FUNGSI BESSEL DISUSUN OLEH KELOMPOK III Nama Anggota : Desrianah 2007.121.246 Titin Yuniarti 2007.121.254 Okta Herlaiza 2007.121.2 Septia Julita 2007.121.278 Dessy Adetia 2007.121.440 Esca Oktarina 2007.121.459 Semester : 6L Program Studi : Pendidikan Matematika Mata Kuliah : Matematika Lanjutan FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS PGRI PALEMBANG 2009/2010 FUNGSI BESSEL PERSAMAAN DIFERENSIAL BESSEL Fungsi Bessel dibangun sebagai penyelesaian persamaan diferensial. ( ) x 2 y ' '+ xy '+ x 2 − n 2 y = 0 , n ≥ 0 (1) yang dinamakan persamaan diferensial Bessel. Penyelesaian umum (1) diberikan oleh y = c1 J n ( x) + c 2Yn ( x) (2) Penyelesaian J n (x) , yang mempunyai limit berhingga untuk x mendekati nol dinamakan fungsi Bessel jenis pertama dan berorde n. penyelesaian Yn (x) yang tak mempunyai limit berhingga [yaitu tak terbatas] untuk x mendekati nol dinamakan fungsi Bessel jenis keduan dan berorde-n atau fungsi Neumann. Jika peubah bebas x pada (1) diganti λx di mana λ suatu konstanta, persamaan yang dihasilkan adalah x 2 y ' '+ xy '+ (λ2 x 2 − n 2 )y = 0 (3) Yang mempunyai penyelesaian umum y = c1 J n (λx) + c 2Yn (λx) (4) FUNGSI BESSEL JENIS PERTAMA Didefinisikan fungsi Bessel jenis pertama berorde n sebagai xn x2 x4 J n ( x) = n + − ... (5) 1 − 2 Γ(n + 1) 2(2n + 2 ) 2 ⋅ 4(2n + 2 )(2n + 4) n+ 2r (− 1) x ∞ 2 Atau J n ( x) = ∑ (6) r = 0 r!Γ(n + r + 1) r Di mana Γ(n + 1) adalah fungsi gamma [Bab 9]. Jika n bilanngan bulat positif, Γ(n + 1) = n!, Γ(1) = 1 . Untuk n = 0, (6) maka J 0 ( x) = 1 − x2 x4 x6 + − + ... 22 2242 224262 (7) Deret (6) konvergen untuk setiap x. Grafik J 0 ( x) dan J 1 ( x) ditunjukkan pada Gambar 10-1. Jika n setengah atau bilangan ganjil positif, J n (x) dapat dinyatakan dalam suku-suku sinus dan cosinus. Lihat Soal 10.4 dan 10.7. Sebuah fungsi J − n (x) , n > 0 dapat didefinisikan dengan mengganti n oleh –n pada (5) atau (6). Jika n suatu bilangan bulat, maka kita dapat menunjukkan bahwa [lihat Soal 10.3] J −n ( x) = (− 1) J n ( x) n (8) Jika n bukan suatu bilangan bulat, maka J n (x) dan J − n (x) bebas linear, dan untuk kasus ini penyelesaian umum (1) adalah y = AJ n ( x) + B n J −n ( x) , n ≠ 0,1,2,3,... (9) FUNGSI BESSEL JENIS KEDUA Kita akan mendefinisikan fungsi Bessel jenis kedua berorde n sebagai J n ( x ) cos nπ − J − n ( x ) sin nπ Yn ( x ) = J p ( x ) cos pπ − J − p ( x ) lim sin pπ p →n n ≠ 0,1,2,3,... (10) n = 0,1,2,3,... Untuk kasus di mana n =0,1,2,3,… diperoleh uraian deret berikut untuk Yn ( x ) . 2 x 1 n −1 x Yn ( x ) = ln + γ J n ( x ) − ∑ (n − k − 1)! π 2 π k =0 2 2k − n 2k + n x n −1 1 2 k − ∑ (− 1) {Φ (k ) + Φ (k + 1)} π k =0 k!(n + k )! (11) Di mana γ = 0,5772156... adalah konstanta Euler dan Φ( p ) = 1 + 1 1 1 + + ... + , 2 3 p Φ (0 ) = 0 (12) FUNGSI PEMBANGKIT UNTUK Jn (x ) (GENERATING FUNCTION) Fungsi e x 1 t− 2 t = ∞ ∑ J (x )t n = −∞ n (13) n dinamakan fungsi pembangkit untuk fungsi Bessel jenis pertama berorde bulat, yang sangat banyak gunanya dalam memperoleh sifat-sifat fungsi ini untuk nilai n bulat dan kemudian seringkali dapat dibuktikan berlaku untuk semua n. RUMUS-RUMUS PENGULANGAN (RECURRENCE FORMULA) Hasil berikut ini berlaku untuk setiap nilai n. 1. J n +1 ( x ) = 2n J n ( x ) − J n −1 ( x ) x 2. J ' n ( x ) = 1 [J n−1 (x ) − J n+1 (x )] 2 3. xJ ' n ( x ) = nJ n ( x ) − xJ n +1 ( x ) 4. xJ ' n ( x ) = xJ n −1 ( x ) − nJ n ( x ) [ ] 5. d n x J n ( x ) = x n J n −1 ( x ) dx 6. d −n x J n ( x ) = − x −n J n +1 ( x ) dx [ ] Jika n adalah suatu bilangan bulat rumus tersebut dapat dibuktikan dengan fungsi pembangkit. Perhatikan bahwa hasil 3 dan 4 berturut-turut setara dengan 5 dan 6. Fungsi Yn ( x ) memenuhi hasil yang sama seperti di atas, di mana Yn ( x ) menggantikan J n ( x ) . FUNGSI-FUNGSI