini terhubung dengan dirinya sendiri dan membentuk hubungan loop. Hal ini disebut inner dependence. Yang diinginkan dalam ANP adalah mengetahui keseluruhan pengaruh dari semua elemen. Oleh karena itu, semua kriteria harus diatur dan dibuat prioritas dalam suatu kerangka kerja hierarki kontrol atau jaringan, melakukan perbandingan dan sintesis untuk memperoleh urutan prioritas dari sekumpulan kriteria ini. Kemudian kita turunkan pengaruh dari elemen dalam sistem feedback dengan memperhatikan masing-masing kriteria. Akhirnya, hasil dari pengaruh ini dibobot dengan tingkat kepentingan dari kriteria, dan ditambahkan untuk memperoleh pengaruh keseluruhan dari masingmasing elemen. ac om to k tr .c .c e ar . . k e r- s o ft w lic k lic C FM-UII-AA-FKA-07/R0 w w ac om to bu UNIVERSITAS ISLAM INDONESIA ww ww tr C y N O W ! PD O W ! PD k e r- s o ft w a re F -X C h a n ge F -X C h a n ge Fakultas Jurusan/Program Studi Kode Mata Kuliah Nama Mata Kuliah : TeknologiIndustri : TeknikIndustri : 52213604 : AnalisisKeputusandan Data Mining Pertemuanke Modulke JumlahHalaman Mulaiberlaku :2 :2 : 14 : 2011 ANP merupakan gabungan dari dua bagian. Bagian pertama terdiri dari hierarki kontrol atau jaringan dari kriteria dan subkriteria yang mengontrol interaksi. Bagian kedua adalah jaringan pengaruh-pengaruh diantara elemen dan cluster. AHP dan ANP sama-sama menggunakan skala rasio. Prioritas-prioritas dalam skala rasio merupakan angka fundamental yang memungkinkan untuk dilakukannya perhitungan operasi aritmatika dasar seperti penambahan dan pengurangan dalam skala yang sama, perkalian dan pembagian dari skala yang berbeda, dan mengkombinasikan keduanya dengan pembobotan yang sesuai dan menambahkan skala yang berbeda untuk memperoleh skala satu dimensi. Perlu diingat bahwa skala rasio juga merupakan skala absolut. Kedua skala tersebut diperoleh dari pairwise comparison (perbandingan berpasangan) dengan menggunakan judgements atau rasio dominasi pasangan dengan menggunakan pengukuran aktual. Dalam hal penggunaan judgements, dalam AHP seseorang bertanya: “Mana yang lebih disukai atau lebih penting?”, sementara dalam ANP seseorang bertanya: “Mana yang mempunyai pengaruh lebih besar?” Pertanyaan terakhir jelas memerlukan observasi faktual dan pengetahuan untuk menghasilkan jawaban-jawaban yang valid, yang membuat pertanyaan kedua lebih obyektif daripada pertanyaan pertama. Model Keputusan ANP Metode ANP merupakan pengembangan dari metode AHP (Saaty,1996). ANP adalah suatu teori pengukuran biasanya berlaku untuk dominasi pengaruh antar beberapa stakeholders atau alternatif berkenaan dengan suatu atribut atau suatu kriteria-kriteria. Struktur jaringan ANP digambarkan dengan panah dua jalur (busur lingkaran) yang menghadirkan saling ketergantungan antar pengelompokan atau jika didalam tingkatan faktor yang sama akan terbentuk loop. Arah busur lingkaran menandakan ketergantungan. Busur lingkaran berasal dari pengendalian atribut yang menghubungkan dengan atribut lain yang dapat saling mempengaruhi. Kepentingan relatif pada elemen/unsur diukur oleh skala rasio. ANP mampu menangani saling ketergantungan antar unsurunsur dengan memperoleh bobot gabungan melalui pengembangan dari supermatriks. Saaty (2003) menjelaskan konsep supermatriks sebagai paralel pada proses Rantai Markov. Gambar 3 merupakan bentuk saling ketergantungan dari berbagai komponen dalam struktur ANP. k lic om to bu y N MATERI PRAKTIKUM ac .c .c tr . . k