A partial differential equation (PDE) is an equation that involves an unknown function and its partial derivatives. Example : 2 u( x, t ) u( x, t ) 2 t x PDE involves two or more independent variables (in the example x and t are independent variables) 2 2 u ( x, t ) u xx x 2 2 u ( x, t ) u xt x t Order of the PDE order of the highest order derivative. 3 A PDE is linear if it is linear in the unknown function and its derivatives Example of linear PDE : 2 u xx 1 u xt 3 utt 4 u x cos(2t ) 0 2 u xx 3 ut 4 u x 0 Examples of Nonlinear PDE 2 u xx u xt 2 3 utt 0 u xx 2 u xt 3 ut 0 2 u xx 2 u xt ut 3 ut 0 4 Three main ways to represent the solution T ( x1 , t1 ) T=5.2 t1 T=3.5 x1 Different curves are used for different values of one of the independent variable Three dimensional plot of the function T(x,t) The axis represent the independent variables. The value of the function is displayed at grid points 5 Different curve is used for each value of t ice ice x Thin metal rod insulated everywhere except at the edges. At t =0 the rod is placed in ice 2 T ( x, t ) T ( x, t ) 0 2 x t T (0, t ) T (1, t ) 0 T ( x,0) sin( x) Temperature Temperature at different x at t=0 Position x Temperature at different x at t=h 6 PDEs are used to model many systems in many different fields of science and engineering. Important Examples: Laplace Equation Heat Equation Wave Equation 7 2u ( x , y , z ) 2u ( x , y , z ) 2u ( x , y , z ) 0 2 2 2 x y z Used to describe the steady state distribution of heat in a body. Also used to describe the steady state distribution of electrical charge in a body. 8 2u 2u 2u u( x, y , z, t ) 2 2 2 t y z x The function u(x,y,z,t) is used to represent the temperature at time t in a physical body at a point with coordinates (x,y,z) is the thermal diffusivity. It is sufficient to consider the case = 1. 9 T ( x, t ) 2 T ( x, t ) t x 2 x T(x,t) is used to represent the temperature at time t at the point x of the thin rod. 10 2 2 2 2u ( x , y , z , t ) u u u 2 c 2 2 2 2 t y z x The function u(x,y,z,t) is used to represent the displacement at time t of a particle whose position at rest is (x,y,z) . The constant c represents the propagation speed of the wave. 11 CLASSIFICATION OF PDES Linear Second order PDEs are important sets of equations that are used to model many systems in many different fields of science and engineering. Classification is important because: Each category relates to specific engineering problems. Different approaches are used to solve these categories. 12 A second order linear PDE (2 - independent variables) A u xx B u xy C u yy D 0, A, B, and C are functions of x and y D is a function of x, y , u, u x , and u y is classified based on (B 2 4 AC) as follows : B 2 4 AC 0 Elliptic B 2 4 AC 0 Parabolic B 2 4 AC 0 Hyperbolic 13 Laplace Equation 2u ( x , y ) 2 u ( x , y ) 0 2 2 x y A 1, B 0, C 1 B 2 4 AC 0 Laplace Equation is Elliptic One possible solution : u( x, y ) e x sin y u x e x sin y , u xx e x sin y u y e