YANG BERHUBUNGAN DENGAN FUNGSI BESSEL 1.Fungsi didefinisikan oleh Hankel Jenis Pertama dan Kedua, yang berturut-turut H n(1) ( x ) = J n ( x ) + iYn ( x ) , H n(2 ) ( x ) = J n ( x ) + iYn ( x ) 2.Fungsi Bessel yang Dimodifikasi. Fungsi Bessel yang dimodifikasi jenis pertama berorde n didiefinisikan oleh I n ( x ) = i − n J n (ix ) = e nπi 2 J n (ix ) (14) Jika n bilangan bulat, I − n ( x ) = I n ( x ) (15) Tetapi jika n bukan bilangan bulat, I n ( x ) dan I − n (x ) bebas linear. Fungsi Bessel yang dimodifikasi jenis kedua berorde n didefinisikan oleh π I − n ( x ) − I n ( x ) 2 sin nπ K n (x ) = π I − p (x ) − I p (x ) lim p→n 2 sin pπ n ≠ 0,1,2,3,... (16) n = 0,1,2,3,... Fungsi ini memenuhi persamaan diferensial ( ) x 2 y"+ xy '− x 2 + n 2 y = 0 (17) dan penyelesaian umum persamaan ini adalah y = c1 I n ( x ) + c2 K n ( x ) atau jika n ≠ 0,1,2,3,... (18) y = AI n ( x ) + BI − n ( x ) (19) 3.Fungsi Ber, Bei, Ker, Kei. Fungsi Bern ( x ) dan Bein ( x ) adalah bagian riil 3 3πi 2 3 (1 − i ) , yaitu dan imajiner dari J n i 2 x di mana i 2 = e 4 = 2 3 J n i 2 x = Bern ( x ) + iBein ( x ) (20) Fungsi Kern ( x ) dan Kein ( x ) adalah bagian riil dan imajiner dari e − nπi 2 1 πi 2 1 (1 + i ) , yaitu K n i 2 x di mana i 2 = e 4 = 2 e − nπi 2 12 K n i x = Kern ( x ) + iKein ( x ) (21) Fungsi-fungsi ini berguna sehubungan dengan persamaan ( ) x 2 y"+ xy'− ix 2 + n 2 y = 0 (22) yang membangun teknik kelistrikan dan lapangan lainnya. Penyelesaian umum dari persamaan ini adalah 32 12 y = c1 J n i x + c2 K n i x (23) PERSAMAAN-PERSAMAAN YANG DITRANSFORMASIKAN KE DALAM PERSAMAAN BESSEL Persamaan x 2 y"+(2k + 1)xy '−(α 2 x 2 r + β 2 )y = 0 (24) di mana k, α , r, β konstanta mempunyai penyelesaian umum αx r αx r y = x c1 J k + c2Yk r r r r −k di mana K (25) = k 2 − β 2 . Jika α = 0 , persamaannya dapat diselesaikan sebagai persamaan Euler atau Cauchy [lihat halaman 83] RUMUS ASIMTOTIK UNTUK FUNGSI BESSEL Untuk nilai x besar kita mempunyai rumus asimtotik berikut ini J n (x) ~ 2 π nπ cos x − − 4 2 πx , Yn ( x ) ~ 2 π nπ sin x − − 4 2 πx (26) NILAI NOL FUNGSI BESSEL Kita dapat menunjukkan bahwa jika n suatu bilangan riil, J n ( x ) = 0 mempunyai tak berhingga banyaknya akar yang semuanya riil. Perbedaan di antara akar-akar yang berurutan mendekati π jika nilai akarnya membesar. Ini dapat dilihat dari (26). Kita dapat juga menunjukkan bahwa akar-akar J n ( x ) = 0 terletak di antara J n −1 ( x ) = 0 dan J n +1 ( x ) = 0 . Catatan serupa dapat juga dibuat untuk Yn ( x ) . KETEGAK-LURUSAN (ORTHOGONALITY) FUNGSI BESSEL Jika λ dan µ dua konstanta berbeda, kita dapat menunjukkan [lihat Soal 10.21] bahwa µJ (λ )J ' (µ ) − λJ (µ )J ' (λ ) ∫ xJ (λx )J (µx )dx = λ −µ 1 0 n n n n n 2 n 2 (27) sedangkan [lihat Soal 10.22] 1 ∫ 0 xJ n2 (λx )dx = n2 2 1 2 1 − 2 J n (λ ) J ' ( λ ) + 2 n λ (28) Dari (27) kita lihat bahwa λ dan µ adalah dua akar berbeda dari persamaan RJ n ( x ) + SxJ 'n ( x ) = 0 (29) di mana R dan S konstanta, maka ∫ xJ (λx )J (µx )dx = 0 1 0 n (30) n yang menyatakan bahwa fungsi x J n (λx ) dan x J n (µx ) tegaklurus pada (0,1). Perhatikanlah bahwa sebagai kasus khusus (29) kita melihat bahwa λ dan µ dapat merupakan dua akar berbeda dari J n ( x ) = 0 atau J 'n ( x ) = 0 . Kita dapat juga mengatakan bahwa fungsi-fungsi J n (λx ) , J n (µx ) tegaklurus terhadap fungsi kepadatan x. DERET FUNGSI-FUNGSI BESSEL Seperti pada kasus Deret Fourier, kita dapat menunjukkan bahwa jika f(x) memenuhi syarat Dirichlet [di halaman 197] maka di setiap titik kekontinuan f(x) pada selang 0 < x < 1 terdapat suatu uraian deret Bessel yang berbentuk ∞ f ( x ) = A1 J n (λ1 x ) + A2 J n (λ2 x ) + ... = ∑ Ap J n (λ p x ) (31) p =1 di mana λ1 , λ2 ,... adalah akar-akar positif (29) dengan Ap = 2λ2p