e r- s o ft w e ar C k lic C FM-UII-AA-FKA-07/R0 w w ac UNIVERSITAS ISLAM INDONESIA ww ww tr om to bu y N O W ! PD O W ! PD k e r- s o ft w a re F -X C h a n ge F -X C h a n ge Fakultas Jurusan/Program Studi Kode Mata Kuliah Nama Mata Kuliah : TeknologiIndustri : TeknikIndustri : 52213604 : AnalisisKeputusandan Data Mining Pertemuanke Modulke JumlahHalaman Mulaiberlaku :2 :2 : 14 : 2011 Gambar 3.Hubungan saling ketergantungan Dalam suatu sistem dengan N komponen yang terdiri dari elemen-elemen yang akan saling memberikan pengaruh, dapat didenotasikan bahwa komponen C sejumlah N disimbolkan dengan Ch dimana h = 1, 2,3, ...N. Elemen yang dimiliki oleh komponen akan disimbolkan dengan eh1,eh2,.....ehn. Nilai dari supermatriks diberikan sebagai hasil penilaian dari skala prioritas yang diturunkan dari perbandingan berpasangan seperti pada AHP. Hubungan antara elemen direpresentasikan dengan vector prioritas yang diturunkan dari perbandingan berpasangan didalam AHP. Matriks disusun untuk menggambarkan aliran kepentingan antara komponen baik secara inner dependence maupun outer dependence. Secara umun hubungan kepentingan antar elemen didalam jaringan dengan elemen lain didalam jaringan dapat direpresentasikan mengikuti supermatriks, sebagai berikut : Gambar 4. Supermatriks Dari Jaringan k lic om to bu y N MATERI PRAKTIKUM ac .c .c tr . . k e r- s o ft w e ar C k lic C FM-UII-AA-FKA-07/R0 w w ac UNIVERSITAS ISLAM INDONESIA ww ww tr om to bu y N O W ! PD O W ! PD k e r- s o ft w a re F -X C h a n ge F -X C h a n ge Fakultas Jurusan/Program Studi Kode Mata Kuliah Nama Mata Kuliah : TeknologiIndustri : TeknikIndustri : 52213604 : AnalisisKeputusandan Data Mining Pertemuanke Modulke JumlahHalaman Mulaiberlaku :2 :2 : 14 : 2011 Bentuk Wij didalam supermatriks disebut sebagai blok supermatriks dan diikuti matriks sebagai berikut : Gambar 5. Komponen Supermatriks dari Jaringan Masing-masing kolom dalam Wij adalah eigen vector yang menunjukkan kepentingan dari elemen pada komponen ke-i dari jaringan pada sebuah elemen pada komponen ke-j. Beberapa masukan yang menunjukkan hubungan nol pada elemen mengartikan tidak terdapat kepentingan pada elemen tersebut. Jika hal tersebut terjadi maka elemen tersebut tidak digunakan dalam perbandingan berpasangan untuk menurunkan eigen vector. Jadi yang digunakan adalah elemen yang menghasilkan kepentingan bukan nol. Konsep BCOR (Benefit, Cost, opportunity, dan Risk) dalam ANP Dalam aplikasi ANP dan penjabaran dalam software Superdecisions yang dirancang khusus untuk ANP, permasalahan terdiri atas 3 bagian, yaitu: 1. Simple Network, yaitu dimana seluruh kriteria dan subkriteria berada dalam satu jendela. Gambar 6. Contoh Simple Network 2. Two-level Network, dimana terdapat jaringan atas dengan kriteria kontrol Benefit, Cost, opportunity, dan Risk (BCOR) yang setiap kriteria kontrol memiliki sub jaringan dan alternatif. k lic om to bu y N MATERI PRAKTIKUM ac .c .c tr . . k e r- s o ft w e ar C k lic C FM-UII-AA-FKA-07/R0 w w ac UNIVERSITAS ISLAM INDONESIA ww ww tr om to bu y N O W ! PD O W ! PD k e r- s o ft w a re F -X C h a n ge F -X C h a n ge Fakultas Jurusan/Program Studi Kode Mata Kuliah Nama Mata Kuliah : TeknologiIndustri : TeknikIndustri : 52213604 : AnalisisKeputusandan Data Mining Pertemuanke Modulke JumlahHalaman Mulaiberlaku :2 :2 : 14 : 2011 Gambar 7. Contoh Two-level Network 3. Complex Network, dimana terdapat jaringan utama dengan kriteria kontrol