x cos y , u yy e x sin y u xx u yy 0 14 2u ( x , t ) u ( x , t ) Heat Equation 0 2 t x A , B 0, C 0 B 2 4 AC 0 Heat Equation is Parabolic ______________________________________ 2u ( x , t ) 2u ( x , t ) Wave Equation c 0 2 2 x t A c 2 0, B 0, C 1 B 2 4 AC 0 Wave Equation is Hyperbolic 2 15 BOUNDARY CONDITIONS FOR PDES To uniquely specify a solution to the PDE, a set of boundary conditions are needed. Both regular and irregular boundaries are possible. t 2u ( x, t ) u( x, t ) Heat Equation : 0 2 t x u(0, t ) 0 u(1, t ) 0 u( x,0) sin( x ) region of interest 1 x 16 THE SOLUTION METHODS FOR PDES Analytic solutions are possible for simple and special (idealized) cases only. To make use of the nature of the equations, different methods are used to solve different classes of PDEs. The methods discussed here are based on the finite difference technique. 17 PARABOLIC EQUATIONS A second order linear PDE (2 - independent variables x , y ) A u xx B u xy C u yy D 0, A, B, and C are functions of x and y D is a function of x, y, u, u x , and u y is parabolic if B 2 4 AC 0 19 Heat Equation : T ( x, t ) 2 T ( x, t ) t x 2 T (0, t ) T (1, t ) 0 T ( x,0) sin( x ) ice ice x * Parabolic problem ( B 2 4 AC 0) * Boundary conditions are needed to uniquely specify a solution. 20 Divide the interval x into sub-intervals, each of width h Divide the interval t into sub-intervals, each of width k A grid of points is used for the finite difference solution Ti,j represents T(xi, tj) t Replace the derivates by finite-difference formulas x 21 Replace the derivatives by finite difference formulas 2T Central Difference Formula for 2 : x 2T ( x, t ) Ti 1, j 2Ti , j Ti 1, j Ti 1, j 2Ti , j Ti 1, j 2 2 x ( x ) h2 Forward Difference Formula for T : t T ( x, t ) Ti , j 1 Ti , j Ti , j 1 Ti , j t t k 22 • Two solutions to the Parabolic Equation (Heat Equation) will be presented: 1. Explicit Method: Simple, Stability Problems. 2. Crank-Nicolson Method: Involves the solution of a Tridiagonal system of equations, Stable. 23 T ( x, t ) 2T ( x, t ) t x 2 T ( x, t k ) T ( x, t ) T ( x h, t ) 2T ( x, t ) T ( x h, t ) k h2 k T ( x, t k ) T ( x, t ) 2 T ( x h, t ) 2T ( x, t ) T ( x h, t ) h k Define 2 h T ( x, t k ) T ( x h, t ) (1 2 ) T ( x, t ) T ( x h, t ) 24 T ( x, t k ) T ( x h, t ) (1 2 ) T ( x, t ) T ( x h, t ) means T(x,t+k) T(x-h,t) T(x,t) T(x+h,t) 25 T ( x, t k ) can be computed directly using : T ( x, t k ) T ( x h, t ) (1 2 ) T ( x, t ) T ( x h, t ) Can be unstable errors are magnified 1 h2 To guarantee stability, (1 2 ) 0 k 2 2 This means that k is much smaller than h This makes it slow. 26 Convergence The solutions converge means that the solution obtained using the finite difference method approaches the true solution as the steps approach zero. Stability: x and t An algorithm is stable if the errors at each stage of the computation are not magnified as the computation progresses. 