R ≥ 0 , S ≠ 0 dan S ∫ xJ (λ x ) f (x )dx 1 2 R λ p − n 2 + 2 J n2 (λ p ) S 2 0 n (32) p Di titik ketak-kontinuan deret di ruas kanan (31) konvergen ke 1 [ f (x + 0) + f (x − 0)] yang dapat digunakan untuk menggantikan ruas kiri 2 (31). Dalam kasus S = 0 sehingga λ1 , λ2 ,... adalah akar-akar dari J n ( x ) = 0 , Ap = 2 1 J n2+1 (λ p ) ∫0 xJ n (λ p x ) f ( x )dx (33) Jika R = 0 dan n = 0, maka deret (31) dimulasi dengan suku tetap Ap = 2 ∫ x f ( x )dx 1 0 (34) SOAL-SOAL DAN PENYELESAIANNYA PERSAMAAN DIFERENSIAL BESSEL 10.1 Gunakan metode Frobenius untuk menentukan deret penyelesaian persamaan ( ) diferensial Bessel x 2 y"+ xy '+ x 2 + n 2 y = 0 . Andaikan suatu jawaban berbentuk y = ∑ ck x k + β di mana k bergerak dari − ∞ sampai ∞ dan ck = 0 untuk k < 0, maka (x 2 ) + n 2 y = ∑ ck x k + β + 2 −∑ n 2ck x k + β =∑ ck − 2 x k + β −∑ n 2ck x k + β xy' = ∑ (k + β )ck x k + β x 2 y" = ∑ (k + β )(k + β − 1)ck x k + β Kemudian, dengan menjumlahkannya diperoleh [ ] x 2 y" = ∑ (k + β )(k + β − 1)ck + (k + β )ck + ck −2 − n 2 ck x k + β = 0 dan karena koefisien x k + β harus nol, diperoleh [(k + β ) − n ]c 2 2 k + ck − 2 = 0 (1) Andaikan k = 0 pada (1); karena c− 2 = 0 maka diperoleh persamaan awal (β 2 ) − n 2 c0 = 0 ; atau andaikan c0 ≠ 0 , β 2 = n 2 . Kemudian, tinjaulah dua kasus, β = −n dan β = n . Pertama akan dipandang kasus pertama β = n , dan kasus kedua diperoleh dengan menggantikan n oleh –n. Kasus 1, β = n . Dalam kasus ini (1) menjadi k (2n + k )ck + ck − 2 = 0 (2) Ambillah k = 1,2,3,4,... secara berurutan pada (2), kita mempunyai c1 = 0 , c2 = − c0 − c2 c0 , c3 = 0 , c4 = = ,… 2(2n + 2) 4(2n + 4 ) 2 ⋅ 4(2n + 2 )(2n + 4 ) Jadi deret yang diinginkan adalah x2 x4 y = c0 x n + c2 x n + 2 + c4 x n + 4 + ... = c0 x n 1 − + − ... 2(2n + 2 ) 2 ⋅ 4(2n + 2 )(2n + 4) Kasus 2, β = −n . Gantilah n oleh –n pada Kasus 1, diperoleh x2 x4 + − ... y = c0 x − n 1 − 2(2n − 2 ) 2 ⋅ 4(2n − 2 )(2n − 4) (4) Sekarang, jika n = 0 kedua deret sama. Jika n = 1,2,... deret kedua tidak mungkin ada. Tetapi bila n ≠ 0,1,2,... kedua deret tersebut dapat ditunjukkan bebas linear sehingga untuk kasus ini penyelesaian umumnya adalah x2 x4 y = Cx n 1 − + − ... 2(2n + 2 ) 2 ⋅ 4(2n + 2 )(2n + 4) x2 x4 + Dx −n 1 − + − ... 2(2n − 2 ) 2 ⋅ 4(2n − 2 )(2n − 4 ) (5) (3) Kasus untuk n = 0,1,2,3,... akan dibicarakan kemudian [lihat Soal 10.15 dan 10.16]. FUNGSI BESSEL JENIS PERTAMA Gunakan definisi (5) dari J n (x) yang diberikan pada halaman 240 untuk menunjukkan bahwa jika n ≠ 0,1,2,3,... maka penyelesaian umum pada persamaan bassel adalah y = AJ n ( x) + BJ −n ( x) untuk kasus n ≠ 0,1,2,3,... 2 2 sin x, (b) J −1 2 ( x) = cos x, πx πx ∞ (−1) r ( x 2)1 2+ 2 r ( x 2)1 2 ( x 2) 5 2 ( x 2) 9 2 =∑ = − + − ... r!r (r + 3 2) r (3 2) 1!r (5 / 2 ) 2!r (7 / 2) r =0 1.Buktikanlah (a) J 1 2 ( x) = ( x 2) 1 2 (a) J1 2 ( x) = (1 / 2) π − ( x 2) 5 2 1!(3 / 2)(1 / 2) π + ( x 2) 7 2 2!(5 / 2 )(3 / 2)(1 / 2) π − ... ( x 2)1 2 sin x ( x 2) 1 2 x 2 x 4 2 1 − + − ... = sin x = 3! 5! πx (1 / 2) π (1 / 2) π x ∞ (− 1)r (x 2)−1 2+ 2 r = (x 2) −1 / 2 − (x / 2) 3 / 2 + (x / 2)7 / 2 − ... (b) J −1 2 ( x ) = ∑ r!r (r + 1 2) r (1 / 2) 1!r (3 / 2) 2!r (5 / 2) r =0 = = 2.Hitunglah (x 2)−1 2 1 − x 2 (a) π + 2! x4 2 − ... = cos x 4! πx ∫ x J (x )dx , 4 (b) 1 ∫ x J (x )dx 3 3 (a) Metode 1.Metode pengintralan parsial memberikan 4 2 2 ∫ x J 1 (x )dx = ∫ (x ) x J 1 (x )dx [ [ = x2 x2 J 2 ] (x )] − ∫ [x 2 ] J 2 ( x ) [2 xdx ] = x 4 J 2 ( x ) − 2 ∫ x 3 J 2 ( x )dx = x 4 J 2 (x ) − 2 x 3 J 2 (x ) + c (b) Metode 2. Gunakanlah J1 ( x) = − J 0 ( x), diketahui ∫x ∫x ∫x 4 2 2 { } J1 ( x)dx = − ∫ x 4 J 01 ( x)dx = − x 4 J 0 ( x) − ∫ 4 x 3 J 0 ( x)dx J 0 ( x)dx = ∫ x 2 [xJ 0 ( x)dx] = x 2 [xJ1 ( x)] − ∫ [xJ1 ( x)][2 xdx] { } J1 ( x)dx = − ∫ x 2 J 01 ( x)dx = − x 2 J 0 ( x) − ∫ 2 xJ 0 ( x)dx = x 2 J 0 ( x) + 2 xJ1 ( x) ∫x Maka 4 [ }] { J1 ( x )dx = − x 4 J 0 ( x ) + 4 x 3 J1 ( x) − 2 − x 2 J 0 ( x ) + 2 xJ1 ( x ) + c = (8 x 2 − x 4 ) J 0 ( x) + (4 x 2 − 16 x ) J 1 ( x ) ∫x 3 [ J 3 ( x )dx = ∫ x 5 x −2 J 3 ( x )dx [ ] ] [ ] = x 5 − x −2 J 2 ( x) − ∫ − x −2 J 2 ( x) 5 x 4 dx = − x 3 J 2 ( x) + 5∫ x 2 J 2 ( x)dx ∫x 2 [ ] J ( x)] − ∫ [− x J 2 ( x)dx = ∫ x 3 x −1 J 2 ( x) dx [ = x 3 − x −1 −1 1 ] J 1 ( x) 3x 2 dx = − x 2 J 1 ( x) + 3∫ xJ 1 ( x)dx ∫ xJ ( x)dx = − ∫ xJ 1 1 0 [ ( x)dx = − xJ 0 ( x) − ∫ J 0 ( x)dx ] = − xJ 0 ( x) + ∫ J 0 ( x)dx Maka ∫x J 3 2 ( x)dx = −x 3 J 2 ( x) + 5{− x 2 J1 ( x) + 3[− xJ 0 ( x) + J 0 ( x)dx]} = − x 3 J 2 ( x) − 5 x 2 J1 ( x) − 15 xJ 0 ( x) + 15∫ J 0 ( x)dx Integral ∫x 2 ∫J 0 ( x)dx tidak dapat diperoleh dalam bentuk tertutup.secara umum , J 0 ( x)dx dapat diperoleh dalam bentuk tertutup jika p + q ≥ 0 dan p + q genap hasilnya dapat diperoleh dalam suku-suku a) Buktikanlah J n ( x )J − n ( x ) − J ' − n ( x )J n ( x ) = ' ∫J 0 ( x)dx . 2 sin nπ πx b) Bahaslah arti hasil (a) dipandang dari kebergantungan linear J n ( x) dan J − n( x ) c) Karena J n ( x ), dan, J − n( x ) ,berturut-turut disingkat J n danJ − n ( x), memenuhi persamaan bassel,maka ( ) ( ) x 2 J n" + xJ n' + x 2 − n 2 J n = 0, x 2 J −" n + xJ −' n + x 2 − n 2 J −n = 0 katakanlah persamaan pertama dengan J − n dan kedua dengan J n dan kurangkanlah. [ ] [ J ]+ [J J ] x 2 J n" J −n − J −" n J n + x J n' J −n − J −' n J n = 0 Maka yang dapat ditulis x [ d ' J n J −n − J −' n dx n ' n −n ] − J −' n J n = 0 {[ ]} d x J n' J − n − J −' n J n = 0 dx Atau Integralkanlah ,kita memperoleh J n' J − n − J −' n J n = c x Untuk menentukan c gunakanlah uraian deret J n dan J − n ,diperoleh Jn = xn x n +1 x −n x − n −1 ' ' − ..., = − ..., = − ..., = − ... J J J n −n −n 2 n r (n + 1) 2 n r (n ) 2 −n r (− n + 1) 2 −n r (− n ) Dan kemudian subsitusikan pada (1), kita memperoleh c= 1 1 2 2 sin nπ − = = r (n)r (1 − n) r (n + 1)r (−n) r (n)r (1 − n) π Dengan menggunakan hasil 1,dihalaman 227. Ini memberikan hasil yang diinginkan. a) Bentuk J n' J − n − J −' n J n pada (a) adalah determinan Wronski dari J n dan J − n . Jika n bilangan bulat kita lihat dari (a) bahwa determinan wronski ini nol;sehingga J n dan J −n bergantungan linear dan dan juga jelas dari soal 10.3(a). dalam hal lain,jika n bukan bilangan bulat , J n dan J − n keduanya bebas linear karena pada kasus ini determinan wronskinya tak nol. FUNGSI PEMBANGKIT DAN HASIL-HASIL LAINNYA 1)Buktikanlah e (x 2 )(t − 1t ) = ∞ ∑J n = −∞ n ( x )t n Kita mempunyai ∞ ( xt 2)r ∞ (− x 2t )k ∞ ∞ (−1) k ( x 2)r + k t r −k e ( x 2 )(t −1 t ) = e xt 2 e − x 2 x = ∑ ∑ = ∑∑ k! r = 0 k = 0 r!k! r =0 r! k =0 Andaikan r − k = n sehingga n bergerak dari − ∞ sampai + ∞ , maka jumlahnya menjadi n+ 2k n+2k ∞ ∞ ∞ n (−1) k ( x 2 ) t n (−1) k ( x 2 ) = t = J n ( x)t n ∑ ∑ ∑ ∑ ∑ ( n + k )! k ! k ! ( n + k )! n = −∞ k = 0 n = −∞ k = 0 n = −∞ ∞ ∞ 2)Buktikanlah (a) cos( x sin θ ) = J 0 ( x ) + 2 J 2 ( x ) cos 2θ + 2 J 4 ( x) cos 4θ + ... (b) sin( x sin θ ) = 2 J 1 ( x ) sin θ + 2 J 3 ( x ) sin 3θ + 2 J 5 ( x) sin 5θ + ... Andaikan t = e iθ pada soal 1,maka e 1 x ( e iθ − e −iθ ) 2 ∞ ∞ −∞ −∞ = e ix sin θ = ∑ J n ( x)e inθ = ∑ J n ( x )[cos nθ + i sin nθ ] = {J 0 ( x) + [J −1 ( x) + J1 ( x)]cos θ + [J − 2 ( x) + J 2 ( x)]cos 2θ + ...} + i{[J1 ( x) + J −1 ( x)]sin θ + [J 2 ( x) + J −2 ( x)]sin 2θ + ...} = {J 0 ( x) + 2 J 2 ( x) cos 2θ + ...} + i{2 J1 ( x) sin θ + 2 J 3 ( x) sin 3θ + ...} Dimana kita telah menggunakan soal 10.3(a). samakan bagian riil dan imajinernya untuk peroleh hasil yang diinginkan. J n ( x) = 3)Buktikanlah 1 π π ∫ cos(nθ − x sin θ )dθ , n = 0,1,2,... 