Benefit, Cost, opportunity, dan Risk (BCOR), yang masing - masing memiliki sub jaringan, dan dalam sub jaringan tersebut terdapat sub jaringan lagi. Gambar 8. Contoh Complex Network Prinsip Dasar Metode ANP Prinsip dasar kerja ANP adalah struktur masalah yang berbentuk jaringan, dengan siklus hubungan dari cluster-clusternya dimana model jaringan mampu mengakomodasi ketergantungan fungsional timbal balik, yaitu hubungan saling tergantung antara komponen (level) atas dan bawah. Selain itu, terdapat penentuan bobot elemen terhadap komponen acuan, dimana penentuan bobot dilakukan dengan menggunakan matrik perbandingan berpasangan (pairwise comparison). Menurut Saaty (2003), untuk berbagai persoalan, skala 1 sampai dengan 9 adalah skala terbaik dalam mengekspresikan pendapat. Nilai dan definisi pendapat kualitatif dari skala perbandingan Saaty dapat dilihat pada tabel 2.2. k lic om to bu y N MATERI PRAKTIKUM ac .c .c tr . . k e r- s o ft w e ar C k lic C FM-UII-AA-FKA-07/R0 w w ac UNIVERSITAS ISLAM INDONESIA ww ww tr om to bu y N O W ! PD O W ! PD k e r- s o ft w a re F -X C h a n ge F -X C h a n ge Fakultas Jurusan/Program Studi Kode Mata Kuliah Nama Mata Kuliah : TeknologiIndustri : TeknikIndustri : 52213604 : AnalisisKeputusandan Data Mining Pertemuanke Modulke JumlahHalaman Mulaiberlaku :2 :2 : 14 : 2011 Tabel 1.Pemberian Nilai Pada Perbandingan Berpasangan Tingkat Definisi Kepentingan 1 Penjelasan Kedua faktor mempunyai pengaruh Sama besar pengaruhnya yang sama Penilaian salah satu faktor sedikit 3 Sedikit lebih besar Pengaruhnya lebih berpihak dibandingkan pasangannya 5 7 9 Salah satu faktor lebih besar Penilaian salah satu faktor lebih kuat pengaruhnya dibandingkan faktor pasangannya Salah satu faktor sangat lebih besar pengaruhnya faktor lebih kuat dan dominasinya terlihat dibandingkan pasangannya Salah satu faktor mutlak sangat lebih besar pengaruhnya Suatu Sangat jelas bahwa suatu faktor amat sangat penting dibandingkan pasangannya Nilai tengah sebagai kompromi di Diberikan bila terdapat keraguan 2,4,6,8 antara dua penilaian berdekatan yang diantara dua penilaian yang berdekatan Kebalikan Jika untuk aktivitas i mendapat satu angka dibandingkan dengan aktivitas aij =1/ aij j, maka j mempunyai nilai kebalikannya dibandingkan dengan i Nilai aij adalah nilai perbandingan elemen Ai terhadap elemen Aj yang menyatakan hubungan: a. seberapa jauh tingkat kepentingan Ai bila dibandingkan dengan Aj, atau b. seberapa banyak kontribusi Ai terhadap kriteria pembanding dibandingkan dengan Aj, atau c. seberapa banyak sifat kriteria pembanding terdapat pada Ai dibandingkan Aj, atau seberapa jauh dominasi Ai dibandingkan Aj Bila diketahui nilai aij maka secara teoritis nilai aji = 1/aij. Sedangkan nilai aij dalam situasi i = j adalah mutlak. Nilai numerik yang dikenakan untuk perbandingan diperoleh dari skala perbandingan yang dibuat oleh Saaty. k lic om to bu y N MATERI PRAKTIKUM ac .c .c tr . . k e r- s o ft w e ar C k lic C FM-UII-AA-FKA-07/R0 w w ac UNIVERSITAS ISLAM INDONESIA ww ww tr om to bu y N O W ! PD O W ! PD k e r- s o ft w a re F -X C h a n ge F -X C h a n ge N y bu MATERI PRAKTIKUM Fakultas Jurusan/Program Studi Kode Mata Kuliah Nama Mata Kuliah : TeknologiIndustri : TeknikIndustri : 52213604 : AnalisisKeputusandan Data Mining Pertemuanke Modulke JumlahHalaman Mulaiberlaku :2 :2 : 14 : 2011 Untuk mendapatkan urutan prioritas antar elemen dari suatu komponen atau level maka nilai dari matriks