UJI ASUMSI KLASIK Data : Adapun data yang digunakan dalam laporan ini adalah data tentang Pengaruh Hafalan, Bahasa Arab, Waktu, Umur, Jarak terhadap Nilai. Nilai (Y) Hafalan (X1) 90 100 75 75 75 90 67.5 80 75 70 80 91 86 95 75 85 70 90 100 80.2 98 85 85 80 80 90 90 88 90 90 9 10 10 10 10 7 2 3 3 3 10 8 10 30 10 21 15 2 30 3 30 30 10 30 15 30 6 5 30 1 Bahasa Arab (X2) 90 92 86 75 75 90 73.3 80 75 75 95 85 90 75 85 90 70 91 90 80.2 95 100 75 90 80 90 90 80 85 90 Waktu (X3) Umur (X4) Jarak (X5) 7 3 6 6 3 6 6 2 3 3 4 2 2 4 2 6 4 3 2.8 3 1.5 3 2 3 3 2.5 3 3 2 6 21 19 22 20 21 21 19 22 23 21 23 21 22 21 21 20 22 20 22 22 20 21 20 20 19 22 21 22 20 20 80 300 175 32 5 9 50 95 120 275 10 30 2 150 12 1 230 100 25 70 3 56 153 372 50 38 300 153 185 235 ANALISIS PROGRAM DI R A. Memanggil Data di R > indah<-read.csv(file.choose()) > indah 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 nilai.Y. hafalan.X1. bahasaarab.X2. waktu.X3. umur.X4. jarak.X5. 90.0 9 90.0 7.0 21 80 100.0 10 92.0 3.0 19 300 75.0 10 86.0 6.0 22 175 75.0 10 75.0 6.0 20 32 75.0 10 75.0 3.0 21 5 90.0 7 90.0 6.0 21 9 67.5 2 73.3 6.0 19 50 80.0 3 80.0 2.0 22 95 75.0 3 75.0 3.0 23 120 70.0 3 75.0 3.0 21 275 80.0 10 95.0 4.0 23 10 91.0 8 85.0 2.0 21 30 86.0 10 90.0 2.0 22 2 95.0 30 75.0 4.0 21 150 75.0 10 85.0 2.0 21 12 85.0 21 90.0 6.0 20 1 70.0 15 70.0 4.0 22 230 90.0 2 91.0 3.0 20 100 100.0 30 90.0 2.8 22 25 80.2 3 80.2 3.0 22 70 98.0 30 95.0 1.5 20 3 85.0 30 100.0 3.0 21 56 85.0 10 75.0 2.0 20 153 80.0 30 90.0 3.0 20 372 80.0 15 80.0 3.0 19 50 90.0 30 90.0 2.5 22 38 90.0 6 90.0 3.0 21 300 88.0 5 80.0 3.0 22 153 90.0 30 85.0 2.0 20 185 90.0 1 90.0 6.0 20 235 B. Menentukan Model Regresi > modelreg<-lm(nilai.Y. ~hafalan.X1. +bahasaarab.X2. +waktu.X3. + umur.X4. +jarak.X5., data = indah) > modelreg Call: lm(formula = nilai.Y. ~ hafalan.X1. + bahasaarab.X2. + waktu.X3. + umur.X4. + jarak.X5., data = indah) Coefficients: (Intercept) umur.X4. hafalan.X1. bahasaarab.X2. waktu.X3. 55.568338 -1.033905 jarak.X5. 0.002195 0.147689 0.605257 C. Menguji Asumsi Klasik 1. Uji Normalitas > library(stats) > shapiro.test(modelreg$residuals) Shapiro-Wilk normality test data: modelreg$residuals W = 0.98536, p-value = 0.9431 2. Uji Heterokedastisitas > library(lmtest) Loading required package: zoo Attaching package: ‘zoo’ The following objects are masked from ‘package:base’: as.Date, as.Date.numeric Warning messages: 1: package ‘lmtest’ was built under R version 3.5.2 2: package ‘zoo’ was built under R version 3.5.2 > bptest(modelreg, studentize = F, data = indah) Breusch-Pagan test data: modelreg BP = 5.3234, df = 5, p-value = 0.3777 3. Uji Multikolinearitas > library(car) Loading required package: carData Warning messages: 1: package ‘car’ was built under R version 3.5.2 2: package ‘carData’ was built under R version 3.5.2 > vif(modelreg) hafalan.X1. bahasaarab.X2. waktu.X3. 1.213393 1.137083 1.097779 umur.X4. jarak.X5. 1.077106 1.053889 -0.872823 4. Uji Autokorelasi > dwtest(modelreg) Durbin-Watson test data: modelreg DW = 2.2654, p-value = 0.7967 alternative hypothesis: true autocorrelation is greater than 0