0 Kalikan hasil pertama dan kedua soal 2.berturut-turut dengan cara cos nθ dan sin nθ dan integralkan dari 0 sampai π dengan menggunakan π 0 m ≠ n ∫0 cosmθ cos nθdθ = π2 m = n π 0 0 2 m≠n ∫ sinmθ sin nθdθ = π m=n≠0 Kemudian jika n genap atau nol diperoleh : J n ( x) = 1 π π ∫ cos( x sin θ ) cos nθdθ , 0= 0 1 π π ∫ sin( x sin θ ) sin nθdθ 0 Dan dengan menjumlahkannya diperoleh : J n ( x) = 1 π π π 1 ∫ [cos( x sin θ ) cos nθ + sin( x sin θ ) sin nθ ]dθ = ∫ cos(nθ − x sin θ )dθ π 0 0 Dengan cara serupa ,jika n ganjil ,maka J n ( x) = 1 π π ∫ sin( x sin θ ) sin nθdθ , 0 0= 1 π π ∫ cos( x sin θ ) sin nθdθ 0 Dan dengan menjumlahkannya diperoleh J n ( x) = 1 π π ∫ cos(nθ − x sin θ )dθ 0 Jadi kita memperoleh hasil yang berlaku untuk n genap atua ganjil ,yaitu n=0,1,2,… 4)Buktikanlah hasil soal 10.6(b) untuk nilai bulat n dengan menggunakan fungsi pembangkit. Diferensialkan kedua ruas fungsi pembangkit terhadap t tanpa menuliskan limit − ∞ sampai + ∞ untuk indeks n. x 1 e ( x 2 )(t −1 t ) 1 + 2 = ∑ nJ n ( x)t n −1 2 t x 1 n n −1 Atau 1 + 2 ∑ J n ( x)t = ∑ nJ n ( x)t 2 t Yaitu π 1 J ( x)t n = ∑ nJ n ( x)t n −1 2 n ∑ 2 1 + t Ini dapat ditulis sebagai π ∑ 2J π n ( x)t n + ∑ J n ( x)t n − 2 = ∑ nJ n ( x)t n −1 2 π ∑ 2J π ( x)t n + ∑ t n = ∑ (n + 1) J n +1 ( x)t n 2 π π Yaitu ∑ J n ( x ) + J n + 2 ( x )t n = ∑ (n + 1) J n +1 ( x )t n 2 2 Atau n Karena koefisien t n harus sama ,maka π 2 J n ( x) + π 2 J n + 2 ( x) = (n + 1) J n ( x) Dan dari sini hasil yang diinginkan diperoleh dengan mengganti n oleh n-1. FUNGSI BESSEL JENIS KEDUA 1 (a)Tunjukkan bahwa jika n bilangan bulat,penyelesaian umum persamaan Bessel adalah J (x )cos nπ − J − n ( x ) y = EJ n ( x ) + F n sin nπ (b)Jelaskanlah bagaimana anda dapat menggunakan bagian (a) untuk memperoleh penyelesaian umum persamaan bessel dalam kasus n bulat. FUNGSI BESSEL (a) Karena J − n dan J n bebas linear,Penyelesaian umum persamaan bessel dapat ditulis : y = c1 J n ( x ) + c2 J − n ( x ) dan hasil yang diinginkan diperoleh dengan mengganti konstanta sebarang c1 ⋅ c2 oleh E dimana c1 = E + F cos nπ − −F , c2 = sin nπ sin nπ Perhatikanlah bahwa kita mendefinisikan fungsi bessel jenis kedua bila n bukan suatu bilangan bulat dengan Y n (x ) = (b) Bentuklah J n ( x )cos nπ − J − n ( x ) sin nπ J n ( x )cos nπ − J − n ( x ) sin nπ Menjadi suatu “tak tentu / indeterminate” yang berbentuk 0/0 untuk kasus n suatu bilangan bulat.Hal ini disebabkan untuk suatu bilangan n,diketahui n n cos nπ = (− 1) danJ − n ( x ) = (− 1) J n ( x ) lihat soal 10.3. “ bentuk tak tentu” ini dapat dihitung dengan rumus L’Hospital,yaitu J p ( x )cos pπ − J − n ( x ) lim p →n sin pπ Gunakanlah soal 1 untuk memperoleh penyelesaian umum persamaan untuk n=0 Dalam kasus ini harus dihitung J p ( x )cos pπ − J − p ( x ) lim p →0 sin pπ Gunakanlah rumus L’Hospital (turunkan pembilang dan penyebut terhadap p)pada limit (1),diperoleh (∂J p / ∂p) cos pπ − (∂J − P / ∂Jp 1 ∂J P ∂J − P lim − = p →0 π cos pπ ∂p p = 0 π ∂p Dimana lambang yang digunakan menyatakan bahwa kita mengambil turunan parsial dari J P ( x )danJ − p ( x ) terhadap p dan kemudian mengambil p=0.Karena ∂J − P / ∂ (− p ) = −∂J − p / ∂p. limit yang diinginkan juga sama dengan Untuk memperoleh ∂J p / ∂p diturunkan deret (− 1)r (x / 2)p + 2 r r = 0 r!r ( p + r + 1) ∞ J p (x ) = ∑ Terhadap p dan diperoleh r p + 2r ∞ ( ∂J P − 1) ∂ ( x / 2 ) =∑ ∂p r = 0 r! ∂p r ( p + r + 1) Sekarang jika seandainya (x / 2)p + 2r = G , maka r ( p + r + 1) Ln G = ( p + 2r )ln ( x / 2 ) − ln r ( p + r + 1) Sehingga turunanya terhadap p memberikan 1 ∂G 1( p + r + 1) = ln( x / 2 ) − G ∂p r ( p + r + 1) Maka untuk p=0 diperoleh ∂G ∂p = p =0 (x / 2)2r ln(x / 2) − r ' (r + 1) r (r + 1) r (r + 1) Gunakan (2) dan (3) , diperoleh 2 ∂J p π ∂p = p =0 = (− 1)r (x / 2)2 r ln(x / 2) − r ' (r + 1) ∑ π r = 0 r!r (r + 1) r (r + 1) 2 2 π ∞ 3 {ln(x / 2) + γ }J 0 (x ) + 2 x2 − π 2 x4 1 1 + + ... 