perbandingan tersebut dicari nilai eigen vektornya. Untuk selanjutnya nilai eigen vector di masukkan ke dalam supermatriks. Jika dari supermatriks ini dikalikan matrik itu sendiri hingga diperoleh bobot yang stabil maka akan diperoleh matrix steady state, dimana nilai dari masing-masing elemen tersebut menunjukkan bobot prioritas yang telah mengakomodasi semua interaksi antar komponen (level). Tahapan ANP Tahapan dalam pengambilan keputusan dengan ANP adalah sebagai berikut : 1. Menyusun Struktur Masalah dan Mengembangkan Model Keterkaitan. Melakukan penentuan sasaran atau tujuan yang ingin dicapai, menentukan kriteria yang mengacu pada kriteria kontrol, dan menentukan alternatif pilihan. Jika terdapat elemen-elemen yang memiliki kualitas setara maka dikelompokkan ke dalam suatu komponen (level atau cluster) yang sama. 2. Membentuk Matrik Perbandingan Berpasangan. Dalam melakukan pembobotan, dapat digunakan beberapa metode, antara lain dengan menentukan bobot secara sembarang, membuat skala interval yang menentukan urutan setiap kriteria, atau dengan menggunakan perbandingan berpasangan sehingga tingkat kepentingan suatu kriteria relatif terhadap kriteria lain dapat dinyatakan dengan jelas. Sekelompok pakar mengembangkan skala yang dapat menggambarkan suatu proses keputusan yang menghasilkan keputusan yang paling baik. Skala dalam ANP menggunakan Saaty skala seperti pada tabel 3. ANP mengasumsikan bahwa pengambil keputusan harus membuat perbandingan kepentingan antara seluruh elemen untuk setiap level dalam bentuk berpasangan. Perbandingan tersebut ditransformasikan ke dalam bentuk matriks. Perbandingan dapat dilakukan secara langsung (dengan diskusi) maupun melalui kuisioner. ac om to k tr .c .c e ar . . k e r- s o ft w lic k lic C FM-UII-AA-FKA-07/R0 w w ac om to bu UNIVERSITAS ISLAM INDONESIA ww ww tr C y N O W ! PD O W ! PD k e r- s o ft w a re F -X C h a n ge F -X C h a n ge Fakultas Jurusan/Program Studi Kode Mata Kuliah Nama Mata Kuliah : TeknologiIndustri : TeknikIndustri : 52213604 : AnalisisKeputusandan Data Mining Pertemuanke Modulke JumlahHalaman Mulaiberlaku :2 :2 : 14 : 2011 Tabel 2. Matriks Perbandingan Berpasangan c A1 A2 ooo An A1 A11 A12 ooo A1n A2 A21 A22 ooo A2n ooo o o ooo A3n An An3 An2 ooo Ann Matriks di atas merupakan matriks perbandingan berpasangan yang dihasilkan dari perbandingan antar elemen terhadap kriteria tertentu, dalam hal ini adalah kriteria c. 3. Menghitung Bobot Elemen Jika perbandingan berpasangan telah lengkap, vector prioritas w yang disebut sebagai eVector dihitung dengan rumus: A.w = λmax.W (1) Dengan A adalah matrik perbandingan berpasangan dan λmax adalah eigenvalue terbesar dari A. eVector atau eigenvector merupakan bobot prioritas suatu matrik yang kemudian digunakan dalam penyusunan supermatrik. 4. Menghitung Rasio Konsistensi Tujuan dari menghitung rasio konsistensi adalah untuk melihat apakah nilai rasio konsistensi sampai kadar tertentu, yaitu 10% atau kurang masih diperbolehkan. Dalam kondisi nyata terdapat kemungkinan terjadinya beberapa penyimpangan dari perbandingan berpasangan yang disebabkan oleh ketidakkonsistenan dalam preferensi seorang. Rasio konsistensi (Consistency Ratio/CR) memberikan suatu penilaian numerik mengenai bagaimana ketidakkonsistenan suatu evaluasi. Penyimpangan konsistensi dinyatakan dengan indeks konsistensi (Consistency Index/CI), dengan persamaan : CI = lmaks - n n -1 (2) k lic om to bu y N MATERI PRAKTIKUM ac .c .c tr . . k e r- s o ft w e ar C k lic C FM-UII-AA-FKA-07/R0 w w ac UNIVERSITAS ISLAM INDONESIA ww ww tr om to bu y N O W ! PD O W ! PD k e r- s o ft w a re F -X C h a n ge F -X C h a n ge N y bu MATERI PRAKTIKUM Fakultas Jurusan/Program Studi Kode Mata Kuliah Nama Mata Kuliah : TeknologiIndustri : TeknikIndustri : 52213604 : AnalisisKeputusandan Data Mining Pertemuanke Modulke JumlahHalaman Mulaiberlaku :2 :2 : 14 : 2011 Dimana : lmaks = eigen value maksimum dari matriks perbandingan berpasangan n x n n = ukuran matriks/jumlah item yang dibandingkan Untuk mengetahui apakah CI dengan besaran tertentu cukup baik atau tidak, perlu diketahui rasio yang dianggap baik, yaitu apabila CR £ 0,1. Bila lebih dari 0,1, maka perlu dilakukan penilaian ulang. Rasio konsistensi diperoleh dengan membandingkan antara indeks konsistensi (CI) dengan satu nilai yang sesuai dari bilangan indeks konsistensi acak (Random Consistensy Index/RI), dengan persamaan : CR = CI RI (3) Nilai RI atau indeks konsistensi acak berbagai ukuran matrik (n) yang dikeluarkan oleh Oarkride Laboratory dapat dilihat pada tabel 4. Tabel 3. Indeks Konsistensi Acak N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 RI 0 0 0.52 0.89 1.11 1.25 1.35 1.40 1.45 1.49 1.52 1.54 1.56 1.58 1.59 Supermatriks Perbandingan tingkat kepentingan dalam setiap elemen maupun cluster direpresentasikan dalam sebuah matrik dengan memberikan skala rasio dengan perbandingan berpasangan. Masingmasing skala rasio menunjukan perbandingan kepentingan antara elemen didalam sebuah komponen dengan elemen diluar komponen(outer dependence) atau juga didalam elemen terdapat elemen itu sendiri yang berada dikomponen dalam (inner dependence). Tidak setiap elemen memberikan pengaruh terhadap elemen pada komponen lain. Elemen yang tidak memberikan pengaruh pada elemen lain akan memberikan nilai nol. Matriks hasil perbandingan berpasangan direpresentasikan kedalam bentuk vertikal dan horizontal dan berbentuk matriks yang bersifat stochastic yang disebut sebagai supermatriks. Supermatriks terdiri dari 3 (tiga) tahap. Berikut ini tahap-tahap dan penjelasannya: a. Tahap supermatriks tanpa bobot (unweighted supermatrix). ac om to k tr .c .c e ar . . k e r- s o ft w lic k lic C FM-UII-AA-FKA-07/R0 w w ac om to bu UNIVERSITAS ISLAM INDONESIA ww ww tr C y N O W ! PD O W ! PD k e r- s o ft w a re F -X C h a n ge F -X C h a n ge Fakultas Jurusan/Program Studi Kode Mata Kuliah Nama Mata Kuliah : TeknologiIndustri : TeknikIndustri : 52213604 : AnalisisKeputusandan Data Mining Pertemuanke Modulke JumlahHalaman Mulaiberlaku :2 :2 : 14 : 2011 Merupakan supermatriks yang asli dari eigenvector-eigenvector kolom diperoleh dari matriks perbandingan pasangan dari elemen- elemen. b. Tahap supermatriks terbobot (weighted supermatrix). Merupakan supermatriks yang diperoleh dengan mengalikan semua elemen di dalam komponen dari unweighted supermatrix dengan bobot cluster yang sesuai sehingga setiap kolom pada weighted supermatrix memiliki jumlah 1. Jika kolom pada unweighted supermatrix sudah memiliki jumlah 1, maka tidak perlu membobot komponen tersebut pada weighted supermatrix, dimana setiap blok dari eigenvector kolom dari suatu cluster dibobot dengan prioritas dari pengaruh dari cluster tersebut, yang membuat weighted supermatrix kolom stokastik. c. Tahap supermatriks batas (limiting supermatrix). Merupakan supermatriks yang diperoleh dengan menaikan bobot dari weighted supermatrix. Menaikan