27 Solve the PDE : 2u(x,t) u(x,t) 0 2 t x u(0, t ) u(1, t ) 0 u( x,0) sin( x ) ice ice x Use h 0.25, k 0.25 to find u( x, t ) for x [0,1], t [0,1] k 2 4 h 28 2 u( x, t ) u( x, t ) 0 2 t x u ( x h , t ) 2u ( x , t ) u ( x h , t ) u ( x , t k ) u ( x , t ) 0 2 k h 16u ( x h, t ) 2u ( x, t ) u ( x h, t ) 4u ( x, t k ) u ( x, t ) 0 u ( x , t k ) 4 u ( x h, t ) 7 u ( x , t ) 4 u ( x h, t ) 29 u ( x , t k ) 4 u ( x h, t ) 7 u ( x , t ) 4 u ( x h , t ) t=1.0 0 0 t=0.75 0 0 t=0.5 0 0 t=0.25 0 0 t=0 0 0 Sin(0.25π) Sin(0. 5π) Sin(0.75π) x=0.0 x=0.25 x=0.5 x=0.75 x=1.0 30 u(0.25,0.25) 4 u(0,0) 7 u(0.25,0) 4 u(0.5,0) 0 7 sin( / 4) 4 sin( / 2) 0.9497 t=1.0 0 0 t=0.75 0 0 t=0.5 0 0 t=0.25 0 0 t=0 0 0 Sin(0.25π) Sin(0. 5π) Sin(0.75π) x=0.0 x=0.25 x=0.5 x=0.75 x=1.0 31 u(0.5,0.25) 4 u (0.25,0) 7 u(0.5,0) 4 u (0.75,0) 4 sin( / 4) 7 sin( / 2) 4 sin(3 / 4) 0.1716 t=1.0 0 0 t=0.75 0 0 t=0.5 0 0 t=0.25 0 0 t=0 0 0 Sin(0.25π) Sin(0. 5π) Sin(0.75π) x=0.0 x=0.25 x=0.5 x=0.75 x=1.0 32 The obtained results are probably not accurate because : 1 2 7 For accurate results : 1 2 0 h 2 (0.25) 2 One needs to select k 0.03125 2 2 k For example, choose k 0.025, then 2 0.4 h 33 u( x, t k ) 0.4 u( x h, t ) 0.2 u( x, t ) 0.4 u( x h, t ) t=0.10 0 0 t=0.075 0 0 t=0.05 0 0 t=0.025 0 0 t=0 0 0 Sin(0.25π) Sin(0. 5π) Sin(0.75π) x=0.0 x=0.25 x=0.5 x=0.75 x=1.0 34 u(0.25,0.025) 0.4 u(0,0) 0.2 u(0.25,0) 0.4 u (0.5,0) 0 0.2 sin( / 4) 0.4 sin( / 2) 0.5414 t=0.10 0 0 t=0.075 0 0 t=0.05 0 0 t=0.025 0 0 t=0 0 0 Sin(0.25π) Sin(0. 5π) Sin(0.75π) x=0.0 x=0.25 x=0.5 x=0.75 x=1.0 35 u(0.5,0.025) 0.4 u(0.25,0) 0.2 u(0.5,0) 0.4 u(0.75,0) 0.4 sin( / 4) 0.2 sin( / 2) 0.4 sin(3 / 4) 0.7657 t=0.10 0 0 t=0.075 0 0 t=0.05 0 0 t=0.025 0 0 t=0 0 0 Sin(0.25π) Sin(0. 5π) Sin(0.75π) x=0.0 x=0.25 x=0.5 x=0.75 x=1.0 36 The method involves solving a Tridiagonal system of linear equations. The method is stable (No magnification of error). We can use larger h, k (compared to the Explicit Method). 37 Based on the finite difference method 1. Divide the interval x into subintervals of width h 2. Divide the interval t into subintervals of width k 3. Replace the first and second partial derivatives with their backward and central difference formulas respective ly : u ( x, t ) u ( x, t ) u ( x, t k ) t k 2 u ( x , t ) u ( x h , t ) 2u ( x , t ) u ( x h , t ) 2 x h2 38 2 u( x, t ) u( x, t ) Heat Equation : becomes 2 t x u ( x h , t ) 2u ( x , t ) u ( x h , t ) u ( x , t ) u ( x , t k ) 2 k h k u( x h, t ) 2u( x, t ) u( x h, t ) u( x, t ) u( x, t k ) 2 h k k k 2 u ( x h, t ) (1 2 2 ) u ( x, t ) 2 u( x h, t ) u ( x, t k ) h h h 39 k then Heat equation becomes : 2 h u ( x h, t ) (1 2 ) u ( x, t ) u ( x h, t ) u ( x, t k ) Define u(x-h,t) u(x,t) u(x+h,t) u(x,t - k) 40 The equation : u( x h, t ) (1 2 ) u( x, t ) u( x h, t ) u( x, t k ) can be rewritten as : ui 1, j (1 2 ) ui , j ui 1, j ui , j 1 and can be expanded as a system of equations (fix j 1) : u0,1 (1 2 ) u1,1 u2,1 u1,0 u1,1 (1 2 ) u2,1 u3,1 u2,0 u2,1 (1 2 ) u3,1 u4,1 u3,0 u3,1 (1 2 ) u4,1 u5,1 u4,0 41 u( x h, t ) (1 2 ) u( x, t ) u( x h, t ) u( x, t k ) can be expressed as a Tridiagonal system of equations : 1 2 u1,1 u1,0 u0,1 1 2 u u 2,0 2,1 u3,0 1 2 u3,1 u u u 1 2 5,1 4,1 4,0 where u1,0 , u2,0 , u3,0 , and u4,0 are the initial temperature values at x x0 h, x0 2h, x0 3h, and x0 4h u0,1 and u5,1 are the boundary values at x x0 and x0 5h 42 The solution of the tridiagonal system produces : The temperature values u1,1 , u2,1 , u3,1 , and u4,1 at t t0 k To compute the temperature values at t t0 2k Solve a second tridiagonal system of equations ( j 2) 1 2 1 2 1 2 1 2 To compute u1,2 , u2,2 , u3,2 , and u4,2 u1, 2 u1,1 u0,2 u u2,1 2 , 2 u3,1 u3,2 u u u 5, 2 4, 2 4,1 Repeat the above step to compute temperature values at t0 3k , etc. 43 Solve the PDE : 2u ( x, t ) u( x, t ) 0 2 t x u (0, t ) u(1, t ) 0 u ( x,0) sin( x ) Solve using Crank - Nicolson method Use h 0.25, k 0.25 to find u ( x, t ) for x [0,1], t [0,1] 44 2 u ( x, t ) u( x, t ) 0 2 t x u ( x h , t ) 2u ( x , t ) u ( x h , t ) u ( x , t ) u ( x , t k ) 2 k h 16u ( x h, t ) 2u ( x, t ) u( x h, t ) 4u ( x, t ) u ( x, t k ) 0 k 4 2 h 4 u ( x h, t ) 9 u ( x , t ) 4 u ( x h, t ) u ( x , t k ) Define 4 ui 1, j 9 ui , j 4 ui 1, j ui , j 1 45 sin( / 4) 4u0,1 9u1,1 4u2,1 u1,0 9u1,1 4u2,1 4u1,1 9u2,1 4u3,1 u2,0 4u1,1 9u2,1 4u3,1 sin( / 2) 4u2,1 9u3,1 sin(3 / 4) 4u2,1 9u3,1 4u4,1 u3,0 t4=1.0 0 t3=0.75 0 t2=0.5 0 u1,4 u2,4 u3,4 u1,3 u2,3 u3,3 u1,2 u2,2 u3,2 u1,1 u2,1 u3,1 0 0 0 t1=0.25 0 0 t0=0 0 0 Sin(0.25π) Sin(0. 5π) Sin(0.75π) x0=0.0 x1=0.25 x2=0.5 x3=0.75 x4=1.0 46 The Solution of the PDE at t1 0.25 sec is the solution of the following tridiagonal system of equations : 9 4 u1,1 sin(0.25 ) 4 9 4 u sin(0.5 ) 2,1 4 9 u3,1 sin(0.75 ) u1,1 0.21151 u2,1 0.29912 u3,1 0.21151 47 4u0, 2 9u1, 2 4u2,2 u1,1 9u1,2 4u2, 2 0.21151 4u1, 2 9u2,2 4u3, 2 u2,1 4u1,2 9u2, 2 4u3, 2 0.29912 4u2,2 9u3,2 4u4, 2 u3,1 t4=1.0 0 t3=0.75 0 t2=0.5 0 4u2, 2 9u3, 2 0.21151 u1,4 u2,4 u3,4 u1,3 u2,3 u3,3 u1,2 u2,2 u3,2 u1,1 u2,1 u3,1 0 0 0 t1=0.25 0 0 t0=0 0 0 Sin(0.25π) Sin(0. 5π) Sin(0.75π) x0=0.0 x1=0.25 x2=0.5 x3=0.75 x4=1.0 48 The Solution of the PDE at t2 0.5 sec is the solution of the following tridiagonal system of equations : 9 4 u1,2 u1,1 0.21151 4 9 4 u u 0.29912 2,2 2,1 4 9 u3,2 u3,1 0.21151 u1,2 0.063267 u2,2 0.089473 u3,2 0.063267 49 The Solution of the PDE at t3 0.75 sec is the solution of the following tridiagonal system of equations : 9 4 u1,3 u1,2 0.063267 4 9 4 u u 0.089473 2, 3 2 , 2 4 9 u3,3 u3,2 0.063267 u1,3 0.018924 u2,3 0.026763 u3,3 0.018924 50 The Solution of the PDE at t4 1 sec is the solution of the following tridiagonal system of equations : 9 4 u1,4 u1,3 0.018924 4 9 4 u u 0.026763 2, 4 2,3 4 9 u3,4 u3,3 0.018924 u1,4 0.0056606 u2,4 0.0080053 u3,4 0.0056606 51 The Explicit Method: • One needs to select small k to ensure stability. • Computation per point is very simple but many points are needed. Cranks Nicolson: • Requires the solution of a Tridiagonal system. • Stable (Larger k can be used). 52