2 2 2 4 2 2 ∂J p π ∂p p =0 Dimana deret terakhir diperoleh dengan menggunakan hasil (6)dihalaman 240.deret terakhir ini adalah deret untuk Y 0 ( x) .Dengan cara yang sama kita dapat memperoleh deret (11) dihalaman 241 untuk Y n (x) dimana n sebuah bilangan bulat.Jika n sebuah bilangan bulat,maka penyelesaian umumnya diberikan oleh y = c1 J n ( x ) + c2Yn ( x ) FUNGSI-FUNGSI YANG BERHUBUNGAN DENGAN FUNGSI BESSEL 2. Buktikanlah rumus pengulangan untuk fungsi bessel jenis pertama yangtelah dimodifikasi l n (x)yang diberikan oleh I n +1 ( x ) = I n −1 ( x ) − 2n I n (x ) x Dari soal 10.6(b)kita memperoleh J n +1 ( x) = 2n J n ( x) − J n −1 ( x) x Gantilah x dengan ix untuk memperoleh J n +1 (ix) = − 2in J n (ix) − J n −1 (ix) x Sekarang menurut definisinya I n ( x) = i − nJ n (ix) atau i n I n (x) sehingga 2in n (2)menjadi i n +1I n +1 ( x) = − i I n ( x) − i n −1I n ( x) x Bagilah dengan i n +1 ,maka hasil yang diinginkan tercapai. 3. Jika n bukan suatu bilangan bulat,tunjukkanlah bahwa J ( x) − e −inx J n ( x) (a) H n(1) ( x) = − n i sin nπ Menurut definisi H n(1) ( x)danYn ( x), maka J ( x ) cos nπ − J − n ( x ) H n(1) ( x ) = J n ( x ) + iYn ( x ) = J n ( x ) + i n sin nπ J n ( x) sin nπ + iJ n ( x) cos nπ − iJ − n ( x) = sin nπ J n ( x)(cos nπ − i sin nπ ) − J − n ( x) = i sin nπ J ( x)e −inx − J − n ( x) = i n sin nπ − inx J ( x) − e J n ( x) = −n i sin nπ einx J n ( x) − J − n ( x ) i sin nπ (2) Karena H n ( x) = J n ( x ) − iYn ( x ), denhan mengganti i oleh –i pada hasil (a) maka diperoleh (b) H n( 2 ) ( x) = J − n ( x) − einx J n ( x ) − i sin nπ einx J n ( x ) − J − n ( x ) = i sin nπ H n( 2) ( x) = 4. Tunjukkanlah (a) Ber 0 ( x ) = 1 − Bei 0 ( x) = x4 x8 + − ... 22 42 2 2 426282 x2 x6 x10 − + − ... 22 22 4262 22 426282102 FUNGSI BESEEL Diketahui: 2 4 6 8 i 3 2 z i 3 2 z i 3 2 z i 3 2 z 3 r0 i 2 z = 1 − 2 + 2 2 − 2 2 2 + 2 2 2 2 − ... 2 2 4 2 4 6 2 4 6 8 3 2 6 4 9 6 12 8 i z i z i z i z = 1 − 2 + 2 2 − 2 2 2 + 2 2 2 2 − ... 2 2 4 2 4 6 2 4 6 8 2 4 6 iz z iz z8 = 1 + 2 − 2 2 − 2 2 2 + 2 2 2 2 − ... 2 2 4 2 4 6 2 4 68 4 8 z2 z z z8 = 1 − 2 2 + 2 2 2 2 − ... + i 2 − 2 2 2 + ... 2 4 68 2 4 6 2 4 2 Dan hasil yang diinginkan tercapai dengan mengingat bahwa J 3 3 2 = Ber0( z ) + iBei( z ) dan menyamakan bagian riil dan imajinernya.perlu 0 i z dicat bahwa kadang-kadang Ber0 ( z )danBei0 ( z ). menghilangkan indeks nol dalam PERSAMAAN-PERSAMAAN YANG DITRANSFORMASIKAN NKE DALAM PERSAMAAN BESSEL 1.. tentukan penyelesaian umum persamaan xy ' '+ y '+ ay = 0. Pesamaan tersebut dapat ditulis sebagai x z y ' '+ xy '+ axy = 0 dan merupakan suatu ------khusus dari persamaan (24) di halaman 242dimana k = 0, a = a, r = 1 maka penyelesaian seperti diberikan 242 2, β = 0 adalah y = c1 J 0 2 ax + c 2 y 0 2 ax ( ) ( ) KETEGAK LURUSAN FUNGSI BESEEL µJ n (λ )J n' (µ ) − λJ n (µ )J n' (λ ) jika λ ≠ µ . ∫0 n λ2 − µ 2 Dari (3) dan (4) dihalaman 240,kelihatan bahwa y1 = J n (λx ) dan y 2 = J n (µx ) 1 2.Buktikanlah xJ (λx )J n (µx )dx = Adalah penyelesaian persamaan '' ' '' ' x 2 y1 + xy1 + λ2 x 2 − n 2 y1 = 0, x 2 y 2 + xy 2 + µ 2 x 2 − n 2 y 2 = 0 ( ) ( ) Dengan pengalikan persamaan dengan y 2 dan 2 dengan y1 dan kemudian kurangkan, kita memperoleh [ ] [ ] x 2 y 2 y1 − y1 y 2 + x y 2 y1 − y1 y 2 = (µ 2 − λ2 )x 2 y1 y 2 '' '' ' ' Setelah dibagi dengan x dapat ditulis sebagai berikut x Atau [ ] [ {[ ]} ( ] ( ) d ' ' ' ' y 2 y1 − y1 y 2 + y 2 y1 − y1 y 2 = µ 2 − λ2 xy1 y 2 dx ) d '' ' x y 2 y1 − y1 y 2 = µ 2 − λ2 xy1 y 2 dx Kemudian integralkan dan hilangkan konstanta pengintegralannya, (µ 2 − λ2 )∫ xy y dx = x[y 1 2 y1 − y1 y 2 ' 2 ' ] Lalu gunakan y1 = J n (λx ), y 2 = J n (µx ) dan bagikan dengan µ 2 − λ2 ≠ 0, maka ∫ xJ n (λx )J n (µx )dx = 1 ∫ Jadi 0 xJ n (λx )J n (µx )dx = [ ] x λJ n (µx )J n (λx ) − µJ n (λx )J n (µx ) µ 2 − λ2 ' ' λJ n (µ )J n ' (λ ) − µJ n (λ )J n ' (µ ) µ 2 − λ2 Yang ekivalen dengan hasil yang diinginkan. 