bobot tersebut dengan cara mengalikan supermatriks itu dengan dirinya sendiri sampai beberapa kali. Ketika bobot pada setiap kolom memiliki nilai yang sama, maka limit matrix telah stabil dan proses perkalian matriks dihentikan. Prioritas, Sintesis dan Sensitivitas Prioritas merupakan bobot dari semua elemen dan komponen. Didalam prioritas terdapat bobot limiting dan bobot normalized by cluster. Bobot limiting merupakan bobot yang didapat dari limit supermatrix sedangkan bobot normalized by cluster merupakan pembagian antara bobot limiting elemen dengan jumlah bobot limiting elemen - elemen pada satu komponen. Sintesis merupakan bobot dari alternatif. Didalam sintesis terdapat bobot berupa ideals, raw dan normals. Bobot normals merupakan hasil bobot alternatif seperti terdapat pada bobot normalized by cluster prioritas. Bobot raw merupakan hasil bobot alternatif seperti terdapat pada bobot limiting prioritas atau limit matrix. Bobot ideals merupakan bobot yang diperoleh dari pembagian antara bobot normals pada setiap alternatif dengan bobot normals terbesar diantara alternatif - alternatif tersebut. Alternatif terbaik ditentukan oleh nilai akhir (final score) untuk setiap pilihan alternatif dari hasil supermatriks akhir (final supermatrix) yang diperoleh. Alternatif terbaik adalah alternatif dengan nilai akhir paling besar. Sensitivitas diperlukan untuk menetapkan independent variable atau suatu grafik kepekaan. Ada satu garis untuk masing-masing alternatif di dalam jendela kepekaan. Di dalam k lic om to bu y N MATERI PRAKTIKUM ac .c .c tr . . k e r- s o ft w e ar C k lic C FM-UII-AA-FKA-07/R0 w w ac UNIVERSITAS ISLAM INDONESIA ww ww tr om to bu y N O W ! PD O W ! PD k e r- s o ft w a re F -X C h a n ge F -X C h a n ge N y bu MATERI PRAKTIKUM Fakultas Jurusan/Program Studi Kode Mata Kuliah Nama Mata Kuliah : TeknologiIndustri : TeknikIndustri : 52213604 : AnalisisKeputusandan Data Mining Pertemuanke Modulke JumlahHalaman Mulaiberlaku :2 :2 : 14 : 2011 software masing-masing alternatif ditunjukan dengan warna yang berbeda sehingga mudah untuk dilihat. ac om to k tr .c .c e ar . . k e r- s o ft w lic k lic C FM-UII-AA-FKA-07/R0 w w ac om to bu UNIVERSITAS ISLAM INDONESIA ww ww tr C y N O W ! PD O W ! PD k e r- s o ft w a re F -X C h a n ge F -X C h a n ge Fakultas Jurusan/Program Studi Kode Mata Kuliah Nama Mata Kuliah : TeknologiIndustri : TeknikIndustri : 52213604 : AnalisisKeputusandan Data Mining Pertemuanke Modulke JumlahHalaman Mulaiberlaku :2 :2 : 14 : 2011 Contoh Kasus ANP Kasus yang akan dikerjakan adalah pemilihan asisten. Alternatif yang akan dipilih ada 3 orang dan criteria pemilihan terdiri dari 2 kluster Kompetensi dan Soft skill dimana masing-masing kluster memiliki beberapa atribut sendiri. Permasalahan pengambilan keputusan digambarkan dalam gambar berikut: § § § Cluster § § § Yasser Inung Adnan Cluster IPK Makalah TesTulis § § Wawancara Presentasi Melakukan perbandingan berpasangan dalam kluster kriteria: Tabel 4. Tabel Perbandingan Berpasangan Antar Cluster Kriteria KOMPETENSI SOFT SKILL KOMPETENSI 1 3 SOFT SKILL 1/3 1 Melakukan perbandingan berpasangan ALTERNATIF dalam KOMPETENSI: Tabel 5. Perbandingan Berpasangan Alternatif Dalam Kompetensi KOMPETENSI YASSER ADNAN YASSER 1 7 ADNAN 1/7 1 k lic om to bu y N MATERI PRAKTIKUM ac .c .c tr . . k e r- s o ft w e ar C k lic C FM-UII-AA-FKA-07/R0 w w ac UNIVERSITAS ISLAM INDONESIA ww ww tr om to bu y N O W ! PD O W ! PD k