2 J n (λ ). misalkan µ → λ pada hasil soal no 2.dengan mengunakan rumus L hospital diperoleh 3. buktikan n2 1 2 ∫0 xJ n (λx )dx = 2 J n (λ ) + 1 − λ2 1 2 λJ n ' (µ )J n ' (λ ) − J n (λ )J n ' (µ ) − µJ n (λ )J n (µ ) ∫0 xJ n (λµ )dx = lim 2µ µ →λ 1 2 λJ n'2 (λ ) − J n (λ )J n ' (λ ) − λJ n (λ )J n '' λ = 2λ Tetapi karena λ2 J n (λ ) + λJ n (λ ) + (λ2 − n 2 )J n (λ ) = 0, dengan menyelesaikan '' ' untuk J n'' (λ ) dan mensubstusikannya diperoleh n2 1 '2 ∫0 xJ (λx )dx = 2 J n (λ ) + 1 − λ2 2 J n ( x ) 4.buktikan bahwa jika λdanµ adalah dua akar berbeda dari prsamaan N RJ n ( x ) + SxJ n' ( x ) = 0 dimana R dan S kostanta, maka 1 2 n ∫ xJ (λx )J (µx )dx = 0 1 0 Yaitu n x J n (λx ) Karena λ dan µ n dan x J n (µx ) saling tegak lurus pada (0,1). akar dari RJ n ( x ) + SxJ n' ( x ) = 0, kita mempunyai RJ n (µ ) + S µ J n' (µ ) = 0 RJ n (λ ) + SxJ N' ( x ) = 0, Kemudian, jika R ≠ 0, S ≠ 0 dari (1) kita memperoleh µJ n (λ )J n' (µ ) − µJ n (µ )J n' (λ ) = 0 Sehingga dari soal 2.kita mendapatkan hasil yang diinginkan ∫ xJ (λx )J (λx )dx = 0 1 n 0 n Dalam kasus R ≠ 0, S ≠ 0 atau R ≠ 0, S = 0, hasil tersebut juga dapat dibuktikan dengan mudah. DERET FUNGSI BESSEL 1.Jika f ( x ) = ∑ A p J n (λ p x ),0 < x >1, dimana λ p , p = 1,2,3,..., akar positif dari J n ( x ) = 0, ditunjukkan bahwa AP = ( ) (λ ) ∫ xJ λ x f (x )dx 2 J 2 n +1 1 p n 0 p Kalikan deret untuk f(x) dengan xJ n (λk x ) dan integralkan suku demi suku dari 0 sampai 1.maka 1 ∫ 0 ≈ xJ n (λk x ) f ( x )dx = ∑ A p ∫ xJ n (λ k x )J n (λ p x )dx p =1 = Ak ∫ xJ n2 (λk x )dx 1 0 1 = AK J N'2 (λ k ) 2 Dimana kita telah menggunakn soal 10.22.dan 10.23 bersama-sama dengan kenyataan bahwa AK = xJ (λ x ) f ( x )dx (λ ) ∫ 2 J '2 n 1 k 0 n k Untuk memperoleh hasil yang diinginkan dari sini,digunakan rumus pengulangan 3 dihalaman 240 yang ekivalen denga rumus 6 dihalaman itu, kita memperoleh λ k J n' (λk ) = nJ n (λ k ) − λJ n +1 (λk ) Atau karena J n (λ k ) = 0 J n' (λ k ) = − J n +1 (λ k ) 2.uraikan f(x)=1 dalam suatu deret yang berbentuk ∞ ∑ A J (λ x ) p =1 p 0 p Untuk 0<x<1,jika λ p ,p=1,2,3,…, adlah akar positif dari J 0 ( X ) = 0, Ap = ( ) (λ ) ∫ xJ λ x dx = λ 2 J 2 1 2 1 0 p = 0 p 2 λ J (λ p ) 2 p 2 i 2 p J 2 1 vJ 1 (v ) 0 p = λ (λ ) ∫ λp 0 p vJ 0 (v )dv 2 λ p J 1 (λ p ) Dimana kita telah menggunakan penggantian v = λ p x dalam intergralnya dan hasil soal 10.8 dengan n=1 Jadi kita memperoleh deret yangdiinginkan ∞ 2 f (x ) = 1 = ∑ J 0 (λ p x ) p =1 λ k J 1 (λ p ) J 0 (λ1 x ) J 0 (λ2 x ) 1 + + ... = λ1 J 1 (λ1 ) λ2 J 2 (λ2 ) 2 Yang dapat ditulis sebagai SOAL-SOAL TAMBAHAN PERSAMAAN DEFERENSIAL BESSEL 10.26. Tunjukanlah bahwa jika x diganti oleh λx dimana λ kostanta, maka persamaan Bessel x 2 y '' + xy ' + x 2 − n 2 y = 0 ditransformasikan menjadi ( ) x y + xy + λ x − n y = 0 2 '' ' 2 2 2 ( FUNGSI BESSEL JENIS PERTAMA ) x x5 x5 x7 − 2 + 2 2 − 2 2 2 + ... dan periksalah bahwa 2 2 4 2 4 6 2 4 68 selang kekonvergenan adalah − ∞ <x< ∞ 10.28.tunjukan J 01 ( X ) = − J 1 ( x ). d 10.29. tunjukanlah [xJ 1 (x )] = xJ 0 (x ) dx 10.27.(a) tunjukan J 1 ( x ) = 10.30.Hitunglah (a) J 5 2 ( x ) dan (b) J − 5 ( x ) dalam suku-suku sinus dan cosinus. 2 10.31.tentukanlah J 3 (3) dalam suku-suku J 0 ( x )danJ 1 ( x ). 1 [J n−2 (x ) − 2 J n (x ) + J n+ 2 (x )] 2 10.32. buktikanlah bahwa (a ) 1 J n''' ( x ) = [J n −3 ( x ) − 3J n −1 ( x ) + 3J n +1 ( x ) − J n +3 ( x )] 4 Dan buatlah perumusan hasil ini. J n'' ( x ) = 10.33 hitunglah (a) ∫ x J (x )dx, (b). ∫ x J (x )dx 10.34 hitunglah (a) ∫ J ( x )dx (b). ∫ 10.35.hitunglah 3 2 3 1 1 3 0 0 (c). ∫x 2 J 0 ( x )dx J 2 (x ) dx x2 ∫ J (x )sin xdx. 0 FUNGSI PEMBANGKIT DAN HASIL-HASIL TAMBAHAN 10.36 gunakanlah fungsi pembangkit untuk membuktikan bahwa 1 J n' ( x ) = [J n −1 ( x ) + J n +1 ( x )] untuk kasus dimana n bulat. 2 10.37 gunakanlah fungsi pembangkit untuk mengerjakan soal 10.30 dalam kasus n bulat. 10.38 tunjukanlah J 0 ( x ) = 10.39 tunjukanlah ∫ x 0 2 π ∫ π 2 0 cos( x sin θ )dθ ∞ J 0 (t )dt = 2∑ J 2 k +1 ( x ) k =0 FUNGSI BESSEL JENIS KEDUA 10.40. Buktikanlah Y0' ( x ) = −Y 1 ( x ) 10.41. hitunglah (a). Y1 2 ( x ), (b). Y−1 2 ( x ). 10.42.buktikanlah J n ( x )Yn' ( x ) − J n' ( x )Yn ( x ) = 2 πx 10.54. Tunjukanlah I 0 ( x) = 2 ∫ π π 2 0 cosh ( x sin θ )dθ . 10.55. Tunjukanlah (a) sinh x = 2[I1 ( x) + I 3 ( x) + ...] (b) cosh x = I 0 ( x) + 2[I 2 ( x) + I 4 ( x) + ...] 10.56. Tunjukanlah (a) I 3 2 ( x) = 2 sinh x cosh x − πx x 2 cosh x sinh x − . πx x 2n 10.57. (a) Tunjukanlah K n +1 ( x) = K n −1 ( x) + K ( x) x n (b) Jelaskanlah mengapa fungsi K n ( x) memenuhi rumus pengulangan yang (b) I − 3 2 ( x) = sama seperti untuk I n ( x) dengan I n ( x) diganti dengan K n ( x) . 10.58. Berikan rumus asimtotik untuk (a) I n(1) ( x) , (b) H n( 2) ( x) . 10.59. Tunjukanlah (x 2) 1 (x 2) 1 1 1 1 + + + − ... Ker0 ( x) = −{ln(x 2) + γ }Ber0 ( x) + Bei0 ( x) + 1 − 2 1 + + 4 2! 2 4!2 2 3 4 π 8 PERSAMAAN-PERSAMAAN YANG DUTRANSFORMASIKAN KEDALAM PERSAMAAN BESSEL 10.60. Selesaikan 4xy”+4y’+y = 0. 10.61. Selesaikan (a) xy”+2y’+xy = 0, (b) y”+x2y = 0. 10.62. Selesaikanlah y”+e2xy = 0. (misalkan ex = u). 10.63. Tunjukanlah dengan pergantian langsung bahwa y = J 0 (2 x ) adalah suatu penyelesaian dari y"+xy = 0 dan (b) tuliskanlah penyelesaian umumnya. 2 x J1 3 x 3 2 adalah 3 jawaban dari y”+xy = 0 dan (b) tuliskan penyelesaian 10.64. (a) Tunjukan dengan pergantian langsung bahwa y = suatu umumnya. 10.65. (a) Tunjukanlah bahwa persamaan Bessel x 2 y ,, + xy , + (x 2 − n 2 ) y = 0 dapat d 2u n 2 − 1 4 u = 0 dimana y = u x . ditransformasikan kedalam + 1 − dx 2 x2 (b) Bahaslah kasus dimana x besar dan jelaskan hubungannya dengan rumus asimtotik dihalaman 243. DERET TEGAK LURUS FUNGSI-FUNGSI BESSEL 10.66. Lengkapilah soal 10.23 dihalaman 253 untuk kasus (a) R ≠ 0, S = 0 , (b) R = 0, S ≠ 0 x2 2 nx 10.67. Tunjukanlah ∫ xJ ( λ x) dx = [ J n ( λ x) + J n2+1 ( λ x) ] − J n ( λ x) J n +1 ( λ x) + c 2 αλ 2 n 10.68. Buktikanlah hasil 10.69. Tunjukanlah 1 − x2 = 8 ∞ p =1 dari J 0 ( λ) = 0 . ∞ 10.70. Tunjukanlah x = 2 ∑ p 2 10.71. Tunjukanlah x = ∑ p =1 ( λp adalah akar positif p ( ) ....... − 1 < x < 1 dimana λ Jλ (λ ) dari J1 ( λ) = 0 . ∞ 3 p 1 J1 λp x p =1 2 ( ) J 0 λp x ∑ λ J (λ ).......0 < x < 1 dimana adalah akar positif p ) ( ) .......0 ≤ x < 1 dimana λ λ J (λ ) 2 8 − λ2p J1 λp x positif dari J1 ( λ) = 0 . 3 p 1 p adalah akar p 10.72. Gunakanlah soal 10.73 dan 10.75 untuk menunjukan adalah akar positif dari J 0 ( λ) = 0 . 1 ∑λ 2 p = 1 dimana λp 4 JAWABAN SOAL-SOAL TAMBAHAN 10.28. (a) 2 (3 − x 2 )sin x − 3 x cos x πx x2 2 3 x sin x − (3 − x 2 ) cos x πx x2 (b) 8 − x2 4 10.29. 2 J1 ( x) − J 0 ( x) x x 10.31. (a) x 3 J 3 ( x) + c (b) 2 J 0 (1) − 3 J1 (1) (c) x 2 J1 ( x) + xJ 0 ( x) − ∫ J 0 ( x) dx 10.32. (a) 63 x J1 (3 x ) − 33 x 2 J 0 (3 x ) + c (b) − J 2 ( x) j1 ( x) 1 − + ∫ J 0 ( x)dx 3x 3 3 10.33. xJ 0 ( x) sin x − xJ1 ( x) cos x + c 10.42. (a) 1 a2 + b2 10.48. (a) − 2 cos x πx (b) (b) a2 + b2 − a (c) b a 2 + b2 ( a 2 + b2 − a ) n bn a 2 + b2 2 sin x πx 10.50. (a) x 3Y3 ( x) + c (b) − Y2 ( x) − 2Y1 ( x) / x + c 1 1 1 1 (c) − Y1 ( x) − Y2 ( x) − 2 Y3 ( x) + ∫ Y0 ( x) dx 15 15 x 5x 15 10.63. y = AJ 0 ( x ) + BY0 ( x ) 10.64. (a) y = A sin x + B cos x x 10.65. y = AJ 0 (e x ) + BY0 (e x ) (b) y = 1 1 x AJ1 / 4 x 2 + BJ −1 4 x 2 2 2