e r- s o ft w a re F -X C h a n ge F -X C h a n ge N y bu MATERI PRAKTIKUM Fakultas Jurusan/Program Studi Kode Mata Kuliah Nama Mata Kuliah : TeknologiIndustri : TeknikIndustri : 52213604 : AnalisisKeputusandan Data Mining Pertemuanke Modulke JumlahHalaman Mulaiberlaku Melakukan perbandinganberpasangan ALTERNATIF dalam SOFT SKILL: Tabel 6. Melakukan Perbandingan Berpasangan Alternatif Dalam Soft Skill KOMPETENSI ADNAN YASSER ADNAN 1 3 YASSER 1/3 1 Tahap 1: Menyusun Struktur Masalah dan Mengembangkan Model Keterkaitan · Membangun cluster Objektive dan Alternative Klik DesignàClusteràNew Klik DesignàNodeàNew Gambar 10. Model Struktur Masalah · Step 2: Membangun konektifitas Klik DesignàNode connections from :2 :2 : 14 : 2011 ac om to k tr .c .c e ar . . k e r- s o ft w lic k lic C FM-UII-AA-FKA-07/R0 w w ac om to bu UNIVERSITAS ISLAM INDONESIA ww ww tr C y N O W ! PD O W ! PD k e r- s o ft w a re F -X C h a n ge F -X C h a n ge Fakultas Jurusan/Program Studi Kode Mata Kuliah Nama Mata Kuliah : TeknologiIndustri : TeknikIndustri : 52213604 : AnalisisKeputusandan Data Mining Pertemuanke Modulke JumlahHalaman Mulaiberlaku Gambar 11. Bentuk Node Connections Tahap 2: Melakukan perbandingan kluster dan node Klik à Assess/compare à cluster comparision Klik à Assess/compare à node comparision Gambar 12. Jendela Perbandingan Berpasangan :2 :2 : 14 : 2011 k lic om to bu y N MATERI PRAKTIKUM ac .c .c tr . . k e r- s o ft w e ar C k lic C FM-UII-AA-FKA-07/R0 w w ac UNIVERSITAS ISLAM INDONESIA ww ww tr om to bu y N O W ! PD O W ! PD k e r- s o ft w a re F -X C h a n ge F -X C h a n ge Fakultas Jurusan/Program Studi Kode Mata Kuliah Nama Mata Kuliah : TeknologiIndustri : TeknikIndustri : 52213604 : AnalisisKeputusandan Data Mining Pertemuanke Modulke JumlahHalaman Mulaiberlaku Gambar 13. Jendela Perbandingan Berpasangan Antara Node dan Cluster Gambar 14. Jendela Perbandingan Berpasangan Antara Node dan Cluster Tahap 3: Perhitungan Unweight, Weight, dan Limiting Supermatrix Klik àComputation Gambar 15. Weighted Supermatrix :2 :2 : 14 : 2011 k lic om to bu y N MATERI PRAKTIKUM ac .c .c tr . . k e r- s o ft w e ar C k lic C FM-UII-AA-FKA-07/R0 w w ac UNIVERSITAS ISLAM INDONESIA ww ww tr om to bu y N O W ! PD O W ! PD k e r- s o ft w a re F -X C h a n ge F -X C h a n ge Fakultas Jurusan/Program Studi Kode Mata Kuliah Nama Mata Kuliah : TeknologiIndustri : TeknikIndustri : 52213604 : AnalisisKeputusandan Data Mining Gambar 16. Unweighted Supermatrix Gambar 17. Limiting Supermatrix Pertemuanke Modulke JumlahHalaman Mulaiberlaku :2 :2 : 14 : 2011 k lic om to bu y N MATERI PRAKTIKUM ac .c .c tr . . k e r- s o ft w e ar C k lic C FM-UII-AA-FKA-07/R0 w w ac UNIVERSITAS ISLAM INDONESIA ww ww tr om to bu y N O W ! PD O W ! PD k e r- s o ft w a re F -X C h a n ge F -X C h a n ge Fakultas Jurusan/Program Studi Kode Mata Kuliah Nama Mata Kuliah : TeknologiIndustri : TeknikIndustri : 52213604 : AnalisisKeputusandan Data Mining Pertemuanke Modulke JumlahHalaman Mulaiberlaku :2 :2 : 14 : 2011 Tahap 4: Solusi Klik à Computation à Synthesize Gambar 18. Sintesis dari Supermatrix Kesimpulan: Yasser adalah alternatif terbaik yang layak untuk dipilih karena dari perhitungan sintesis supermatrix, Yasser mempunyai nilai ideal sebesar 1. k lic om to bu y N MATERI PRAKTIKUM ac .c .c tr . . k e r- s o ft w e ar C k lic C FM-UII-AA-FKA-07/R0 w w ac UNIVERSITAS ISLAM INDONESIA ww ww tr om to bu y N O W ! PD O W ! PD k e r- s o ft w a re